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Assume we are given a training dataset containingXt input samples fort = 1 . . . T in some arbitrary
order. One quantity to evaluate or manipulate is the likelihood of the datasetp(X1, . . . , XT |θ) given
some model. A popular method to recover a model of the datasetis to find the model that maximizes
the likelihood score. An additional standard assumption most unsupervised methods make when
given a dataset is that it is composed of independently identically distributed samples. In other
words,p(X1, . . . , XT |θ) =

∏T

t=1 p(Xt|θ). This iid assumption can be inappropriate for many real
datasets. Consider instead that we first sampled a tree connectivity over T nodes. Then children
Xt are sampled from their parentsXπ(t) using conditional distributionsp(Xt|Xπ(t), θ) according
to this tree structure (as is the case in a single-parent family tree). More formally, the structure we
are dealing with is an out-tree. This is as an acyclic graphT with a set ofT verticesX and edgesE
such that each nodeXt has at most one parent nodeXπ(t). Rooted out-trees are trees with directed
edges pointing away from a well-defined root. For instance,X1 ← X2 ← X3 is an out-tree rooted
atX3. Conversely, rooted in-trees have all directed edges from other nodes point towards the root.
The previous 3-chain example is thus also an in-tree rooted at nodeX1. Many directed trees are
neither in-trees nor out-trees. For instance, the treeX1 → X2 ← X3 → X4 is a valid directed tree
but neither a rooted in-tree nor a rooted out-tree.

If we knew the latent out-tree structureT that generated ourT samples, the likelihood of the data
would factorize as a product of conditionals of each node given its parent. However, in general, the
structure is unknown. Consider treating it as a random variable and using Bayes’ rule to obtain a
posterior distribution over tree structures as follows (assuming a uniform prior over out-trees):

p(T |X ) =
p(X|T )p(T )

p(X )
=

∏T

t=1 p(Xt|Xπ(t))p(T )

p(X1, . . . , XT )
=

p(X|T )

p(X )T T−1
=

1

Z

T∏

t=1

p(Xt|Xπ(t)).

where thepartition functionZ = p(X )T T−1 ensures the likelihood sums to unity. Recovering
Z involves summingp(X|T ) overT , the set of all out-trees,Γ. This is an unwieldy computation
since there areT T−1 possible out-trees connectingT observation vertices. Instead, we consider
breaking up the summation into all possible choices of the root of the out-treer = 1 . . . T and a
summation over the subsetΓr of all T T−2 out-trees rooted at noder. It is straightforward to show
that all subsets of out-trees with different roots are distinct, in other wordsΓi ∩ Γj = {} if i 6= j.
Furthermore, their union forms the set of all out-treesΓ = ∪T

j=1Γj . Thus, the partition functionZ
is decomposable as the following sum:

Z =

T∑

r=1

∑

T ∈Γr

T∏

t=1

p(Xt|Xπ(t)) =

T∑

r=1

p(Xr)
∑

T ∈Γr

T∏

t6=r

p(Xt|Xπ(t))

where we have used the property that the root has no parent node. To efficiently recoverZ we will
instead recover the individual components of the above sum over r denoted asZr by making an
appeal to the directed variant of Kirchoff’sMatrix Tree Theorem, namely Tutte’sDirected Matrix
Tree Theorem. The directed matrix tree theorem does not quite sum over alldirected trees. It sums
over asubset: rooted out-trees. To apply Tutte’s theorem we compute an asymmetricβ weight matrix
of sizeT × T populated by all pairwise conditional probabilities according toβuv = p(Xu|Xv).
Note that we will assumeβvv = 0 since there are no edges between a node and itself. The matrixβ
allows us to rewriteZr as a product of edges inβ instead of a product of nodes:

Zr =
∑

T ∈Γr

T∏

t6=r

p(Xt|Xπ(t)) =
∑

T ∈Γr

∏

uv∈T

βuv.

1



The out-tree Laplacian matrixQ is then obtained asQ = diag(β~1)− β. Here, take~1 to be the ones
column vector and note that thediag(~v) operator gives a diagonal matrix with~v on its diagonal. Note
that the LaplacianQ is not symmetric. The directed matrix tree theorem asserts that the number
(or weight) of out-trees rooted at noder is Zr and is given by the matrix cofactor[Q]r obtained
by deleting ther’th row andr’th column of the matrixQ. The precise formula isZr = |[Q]r|.
Reinserting this formula into the above gives the total partition function as:

Z =
T∑

r=1

p(Xr)Zr =
T∑

r=1

p(Xr)|[diag(β1)− β]r|

which is now efficient to evaluate. Interestingly,Z is the sum of determinants of the minors of the
Laplacian. This is also known as animmanent. If β is symmetric, all terms in the summation above
are identical and the immanent simply becomes a determinant. This is the case, for example, if
the conditional distributions of parent and child satisfiesp(Xt|Xπ(t)) = p(Xπ(t)|Xt). In addition,
it is known that the log determinant of a symmetric Laplacianmatrix is a concave function of the
edge-weights. In the asymmetric case, however, concavity is lost. A naive calculation ofZ requires
O(T 4) however it is possible to recoverZ in O(T 2.6) by using a singular value decomposition of
β. This is more efficient than enumerating allT T−1 out-trees to ensure a normalized likelihood. An
interesting property is that the partition functionZ forms a finitely exchangeableotdid or out-tree
dependent identically distributed likelihood as follows:

p(X1, . . . , XT ) =
1

T T−1

T∑

r=1

p(Xr) |[diag(β1)− β]r| . (1)

Theorem 1 If the conditional dependence of a child node given a parent node degenerates into the
marginalp(Xt|Xπ(t))→ p(Xt) theotdid likelihood simplifies into theiid likelihood.

Proof 1 Work backwards by writing the likelihood as a product over nodes given parents, removing
dependence on parents and simplifying:

p(X1, . . . , XT ) =
1

T T−1

T∑

r=1

p(Xr)
∑

T ∈Γr

T∏

t6=r

p(Xt|Xπ(t)) =
1

T T−1

T∑

r=1

∑

T ∈Γr

T∏

t=1

p(Xt) =

T∏

t=1

p(Xt).

A generalization ofiid likelihood emerges by integrating over latent out-tree structure. To perform
unsupservised learning, we maximize thisotdid likelihood over the parametersθ that govern the
conditional distribution of a child given its parent. For example, we considered parameterizing a
linear Gaussian conditional relationship. An Expectation-Maximization algorithm is straightforward
to derive and leads to efficient unsupervised learning. ThisBayesian treatment of out-trees predicts
labels more accurately than support vector machines if the data obeys a tree structure such as in the
taxonomy datasets below which were introduced by Kemp et al.in NIPS 2003.
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Figure 1: Labeling error rates (averaged over tasks) for Out-Trees and SVMs.
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