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Abstract 
A generalized scan statistic is provided for periodic geographic surveillance of various measures 
of city-wide activity.  The resulting algorithms scan for both elliptical and rectangular clusters 
and can be optionally adjusted for covariates such as time-of-day, day-of-week or season. An 
empirical Bayes procedure is used to account for parameter uncertainties in the framework.  
Additionally, scanning is performed to recover second order space-time clusters corresponding to 
transition dynamics of agents moving within a city. The method simultaneously evaluates the 
existence and significance of primary source and secondary destination clusters. It enables the 
user to address the question: “given a location in time and space, which – if any- are the most 
likely circular/elliptical/rectangular regions that agents usually visit subsequently”.  
Computational efficiency is maintained by using a multi-scale grid that is adapted to the 
geographic area being scanned. 
Our mobile application, CitySense, is currently analyzing real-time feeds plus a billion points of 
GPS and WiFi positioning data from the last few years in San Francisco to provide a map based 
summary of current hotspots of activity. 
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1. Introduction 
 
Our method expands upon and applies the space time statistics proposed by Kulldorff  to 
collections of GPs points in major metropolitan areas. It performs periodic geographic 
surveillance of various, spatially distributed measures of interest by scanning for spatial or 
spatiotemporal clusters and evaluates their statistical significance. These measures can be 
discrete events, e.g. Scan statistics are applied in various scientific disciplines to model clusters 
of events in space and time. These methods provide a principled way of testing whether an 
observed cluster of events occurs by chance given a probability model.  This article expands 
upon and applies the space time statistics originally proposed by Kulldorff to GPS sample data in 
multiple cities.  
The resulting system, referred to as CitySense, performs periodic geographic surveillance of 
various, spatially distributed measures of interest by scanning for spatial as well as 
spatiotemporal clusters and evaluating their statistical significance. These measures can be 
discrete events (e.g.  arrivals or departures of taxi cabs or other vehicles) as well as continuous 
variables (travel times or demographic attributes). The system scans for circular, elliptical as 
well as rectangular clusters by combining the methodologies by Kulldorff and Neill/Moore. In an 
optional step, the method adjusts for covariates such as time-of-day, day-of-week and/or season 
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via statistical modeling, thus empowering the user to only scan for clusters that deviate from 
established patterns. Another extension of the system permits it to search for second order 
space-time clusters in the transition dynamics of agents moving within a city. The method 
simultaneously evaluates the existence andsignificance of primary source and secondary 
destination clusters. This permits the system to predict, given an agent's location in time and 
space, the likely subsequent locations in time and space the agent will visit. Currently, the 
CitySense system transmits its output in near real-time on handheld mobile phone devices 
allowing thousands of users in a given city to examine activity levels and facilitates a variety of 
social applications.  
 
1.1 CitySense on a mobile device:  
Citysense is an application that operates on the Sense Networks Macrosense platform, which 
analyzes massive amounts of aggregate, anonymous location data in real-time. Macrosense is 
already being used by business people for things like selecting store locations and understanding 
retail demand. Citysense uses all this real-time data to enhance nightlife searches. Current 
platforms supported are Apple iPhone®, Apple iPod® Touch andBlackBerry® devices such as 
Pearl (models 8100, 8120, 8130) Gamma Ray (8800, 8820, 8830), Curve (8300, 8310, 8320, 
8330). 
CitySense provides an overall activity index for the entire city of San Francisco and compares it 
to expected values that are based on seasonally and covariate-adjusted historical data.  
 
 
 
 
“Live overall activity & top hotspots 
First of all see if it's a good night to go out. The city 
is 21% busier than normal for right now? Let's go. 
But where to? Check out the top hotspots in real-time 
and head out.” 
 
“Show me where the unusually high activity is 
Even if you're a local, Citysense can give you the live 
details you need. When the Mission or Soma is busier 
than normal - you'll know immediately.” 
 
“Find out where everyone is going 
After dinner, drinks or a great night at a club, do you 
ever wonder where the afterparty is? Just press the 
"Locate Me" icon and see the top 5 places people go 
to from where you are now” 
 
 

 
 
Fig.1: Introduction to the mobile app CitySense, at www.citysense.com 
 
In addition, CitySense can show a city's nine busiest locations using a color-coded scale, with red 
being the most popular. It also displays a relative "busy" rating to indicate whether users' cities 
are busier or more calm than usual. And a single click on a specific area opens up a directory of 
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nearby nightlife activities and establishments from Yelp and Google. 
 
 
 

2. Background 
CitySense  is a system for geospatial hot-spot detection, where hot-spot refers to an anomaly, 
outbreak or elevated/depleted cluster.While CitySense is focused on real-time social monitoring 
of a city, it relates to other similar efforts in diverse fields including epidemiology, remote 
sensing, environmental statistics, biosurveillance, and ecology. In general, monitoring spatially 
and temporally varying activity of various kinds is an important tool for many technologies and 
scientific disciplines. The spatial scan statistic (Kulldorff and Nagarwalla, 1995) and its 
associated public domain software SatScan™ is widely used for the detection and evaluation of 
disease clusters. CitySense constitutes both a novel application as well as a significant 
improvement of the existing state-of-the-art algorithms identifying areas of exceptionally high or 
low activity/incidence rates. In theory, the proposed method is applicable to arbitrarily high-
dimensional settings; in practice it is most suitable for the detection of purely temporal (one 
dimensional), purely spatial (one to three dimensional) and space-time (two to four dimensional) 
clusters. 
Currently available spatial scan statistics software employ circular, elliptical or rectangular 
scanning windows and offer various distributions for the Null hypothesis of no clustering. 
SatScan™ in particular uses either a non-homogeneous Poisson-based model, where the number 
of events in a geographical area is Poisson-distributed, according to a known underlying 
population at risk; a Bernoulli model, with 0/1 event data such as cases and controls; a space-
time permutation model, using only case data; an ordinal model, for ordered categorical data; an 
exponential model for survival time data with or without censored variables; or a normal model 
for other types of continuous data.  
The following shortcomings are addressed by CitySense:  

(i) Over-dispersed count data: With its fixed mean-variance relation, the Poisson 
model is rather restrictive. In practice, over-dispersed (variance >> mean) count 
data are encountered quite frequently leading to a high number of spurious 
clusters in the standard model. 

(ii) Within-cluster modeling: The original spatial  and space-time scan statistic define 
a very specific (multiplicative) model describing the activity inside a cluster 
which can be too rigid in many applications. 

(iii) Spatial correlations: There is no possibility to adjust for existing spatial 
correlations which also leads to inflated significance p-values. 

(iv) Prior knowledge: System parameters such as the expected incidence rates 
(Poisson/Bernoulli model) or  mean/variance (exponential/normal model) are 
estimated from the data presented to the software. When prior knowledge exists, 
one should be able to supply those parameters instead. 

 
3. Detailed Description:  

CitySense periodically scans for space-time clusters in a set of GPS points collected by agents 
(taxi cabs, cars, trucks, mobile phones, etc.) and their derivatives, while optionally adjusting for 
covariates such as weather, holidays, time-of-day, day-of-week and seasonality. 
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The system involves data either in a spatially continuous representation or using a grid based 
approach (by aggregating the variables of interest to predefined cells in a spatial grid). Such a 
grid can be a regular rectangular partition, a Voronoi tiling based upon data density, or 
correspond to natural geographic entities such as provinces, counties, parishes, census tracts, 
postal code areas, school districts, households, etc. 
CitySense processes data typically as counts which are assumed to follow a negative binomial 
distribution NB(bi, oi). More formally, a set of grid cells U= {s1 … sT} are provided (from a 
rectangular, Voronoi or manual partitioning of the sample space). Subsequently, every grid cell si 
is  associated with a baseline (or expected count) bi as well as an over dispersion parameter oi ≥ 1 
which  parameterizes the excess variance over the Poisson distribution: variance = bi * oi. 
Assuming that the observed counts ci in each cell are independently NB distributed, the goal of 
CitySense is to find spatial regions S with counts significantly greater than the baseline. In the 
framework of hypothesis testing, we test the null hypothesis H0 against the set of alternative 
hypotheses Ha(S), where: 
H0: ci ~ NB(bi, oi) for all cells. 
Ha(S): ci ~ NB(q*bi, oi) where q > 1, for all si in S and ci ~ NB(bi, oi) outside S. 
We compute the likelihood ratio LR(S) = Pr[Data | Ha(S)]/ Pr[Data | H0] using the maximum 
likelihood estimate for the parameter q: 
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for the negative binomial and Poisson distribution, respectively. This function translates counts 
from a negative binomial to a Poisson distribution while preserving the mean rate. 
If the baseline rates are not known a priori, one defines the population based scan statistic as 
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where in a natural extension, [Cin, Bin], [Cout, Bout]  and [Call, Ball]  denote the total count and 
baseline inside and outside region S and everywhere, respectively. 
 
Alternatively, if the variables of interest follow a continuous distribution, we compute the 
likelihood ratio for e.g. the Gaussian or exponential distributions. For the following set of 
hypothesis 
H0: ci ~ Gaussian(µi, 

! 

" i) for all cells . 
Ha(S): ci ~ Gaussian(qµi, 

! 

" i) where q > 1, for all si in S and ci ~ Gaussian(µi, 

! 

" i) outside S. 
Following Kulldorff and Neill, we derive the analytic expression for LR(S): 
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Examples of continuous variables derived directly from GPS trajectories would be travel time 
and effort to/from a cell, demographic attributes such as average age or income in a cell, 
“survival” or waiting time in a cell, etc.  
In addition to the distributions listed above, we have also implemented a fully nonparametric 
scan statistic which learns the relevant quantiles of historical counts.  
 
In either case, the likelihood ratio is then computed for a massive set of regions that (i) match the 
shape and size of the clusters we are interested in detecting and (ii) which densely cover the 
considered space. The  scanning window is either an interval (in time), a circle or an ellipse or a 
rectangle (in space) or a cylinder with a circular or elliptic or rectangular base (in space-time). 
Multiple different window sizes are used. The window with the maximum likelihood is the most 
likely cluster, Smost likely cluster = argmax S LR(S), that is, the cluster least likely to be due to chance.  
We perform statistical significance testing by randomization resulting in a p-value assignment to 
this cluster.  
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Fig.2: Illustration of the scanning procedure. 
 
When there are multiple clusters in the data set, the secondary clusters are either evaluated as if 
there were no other clusters in the data set or –optionally- adjusted for other clusters in the data 
in the following iterative manner: At every iteration only the most likely cluster is reported, 
subsequently removed from the data set, including all cases and controls (Bernoulli model) in the 
cluster while the population (Poisson model) is set to zero for the locations and the time period 
defining the cluster. Then, a completely new analysis is conducted using the remaining data. This 
procedure is then repeated until there are no more clusters with a p-value less than a user 
specified maxima or until a user specified maximum number of iterations have been completed, 
whichever comes first.   
Additionally, CitySense offers the following choices regarding secondary clusters are available 
to the user: 
(i) No Geographical Overlap: Secondary clusters will only be reported if they do not overlap 
with a previously reported cluster. 
(ii)  No Cluster Centers in Other Clusters: While two clusters may overlap,  
there will be no reported cluster with its centroid contained in another reported cluster.  
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(iii) No Cluster Centers in More Likely Clusters: Secondary clusters are not centered in a 
previously reported cluster.  
(iv) No Cluster Centers in Less Likely Clusters: Secondary clusters do not contain the center 
of a previously reported cluster.  
(v) No Pairs of Centers Both in Each Others Clusters: Secondary clusters are not centered 
in a previously reported cluster that contains the center of a previously reported cluster.  
(vi) No Restrictions = Most Likely Cluster for Each Grid Point: The most extensive option 
is to all present clusters in the list, with no restrictions. This option reports the most likely cluster 
for each grid point. This means that the number of clusters reported is identical to the number of 
grid points. 
 
In a final step, CitySense augments and filters the space-time clusters in a hybrid fashion that 
reflects the particular application to nightlife.  
1) We are usually only interested in clusters with a substantially increased rate. Hence, 
regardless of its statistical significance, we only report clusters where the relative risk is above a 
context specific threshold, q > qc > 1.  
2) While the scan statistic elegantly overcomes the multiple hypothesis testing dilemma, some 
applications do not have to or aspire to correctly adjust for multiple testing. In those situations. 
one should not fix the overall false alarm rate but allow it to grow with the number of cells under 
surveillance. For example, a nightlife recommendation system should report local hot spots in a 
city regardless of their adjusted significance which implicitly depends on the size of the grid.  
We address this issue by reporting - in addition to the significant space-time clusters - any region 
with a score higher than some fixed threshold. 
 
Time Component: The above outlined algorithm identifies only spatial clusters, the extension to 
space time clusters is straightforward. In our application, we are mainly interested in “live” 
clusters, i.e. clusters that have emerged within some time interval T and are still present. If we 
denote the present time by tpresent = 0, then we wish to find spatial regions S with higher than 
expected counts/measures than expected during the entire time interval (–T,0). In our 
terminology, these would be named “prospective clusters”. The expression for the likelihood 
ratio is very similar to the one given above, except that now the baseline, over dispersion and the 
counts are time dependent, denoted by bi(t), oi(t) and ci(t) and the products are taken over all 
spatial locations 
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We typically discretize time into 10 - 30 minute chunks and maximize the likelihood ratio over 
space and time. The nightlife recommendation system usually explores clusters that persist up to 
a few hours. 
 
Adjustment for covariates: 
We assume that for each cell we have a historical time series of  counts or measurements as well 
as external covariates such as weather, holidays, extraordinary events, etc. 
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Depending on the length of this historical data set, one can estimate time varying periodic effects 
at various scales. In its most basic form time is discretized into bins such as day-of-week, hour-
of-day and month-of-year and we fit a generalized linear model to the observed counts/ 
measurements in each cell using standard regression software such as R or Matlab. Since this 
model attempts to learn the “normal” behavior as a function of the above listed predictors, we 
typically remove any data from the training set that are known to belong to unusual events such 
as holidays and other anomalies. Figure 3 shows an example of an average week hour pattern for 
a particular grid cell. 

 
Fig.3: Visualization of expected counts as a function of hour-of-day (horizontal axis) and 
day-of-week (vertical axis). To guide the eye, we added the marginal distributions. 
 
More sophisticated modeling strategies involve generalized additive models that estimate both 
shape and location parameters. The advantage being that time is modeled in a continuous fashion 
and interactions such as seasonality – day of week can be adjusted for. Figure 4 shows an 
example of a week hour pattern along with its fluctuations for a particular grid cell. Note that the 
zero value of the week hour is anchored at midnight, Sunday. 
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Fig.4: Mean and empirical quantiles of observed counts inside a particular grid cell as a 
function of weekhour. Overlaid are the corresponding Poisson quantiles. Note the 
overdispersion on Sat and Sun midday, which may be due to the inherent larger variability 
of human activity on weekends 
 

4. Outlook: 
 

When you use Citysense, the application learns about the kinds of places you like to go from 
GPS – without ever sharing that information. In its next release, Citysense will not only tell you 
where everyone is right now, but where everyone like YOU is right now. The application will 
compare your history and preferences with those of other users, and show you where you're most 
likely to find people with similar tastes at that moment. So each person's nightlife map will look 
a little different, and will display a unique top hotspot list. That's why we save your location 
when you use Citysense: to remember what you like. Of course, you don't have to keep a 
personalized nightlife profile. You can delete your data from our system anytime you want. You 
created your data: you own it. But showing up in Chicago for the first time and seeing the top 
places you're likely to find people with similar tastes as yourself at midnight – that's pretty 
useful. 
We are serious about privacy and data ownership. Citysense already contains billions of location 
data points, which it uses to identify nightlife hotspots. When someone opens Citysense, the 
program references their current location to better understand the city's nightlife – with total 
anonymity. We never share your location, ever. We don't collect email addresses or phone 
numbers. We don't use passwords. In fact, we have a revolutionary new data ownership policy 
wherein people actually own any information they create. Citysense is opt-in, all the time. 
Anything Citysense collects, users can delete. You'll find the delete button easily accessible 
whenever you open the program. To read more, see our Principles. 
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