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Abstract

Many graphical modeling and learning prob-
lems (such as maximum a posteriori estima-
tion and marginal inference) are NP-hard in
general. Similarly, many combinatorics prob-
lems on graphs are NP-hard including max-
imum clique, maximum weight independent
set and graph coloring. However, a family of
graphs known as perfect graphs (which gen-
eralizes trees) admits exact solutions in poly-
nomial time. We discuss how machine learn-
ing can exploit the perfect graph family for
various problems.

1 INTRODUCTION

A graphical model is an undirected graph representing
the factorization of a non-negative real-valued func-
tion. Without loss of generality, MAP estimation on
a graphical model can be solved by performing MAP
estimation on some nand Markov random field. An
NMRF is a graph G = (V,E) which consists of a set
of variable vertices V = {1, . . . , n} associated with bi-
nary random variables X = {x1, . . . , xn}, and a set of
edges E. The probability associated with the NMRF
factorizes as follows:

p(X) =
1
Z

∏
i∈V(G)

ewixi

∏
(i,j)∈E(G)

(1− xixj).

The NMRF is specified by n binary variables and
their edge connectivity as well as n non-negative real
weights {w1, . . . , wn} on each of the binary-variable
vertices. Such an NMRF can be obtained by convert-
ing a general graphical model, a Bayesian network or
a factor graph into this form (Jebara, 2009). Alter-
natively, it is possible to design the problem directly
by exploring various choices of n, the edges E in the
graph and the weights on the variables {w1, . . . , wn}.

Finding the most likely configuration of p(X) can
be done via a linear program relaxation via β =
max~x∈RN ~w>~x subject to ~x ≥ 0 andA~x ≤ ~1 where A is
vertex versus maximal cliques incidence matrix of the
graph G. The above linear program always has inte-
gral solution if and only if the graph G is perfect. A
perfect graph is a graph which has no odd holes (chord-
less cycles) of length 5 or more and no odd holes of 5
or more in its complement.

The problem being solved during maximum a posteri-
ori estimation on the NMRF is actually known as the
maximum weight stable set (MWS) problem. This is
a generalization of the maximum stable set problem
in the case where the graph G has weighted vertices.
In many cases, the linear program above may not be
practical for the MWS problem. This is because the
maximum number of cliques in a perfect graph G with
n vertices may be as large as 2n/2. However, the max-
imum weight stable set problem remains polynomial
for the case of a perfect graph G using the method of
(Grötschel et al., 1981). The problem has been refor-
mulated as a semidefinite program recently by (Chan
et al., 2009) by computing the so-called Lovász-theta
function which requires Õ(n5) and is actually often
faster in practice. The approach recovers the maxi-
mum weight stable set and, therefore, the maximum
a posteriori estimate for the NMRF exactly as long as
the graph G is perfect. We discuss various problems
in machine learning and related application areas that
can be described by such perfect graphs.

References

Chan, T.-H. H., Chang, K., & Raman, R. (2009). An SDP
primal-dual algorithm for approximating the Lovász-
theta function. ISIT.

Grötschel, M., Lovász, L., & Schrijver, A. (1981). The
ellipsoid method and its consequences in combinatorial
optimization. Combinatorica, 1, 169–197.

Jebara, T. (2009). MAP estimation, message passing, and
perfect graphs. Uncertainty in Artifical Intelligence.


