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Abstract
We propose Action-Reaction Learning as an ap-

proach for analyzing and synthesizing human behaviour.
This paradigm uncovers causal mappings between past
and future events or between an action and its reaction
by observing time sequences. We apply this method to
analyze human interaction and to subsequently synthe-
size human behaviour. Using a time series of percep-
tual measurements, a system automatically uncovers a
mapping between gestures from one human participant
(an action) and a subsequent gesture (a reaction) from
another participant. A probabilistic model is trained
from data of the human interaction using a novel es-
timation technique, Conditional Expectation Maximiza-
tion (CEM). The system drives a graphical interactive
character which probabilistically predicts the most likely
response to the user's behaviour and performs it inter-
actively. Thus, after analyzing human interaction in a
pair of participants, the system is able to replace one of
them and interact with a single remaining user.

1 Introduction
With advances in computation, the simulation and

the analysis of behaviour has become a feasible proposi-
tion. In simulation domains, dynamics, kinematics, an-
imal behaviour, rule based systems and reinforcement
learning have been proposed to synthesize compelling
interaction with arti�cial characters [3] [22] [20] [2]. Si-
multaneously, computer analysis and automatic learn-
ing of behaviour and dynamics from perceptual mea-
surements has also strongly developed [26] [17] [18] [5]
[4] [21]. Of particular relevance is the ability to predict
regularities in human behaviour using computational
models trained with machine learning [18]. We propose
the combination of the e�ects of both behaviour simu-
lation and perceptually driven behaviour analysis into
a common automatic framework. The Action-Reaction
learning approach acquires models of human behaviour
from video and controls synthetic characters. Driven by
these models and perceptual measurements, these char-
acters are capable of interacting with humans in real-
time. Ultimately, the user need not specify behaviour
directly (and tediously) but teaches the system merely
by interacting with another individual.

Earlier models of human behaviour proposed by cog-
nitive scientists analyzed humans as an input-output or

stimulus-response system [25] [23]. These behaviourists
came under criticism as cognitive science evolved be-
yond their over-simpli�ed model and struggled with
higher order issues (i.e. language, creativity, and at-
tention) [14]. Nevertheless, much of the lower-order
reactionary behaviour was still well modeled by the
stimulus-response paradigm.

Of particular relevance is the close similarity of the
stimulus-response behaviourist model to input-output
learning algorithms. The Action-Reaction learning sys-
tem is a probabilistic algorithm that uncovers a map-
ping between the stimulus and the response from in-
teraction data. The goal of the model is not to clas-
sify behaviour into a variety of categories or for surveil-
lance [21]. Typically, these classi�cations involve man-
ual supervised segmentation and identi�cation of spe-
ci�c types of behaviour. Rather, the model will be
used for unsupervised analysis and its ultimate goal is
the synthesis of such human behaviour with minimal
arti�cial constraints, hand-wired knowledge and zero
user intervention. The behaviour in question is lim-
ited to physical activities which can be measured by
the system.1

The Action-Reaction Learning framework is initially
discussed. The approach treats present activity as an
input and future activity as an output and attempts to
uncover a probabilistic mapping between them (i.e. a
prediction). In particular, by learning from a series of
human interactions, one can treat the past interaction
of two individuals as an input and try to predict the
most likely reaction of the participants. The probabilis-
tic model is estimated using, Conditional Expectation
Maximization which recovers a conditional density de-
scribing the input-output relationship between the two
participants.

We also discuss the details of some of the perceptual
inputs into the learning system. Subsequently, there
is a description of the performance of the probabilistic
model as it infers the optimal reaction to a past interac-
tion. This drives the output of the system which is re-
alized as a graphical character. A typical application as

1It is not essential that the input be perceptual. However,
perceptual modalities are rich, expressive, intuitive and non-
obtrusive. One could take other measurements if they help infer
behaviour, internal state or intentionality.



well as some results illustrating the technique are then
shown as the system learns to behave in a simple ges-
tural interaction. E�ectively, the system learns to play
not by being explicitly programmed or supervised but
simply by observing other human participants. Finally,
current extensions to the formulation are described.

1.1 System Architecture
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Figure 1: O�ine: Learning from Human Interaction

The system is depicted in Figure 1 and in Figure 2.
Three di�erent types of processes exist: perceptual,
synthesis and learning engines interlinked in real-time
with asynchronous RPC data paths. Figure 1 shows
the system being presented with a series of interactions
between two individuals in a constrained context (i.e.
a simple children's game) 2. The system collects real
perceptual measurements using a vision subsystem for
each of the humans. The temporal sequences obtained
are then analyzed by a learning subsystem to determine
predictive mappings between pieces of the sequences
and their consequences.
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Figure 2: Online: Interaction with Single User

In Figure 2, the system has collected and assimilated
the data and can now infer the maximum likelihood re-
sponse to the actions of each individual. The percep-
tual system then only tracks the activity of the single
remaining user and feeds it the learning system. The
learning model performs an estimation and generates
the most likely response to the user's behaviour by an-
imating a computer graphics character in the synthesis
subsystem. This is the main output of the ARL engine.
It is fed back recursively into the learning subsystem

2Of course, the individuals need not be in the same physical
space and could be interacting through a virtual environment.
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Figure 3: Dialog Interaction and Analysis Window

so that it can remember its own actions and generate
self-consistent behaviour. In addition, the system deter-
mines the most likely action of the remaining user and
transmits it as a prior to assist tracking in the vision
subsystem.

1.2 A Typical Scenario
Action-Reaction Learning (ARL) involves temporal

analysis of a (usually multi-dimensional) data stream.
Figure 3 displays such a stream (or time series). Let us
assume that the stream is being generated by a vision al-
gorithmwhich measures the openness of the mouth [16].
Two such algorithms are being run simultaneously on
two di�erent people. One person generates the dashed
line and the other generates the solid line.

Now, imagine that these two individuals are engaged
in a conversation. Let us also name them Mr. Solid
(the fellow generating the solid line) and Mrs. Dash
(the lady generating the dashed line). Initially (A-B),
Mr. Solid is talking while Mrs. Dash remains silent. He
has an oscillatory mouth signal while she has a very low
value on the openness of the mouth. Then, Mr. Solid
says something shocking, pauses (B-C), and then Mrs.
Dash responds with a discrete 'oh, I see' (C-D). She
too then pauses (D-E) and waits to see if Mr. Solid has
more to say. He takes the initiative and continues to
speak (E). However, Mr. Solid continues talking non-
stop for just too long (E-G). So, Mrs. Dash feels the
need to interrupt (F) with a counter-argument and sim-
ply starts talking. Mr. Solid notes that she has taken
the oor and stops to hear her out.

What Action-Reaction Learning seeks to do is dis-
cover the coupling between the past interaction and the
next immediate reaction of the participants. For ex-
ample, the system may learn a model of the behaviour
of Mrs. Dash so that it can imitate her idiosyncrasies.
The process begins by sliding a window over the tem-
poral interaction as in Figure 3. The window looks at
a small piece of the interaction and the immediate re-
action of Mrs. Dash. This piece is the short term or
iconic memory the system will have of the interaction
and it is highlighted with a dark rectangular patch. The
consequent reaction of Mrs. Dash and Mr. Solid is high-
lighted with the lighter and smaller rectangular strip.
The �rst strip will be treated as an input x and the
second strip will be the desired subsequent behavioural



output of both Mr. Solid and Mrs. Dash (y). As the
windows slide across the interaction, many such (x;y)
pairs are generated and presented to a machine learn-
ing system. The task of the learning algorithm is to
learn from these pairs to later generate predicted y

�

sequences which can be used to compute and play out
the future actions of one of the users (i.e. Mrs. Dash)
when only the past interaction x of the participants is
visible.

Thus, the learning algorithm should discover some
mouth openness behavioural properties. For example,
Mrs. Dash usually remains quiet (closed mouth) while
Mr. Solid is talking. However, after Solid has talked
and then stopped briey, Mrs. Dash should respond
with some oscillatory signal. In addition, if Mr. Solid
has been talking continuously for a signi�cant amount
of time, it is more likely that Mrs. Dash will interrupt
assertively. A simple learning algorithm could be used
to detect similar x data in another situation and then
predict the appropriate y response that seems to agrees
with the system's past learning experiences.

Note now that we are dealing with a somewhat super-
vised learning system because the data has been split
into input x and output y. The system is given a tar-
get goal: to predict y from x. However, this process is
done automatically without any manual data engineer-
ing. One only speci�es a-priori a constant width for the
sliding windows that form x and y (usually, the y covers
only 1 frame). The system then operates in an unsu-
pervised manner as it slides these windows across the
data stream. Essentially, the learning uncovers a map-
ping between past and future to later generate its best
possible prediction. Interaction can be learned from a
variety of approaches including reinforcement learning
[24]. The objective here is is primarily an imitation-type
learning of interaction.

2 Perceptual System
Of primary concern in the visual perceptual system

is the recovery of action parameters which are particu-
larly expressive and interactive. In addition, to main-
tain real-time interactiveness and fast training, the pa-
rameters should be compact. The tracking system used
is a head and hand tracking system which models the
three objects (head, left and right hand) as 2D blobs
with 5 parameters each. With these features alone, it
is possible to engage in simple gestural games and in-
teractions.

The vision algorithm begins by forming a probabilis-
tic model of skin colored regions [1]. During an of-
ine process, a variety of skin-colored pixels are selected
manually, forming a distribution in rgb space. This
distribution can be described by a probability density
function which is used to estimate the likelihood of any
subsequent pixel (xrgb) being a skin colored pixel. The
pdf used is a 3D Gaussian mixture model as shown in
Equation 1.

p(xrgb) =
MX

i=1

p(i)

(2�)
3

2

p
j�ij

e�
1

2
(xrgb��i)

T��1
i

(xrgb��i)

(1)
The parameters of the pdf (p(i),�i and �i) are esti-

mated using the Expectation Maximization algorithm

(a) (b) (c)

(d) (e) (f)

Figure 4: Head and Hand Blob Tracking

to maximize the likelihood of the training rgb skin sam-
ples. This pdf forms a classi�er and every pixel in an
image is �ltered through it. If the probability is above a
threshold, the pixel belongs to the skin class, otherwise,
it is considered non-skin (as in Figures 4(a) and (d)).

To clean up some of the spurious pixels misclassi�ed
as skin, a connected components algorithm is performed
on the region to �nd the top 4 regions in the image, see
Figure 4(b). We choose to process the top 4 regions
since sometimes the face is accidentally split into two
regions by the connected components algorithm. In ad-
dition, if the head and hands are touching, there may
only be one non-spurious connected region as in Fig-
ure 4(e).

Since we are always interested in tracking three ob-
jects (head and hands) even if they touch and form a
single connected region, it is necessary to invoke a more
sophisticated pixel grouping technique. Once again, we
use the EM algorithm to �nd 3 Gaussians which max-
imize the likelihood of the spatially distributed (in xy)
skin pixels. Note that the implementation of the EM al-
gorithm here has been heavily optimized to require less
than 50ms to perform each iteration for an image of
size 320 by 240 pixels. The resulting Gaussian mixture
model is shown in Equation 2.

p(xxy) =
3X

j=1

p(j)

2�
p
j�jj

e�
1

2
(xxy��j )

T��1
j

(xxy��j ) (2)

The update of the parameters is done in real-time by
iteratively maximizing the likelihood over each image.
The resulting 3 Gaussians have 5 parameters each (from
the 2D mean and the symmetric covariance) and are
shown rendered on the image in Figures 4(c) and (f).
The covariance (�) is actually represented in terms of
its square root matrix, � where � � � = �. The �
matrix has 3 free parameters (�xx;�xy;�yy) which are
closer to the dynamic range of the 2D blob means. The
5 parameters describing the head and hands are based
on �rst and second order statistics which can be reliably
estimated from the data in real-time. In addition, they
are well behaved and do not exhibit wild non-linearities.
Consequently they are adequate for temporal modeling.
Higher order measurements could be added in the future
but these might be more unstable to estimate and might
have non-linear phenomena associated with them. The
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Figure 6: Perceptual Measurements and Graphics

15 recovered parameters from a single person are shown
as a well behaved, smooth time series in Figure 5. These
de�ne the 3 Gaussian blobs (head, left hand and right
hand).

The parameters of the blobs are also processed in
real-time via a Kalman Filter which smoothes and pre-
dicts their values for the next frame. The KF model
assumes constant velocity to predict the next observa-
tion and maintain tracking.

3 Graphical System
At each time frame, the 15 estimated parameters for

the Gaussians can be rendered for viewing as in Fig-
ure 6. This is also the display provided to each user so
that he may view the gestures of the other human (or
computer) player through his personal computer screen.

4 ARL System
The Action-Reaction Learning system functions as

a server which receives time series data from the vi-
sion systems and re-distributes it to the graphical sys-
tems for rendering. Typically, two vision systems and
two graphics systems are connected to the ARL server.
Within the ARL server, tracking data for the vision
systems is stored as a long time series. Both sets of
Gaussians from each vision system are concatenated to
form 30 parameters that evolve as a multi-dimensional
time series (6 Gaussian blobs over time). The ARL sys-
tem preprocesses and trains from this time series data.
Once converged, it can begin predicting the evolution of
the time series and, equivalently, estimate the parame-
ters of the 6 blobs in the near future.

5 Time Series Pre-Processing
Time series techniques for predicting the evolution of

many variables have been well documented in [9]. The
techniques typically recover relationships between past
time sequences and their future consequences. These
range from neural networks [15] to HMMs [8]. For a
neural approach, there exist many di�erent possibili-
ties for processing and representing temporal data. The
simplest one is to merely rasterize each time series into
a vector. The window of 128 samples is placed over the
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Figure 7: Pre-Processing the Past Sequence
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Figure 8: First Eigenvector of Past Interaction

time series data and the 30 di�erent streams are raster-
ized into a 30�128 element vector (i.e. in R3840). This
window e�ectively covers 128� 50ms = 6:5 seconds of
temporal data. This data is weighted linearly by its
distance from time zero (i.e. the right side of the slid-
ing window). Thus, a linear ramp function is multiplied
with each time series. This reects our intuition that
the more temporally distant the elements in the time
series the less relevant they are for prediction [7]. The
linear ramp multiplication and rasterization process is
depicted in Figure 7.

Each 50ms, the window slides 50ms to the right, and
we re-rasterize the data into another vector in R3840.
From a total of a few minutes of such time series data,
thousands of these vectors are accumulated in an o�ine
process. A Principal Components Analysis is then per-
formed (i.e. computation of the top eigenvectors of a
Gaussian estimate of the R3840 data). The PCA anal-
ysis obtains the top 40 most energetic modes of vari-
ation of the R3840 which account for more than 95%
of the signal energy. Thus, we can represent each vec-
tor R3840 by its coe�cients in the subspace spanned
by these modes and e�ectively reduce its dimension-
ality to R40. The past 6 second interaction between
two individuals (6 blobs) is represented with these 40
parameters. In addition, we concatenate to these pa-
rameters the most recent values of the time series (the
right most frame in the window) as well as the time
series velocity. This increases the total dimensionality
to 40 + 30 + 30 = 100 parameters for the sliding win-
dow. In Figure 8 the �rst mode (eigenvector) is shown
for the time window as well as the piece corresponding
to the x coordinate of the head. This demonstrates,
interestingly, that the eigenvector's shape is not a sinu-
soid, wavelet or other standard basis function since it is
specialized to the training data.

We wish to use this R100 vector (call it x) of past in-
teraction to predict the 30 parameters of the 6 blobs in
the next 50 ms video frame (right after the attentional
window). Thus, immediately after the time window,
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one may simply vectorize the parameters of the 6 blobs
into a R30 vector, y. The x vector represents the past
action and the y represents the consequent reaction.
For a few minutes of data, we can obtain thousands of
pairs of x and y vectors (i.e. action-reaction pairs) by
sliding the attentional window over the time series and
processing it as above. Figure 9 shows the �rst 60 eigen-
values and the evolution of x in its �rst 3 coe�cients
in the eigenspace as we slide the window over �30 sec-
onds. Given su�cient pairs of vectors, it is possible to
learn how to predict the interaction of two users in a
constrained context.

6 Conditional Expectation Maximiza-
tion

To model the action-reaction space we shall use a
probabilistic approach. Due to the randomness of the
interactive behaviour in humans, the noise in the per-
ceptual systems and the sparseness of the observations,
an exact deterministic mapping would be di�cult to
compute. In addition, since we will always observe x
and want to predict the subsequent reaction y, a con-
ditional density of the form p(yjx) is required. In other
words, the density will usually be used to predict the
30 dimensional reaction from the past action and is not
just a model of the full 100 + 30 dimensional space.

Due to its exibility to model non-linear phenomena
and its ease of use, we use a conditioned mixture of
Gaussians [13]. This model is depicted in Equation 3
with N representing a normal distribution or Gaussian
model.

p(yjx) =
p(x;y)
p(x) =

P
M

m
p(x;y;m)P

m
p(x;m)

=

P
M

m
p(m)N (x;yj�xm ;�ym;�

xx
m ;�yym ;�xym )P

M

m
p(m)N (xj�xm ;�xxm )

(3)

Traditionally, training probabilistic models is done
by maximizing the likelihood (L) of a model (�) given
the data as shown in Equation 4. Techniques such as
Expectation Maximization [6] can be used to optimize
the parameters of a probability density function such
that its joint density is a good model of the data. In
clustering, for instance, data is treated homogeneously
without special considerations for the distinction be-
tween input x and output y. If the data is split as afore-
mentioned into response (y) and covariate (x) compo-
nents, this indicates that the covariate components will
always be available to the system. Thus, when �tting a
probabilistic model to the data, we should optimize it
only to predict y (x is always measured).
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Figure 10: Conditional Density Estimation

L =
NY

i=1

p(xi;yij�) (4)

We recently developed a variant of the EM algorithm
called Conditional Expectation Maximization (CEM)
for speci�cally optimizing conditional likelihood [11]. It
essentially �ts a probability density function (pdf) that
maximizes the conditional likelihood of the response
given the covariates. CEM is an iterative technique
which uses �xed point solutions (i.e. as opposed to gra-
dient descent) to converge the parameters of a condi-
tional density to a local maximum of conditional likeli-
hood, (Lc) as described by Equation 5.

Lc =
NY

i=1

p(yijxi;�) (5)

Applying CEM to the pdf optimizes its p(yjx) over
the data 3. This is exactly the intended use of the
learning system. EM, on the other hand, typically opti-
mizes p(x;y), the ability to model the data as a whole.
Since resources (i.e. memory, complexity) are sparse
and training examples are �nite, it is preferable here to
directly optimize the model's conditional likelihood [13]
[19] using CEM. In other words, we want the learning
system to be good at �guring out what Mrs. Dash will
do next (i.e. use x to predict y). We are not as inter-
ested in asking the system what past event would have
provoked Mrs. Dash to do what she just did (i.e. use y
to get x).

Figure 10(a) and (b) depicts a situation where the
CEM algorithm (in (b)) outperforms the EM algorithm
(in (a)) when �tting a pair of Gaussians. In this exam-
ple, the EM algorithm optimized L and was then used
to compute Lc. The CEM algorithm directly optimized
Lc and has therefore obtained a superior conditional
density estimate. The top �gures display the positions
of the Gaussians in the joint density and the bottom
�gures show the estimated conditional density p(yjx),
reecting the fact that x will be given.

For the ARL system, training data consisted of ap-
proximately 6000 (x;y) pairs occupying 100 and 30 di-
mensions respectively. The number of Gaussians used
in the conditional model was M = 25. Figure 10(c)

3The ability to predict y if x is observed.



displays the conditional log likelihood (Lc) as the CEM
algorithm optimizes and monotonically converges to the
maximum conditional likelihood solution (from an ini-
tial random state). The system took slightly under one
hour on an SGI OCTANE to achieve the displayed con-
vergence for a 5 minute long training sequence of inter-
actions.

7 Prediction
Assume that the system has just come online after

an extended o�ine examination of two human partic-
ipants. Now, the system is alone with a single human
participant and it is obtaining some perceptual mea-
surements of the user's actions over the past time win-
dow. This data is presented to the probabilistic model
p(yjx) which now gives us a distribution over possible
reactions. Using the estimated pdf, p(yjx), we can pre-
dict the future reaction given any past interaction. This
is done by again obtaining an attentional window over
a few seconds of past data and pre-processing it into a
vector x�. The values of x� are inserted into the condi-
tional density generating a density exclusively over the
variable y. This density is e�ectively a 30 dimensional,
M-component Gaussian mixture model.

It is customary in Bayesian inference to use the ex-
pectation of a distribution as its representative. Using
the pdf over y, we integrate as in Equation 6 to obtain
the predicted y

�, the most likely reaction according to
the model.

y
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R
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y
�
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m �xx
m

�1(x� � �xm)

(6)

8 Synthesis and Feedback
Thus, the system has predicted the reaction to what

the user has done. This reaction is represented in the
same way as the signals generated by the perceptual
system. So, if it is possible to undo the work of the
perceptual system at this stage (i.e. with graphics) by
inverting the perceptual measurement and realizing a
physical manifestation of it (i.e. an animated blob and
stick �gure display), the system can interact with the
user in a compelling manner.

In addition, the reaction (in the form of perceptual
measurements) that the ARL system has just synthe-
sized can be fed back in as a component of the next x
input (along with the perceptual measurements taken
o� of the user). Thus, the system has a memory of its
own past actions or an internal state. The process con-
tinues and time evolves, sliding the temporal perceptual
measurements taken o� the observed user into the ARL
window dynamically. The ARL system simultaneously
generates a stream of perceptual measurements for its
own character and displays the graphical output asso-
ciated with them.

More speci�cally, the half of the predicted y
� vec-

tor that will be used to animate the system's virtual
character will be denoted y�B and the half that predicts
what the current user should do next will be called y�A.
Figure 2 demonstrates the system's continuous self feed-
back process. Half of the multi-dimensional time series

evolves due to the user and the other half is the accu-
mulated history of the predictions the system has per-
formed. This allows the system to have a memory of
its own synthesized actions and maintain self-consistent
behaviour. Of course, for the initial few seconds of in-
teraction, the system has not synthesized any actions
(i.e. no y

� vectors have yet been computed). There-
fore, the �rst few seconds of the time series that should
correspond to the synthesized character are merely set
to arbitrary default values, e�ectively bootstrapping the
system.

Simultaneously, the real-time graphical blob repre-
sentation is used to unmap the probabilistically pre-
dicted perceptual measurement (the y�B action) for the
visual display. It is through this display that the human
user receives feedback in real-time from the system's re-
actions and interaction attempts. This is necessary to
maintain the interaction which requires the human user
to pay attention and respond appropriately. The graph-
ics system is kept simple and merely renders blobs in
a 1 to 1 mapping since it displays to the user exactly
what is perceived (merely three blobs) by the system.
The ARL system's primary concern is head and hand
position and this becomes clear from the coarse display.
In addition, the user is not as misled into expecting
human-level intelligence from such a simple output.

9 Perceptual Feedback
Evidently, the predicted user's action y�A could also

be fed back into the time series doing away with any
human input altogether. However, the system often
locks up into some looping meaningless behaviour when
both halves of the time series are completely synthesized
with no human tracking. Some modi�cations are being
investigated for zero-user, two-computer con�gurations.

More importantly, however, the y�A vector does have
two critical applications. It can be used as a predic-
tor of the user's actions to help the tracking since it is
somewhat of a sophisticated dynamical system and it
can be used to resolve some vision system errors.

9.1 Beyond Dynamics
Typically, tracking algorithms use a variety of tem-

poral dynamic models to assist the frame by frame vi-
sion computations. The most trivial of these is to use
the last estimate in a nearest neighbour approach to ini-
tialize the next vision estimate. Kalman �ltering and
other dynamic models involve more sophistication rang-
ing from constant velocity models to very complex dy-
namic systems [10]. Here, the dynamics and the feed-
back being used to constrain the vision system are the
results of not only dynamics but also behaviour mod-
eling. This is similar in spirit to the mixed dynamic
and behaviour models in [18]. The system thus contin-
uously feeds back prediction estimates of the 15 param-
eters corresponding to the 3 Gaussians being tracked in
the vision system for improved results.

9.2 Blob Correspondence
Initially, colored gloves were used to overcome some

of the blob correspondence problems that would oc-
cur when heads and hands touched and moved by each
other. The �rst few training sequences involved no blob
miscorrespondence due to explicit labeling of the head,
left hand and right hand. However, once appropriately



Interaction User Corresponding Action

1 A Scare B by moving towards camera
B Fearfully crouch down & bring hands in

2 A Wave hello
B Wave back accordingly

3 A Circle stomach & tap head
B Clap enthusiastically

4 A Idle or Small Gestures
B Idle or Small Gestures

Table 1: Interaction Instructions

trained, the probabilistic model described above feeds
back the positions of the Gaussians to the vision and
prevents blob mislabeling by using the whole gesture
as a predictor instead of short range dynamics. Thus,
it is possible to recognize a blob as a hand from its
role in a gesture and to maintain proper tracking. This
permits us to reliably do away with colored gloves. A
coarse model of p(x) is available and can be evaluated
to determine the likelihood of any particular past inter-
action. If permutations of the blobs being tracked by
the computer vision are occasionally tested with p(x),
any mislabeling of the blob features can be detected
and corrected. The system merely selects one of the 6
permutations of 3 blobs that maximizes p(x) and then
feeds back the appropriate y� estimate to the computer
vision. Instead of using complex static computations, a
reliable correspondence between the blobs is computed
from the temporal information.

10 Interaction Results
It is prudent to train the ARL system in a con-

strained context to achieve some kind of learning con-
vergence from limited data and limited modeling re-
sources. Thus, the users involved in training the system
initially are given some loose instructions on the nature
of the interactions they will be performing. The users
were given the instructions listed in Table 1.

The two users (A and B) begin by playing the above
game and A gestures while B responds appropriately.
The users are physically separated from each other and
only see graphical representations of each other on their
screens. The learning algorithm is given measurements
of the head and hand positions of both users. These
measurements are taken o� of two players for several
minutes of interaction. These sequences generate many
input-output pairs when the �xed size analysis windows
slide over them. These pairs are used to train the sys-
tem which is then able to impersonate player B. Once
the training is complete, the B gesturer leaves and the
single user remaining is A. The screen display for A
still shows the same graphical character except now the
actions of the character are synthesized by the ARL
system as opposed to the other player.

Two evaluation methods were used. The system was
required to evaluate a real interaction between two indi-
viduals and predict the reactions of both by only view-
ing the past interaction. The RMS errors are shown in
Table 2 and compared with nearest neighbour estimates
and constant velocity estimates.

In addition, real-time online testing of the system's
interaction abilities was performed. A human player

Nearest Neighbour Constant Velocity ARL
1.57 % 0.85 % 0.64 %

Table 2: RMS Errors

(a) (b) (c) (d)

Figure 11: Real-Time Interaction with Character

performed the gestures of user A and checked for the
system's response. Whenever the user performed one
of the gestures in Table 1, the system responded with
a (qualitatively) appropriate animation of the synthetic
character (the gesture of the missing user B). Figure 11
shows a sample interaction. In (a) the user is in a nor-
mal state ready to start the gesture and the synthetic
character is in a relaxed state in (b). In (c) the user is
performing a menacing gesture and the system responds
by crouching down in fear and bringing its hands close
as in (d). Moreover, the responses from the system
contain some default pseudo random variations giving
them a more compelling nature.

The user is delegating tasks to the animated char-
acter since it is not a simple 1-to-1 mapping between
current measurements to output. The user produces a
complex action and the system responds with a com-
plex action that depends on that input as well as on its
own previous internal state.

11 Current and Future Work
11.1 Continuous Online Learning

It is also feasible to continue the training of the CEM
algorithm while the system acquires more data and per-
forms synthesis. Thus, it performs online learning and
updates its mixture of conditional models dynamically
as it obtains new samples. This and the fact that the
ARL system interacts with a user allow it to continu-
ously learn new behaviours and interaction skills. The
system merely looks at the reactions produced by the
user from the past interaction he had with the system's
synthesized character. The window of mutual inter-
action and the immediate consequence form the same
input-output pair (x;y) as was initially processed of-
ine. The system could thus dynamically learn new re-
sponses to stimuli and include these in its dictionary of
things to do. This makes it adaptive and its behaviour
will be further tuned by the engagement with the sin-
gle remaining user. This mode of operation is currently
under investigation.

11.2 Face Modeling for Interaction
Face modeling can also be used to recover more per-

ceptual details for a convincing interaction. A system
which automatically detects the face and tracks it has
been implemented [12]. It is capable of tracking the
3D rotations and movements of a face using normal-
ized correlation coupled with structure from motion.
In addition, at each moment in time, it can compute
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Figure 12: 3D Face Modeling and Tracking

an eigenspace model of the face's texture which is then
used to infer some 3D deformations. This system gener-
ates a real-time temporal sequence which includes XYZ
translations, 3D rotations and texture and deformation
coe�cients (see Figure 12).

To synthesize an output, a 3D renderer reconstructs
a facial model in real-time using the recover deforma-
tion, texture and pose. The sample output is shown in
Figure 12(d). The data representing each static frame
is again a time series (�50 dimensional) permitting the
ARL system analysis to extend to this platform.

12 Conclusions
We have demonstrated a real-time system which

learns two-person interactive behaviour fully automati-
cally by modeling the probabilistic relationship between
a past action and its consequent reaction. The system
is then able to engage in real-time interaction with a
single user and impersonate the missing person by esti-
mating and simulating the most likely action to take.
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