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Abstract

Efficiently finding the maximum a posteriori
(MAP) configuration of a graphical model
is an important problem which is often im-
plemented using message passing algorithms.
The optimality of such algorithms is only
well established for singly-connected graphs
and other limited settings. This article ex-
tends the set of graphs where MAP estima-
tion is in P and where message passing re-
covers the exact solution to so-called perfect
graphs. This result leverages recent progress
in defining perfect graphs (the strong perfect
graph theorem), linear programming relax-
ations of MAP estimation and recent conver-
gent message passing schemes. The article
converts graphical models into nand Markov
random fields which are straightforward to
relax into linear programs. Therein, integral-
ity can be established in general by testing
for graph perfection. This perfection test is
performed efficiently using a polynomial time
algorithm. Alternatively, known decomposi-
tion tools from perfect graph theory may be
used to prove perfection for certain families
of graphs. Thus, a general graph framework
is provided for determining when MAP esti-
mation in any graphical model is in P, has an
integral linear programming relaxation and is
exactly recoverable by message passing.

1 INTRODUCTION

Recovering the maximum a posteriori (MAP) config-
uration of random variables in a graphical model is
an important problem with applications ranging from
protein folding to image processing. Graphical mod-
els (which include Bayesian networks and Markov ran-
dom fields) use a graph over dependent random vari-

ables to compactly express a probability density func-
tion as a product of functions over maximal cliques
in the graph. For a general graphical model, the
MAP problem is NP-hard (Shimony, 1994). A pop-
ular algorithm for approximating the MAP solution
is max-product belief propagation and its variants
(Weiss, 2000; Globerson & Jaakkola, 2007) which op-
erate by sending messages between neighboring cliques
until convergence. It is known that max-product be-
lief propagation converges to the optimum on singly-
linked graphs and junction-trees (Pearl, 1988; Wain-
wright & Jordan, 2008). Less is known about its for-
mal properties when graphs contain loops. In prac-
tice, however, there are multiple applied cases in the
literature where the max-product algorithm performs
extremely well on graphs with loops. For example,
turbo codes, one of the top performing error correct-
ing coding schemes to date, can be successfully im-
plemented via max-product on a loopy graph (Weiss
& Freeman, 2001). Recently, formal guarantees for
such algorithms have been found for graphs with a
single loop (Weiss, 2000), maximum weight bipartite
matching graphs (Bayati et al., 2005), and maximum
weight bipartite b-matching graphs (Huang & Jebara,
2007). In these settings, since the graphs contain
loops, message passing algorithms are often referred
to as loopy belief propagation or loopy message pass-
ing. While the single loop case is of limited practi-
cal use, the matching and b-matching message pass-
ing algorithms have many applications and lead to
competitive methods for solving large-scale matching
problems. Subsequently, additional results for match-
ing and b-matching problems (Sanghavi et al., 2008;
Bayati et al., 2008) were produced by examining the
linear program (LP) relaxation (Santos, 1991; Wain-
wright et al., 2005; Weiss et al., 2007) of the integer
problem being solved during MAP estimation. Loosely
speaking, if the LP relaxation of the matching problem
has an integral solution, message passing converges to
the MAP solution. In principle, this extends conver-
gence arguments for matching from bipartite settings



to some unipartite settings if the LP relaxation has in-
tegral solution. Of course, matchings and b-matchings
are exactly solvable for both the bipartite and the more
general unipartite case in polynomial time using Ed-
monds’ Blossom algorithm (Edmonds, 1965). How-
ever, belief propagation methods may be faster and,
under mild assumptions, find maximum weight match-
ings in no more than O(n2) time (Salez & Shah, 2009).

This article will identify general conditions on loopy
graphical models such that a) the LP relaxation is in-
tegral and b) message passing will always converge to
the MAP solution1. This extends the current list of
graphical models where MAP is known to be efficient
(and message passing is known to be exact) to the
broader family of perfect graphs. Perfect graphs sub-
sume trees, bipartite matchings and b-matchings and
lead to a generalization of König’s theorem: the so-
called weak perfect graph theorem which states that a
graph is perfect if and only if its complement is perfect
(Lovász, 1972). Recently, a further generalization was
proved: the strong perfect graph theorem which states
that all perfect graphs are Berge graphs (Chudnovsky
et al., 2006). Furthermore, a polynomial time algo-
rithm was identified that verifies if a graph is perfect
or not (Chudnovsky et al., 2005). To exploit these re-
sults from the combinatorics community, this article
converts any graphical model into an alternative form
referred to as a nand Markov random field. Therein,
the integrality of the LP relaxation can be easily veri-
fied by recognizing perfect graphs. This makes it possi-
ble to precisely characterize which loopy graphs have
the appropriate topology for exact MAP estimation
via linear programming or message passing.

This article is organized as follows. Section 2 describes
the factorization properties of graphical models and
Section 3 shows a conversion into an equivalent form
called a nand Markov random field (NMRF). Section 4
shows how the LP relaxation of the NMRF produces a
so-called set packing linear program whose integrality
properties are well characterized by the perfection of
the associated graph. Section 5 defines perfect graphs
as well as discusses tools and polynomial time algo-
rithms for recognizing perfect graphs. Perfection en-
sures that the LP is integral and achieves the MAP
estimate. Section 6 provides some pruning procedures
for NMRF graphs that can make perfection tests and
LP solutions more widely applicable. Section 7 uses
message passing as a faster alternative to linear pro-
gramming for obtaining the MAP estimate. We con-
clude with experiments and a brief discussion.

1For brevity, this article does not discuss cases where
multiple MAP solutions (i.e. ties) are possible. Any such
solution is assumed acceptable as a MAP estimate.

2 GRAPHICAL MODELS

A graphical model is an undirected graph used to rep-
resent the factorization of a probability distribution
(Wainwright & Jordan, 2008). Consider an undirected
graph G = (V,E) with vertices V = {v1, . . . , vn} and
edges E : V × V → B. Denote the set of vertices by
V(G) and the neighbors of a node vi by Ne(vi) or Ne(i).
The graph G describes the dependencies between a set
of random variablesX = {x1, . . . , xn} where each vari-
able xi is associated with a vertex vi in the graph2.
We will assume that each xi ∈ Z is a discrete vari-
able3 with |xi| settings4. For example, if xi is a binary
variable, 0 ≤ xi < 2 and |xi| = 2. A graphical model
describes a probability density over all random vari-
ables p(X) which obeys the following factorization:

p(X) =
1

Z

∏

c∈C

ψc(Xc) (1)

where Z is a partition function (a scalar that normal-
izes the density), C is the set of maximal cliques in
the graph C ⊆ G and ψc(Xc) are positive compat-
ibility functions over variables in each clique c. In
other words, Xc = {xi|i ∈ c}. Clearly, this rep-
resentation of p(X) is exponential in the cardinality
of the cliques5. Without loss of generality, this arti-
cle assumes all ψc(Xc) are uniformly scaled such that
ψc(Xc) > 1 (and Z is scaled appropriately for normal-
ization) as follows:

ψc(Xc) ←
ψc(Xc)

minXc
ψc(Xc)

+ ǫ

where ǫ is an infinitesimal quantity.

It is possible to convert Equation 1 into an equiva-
lent pairwise Markov random field (MRF) over binary
variables (Ravikumar & Lafferty, 2006; Yedidia et al.,
2001) at the expense of increasing the state space. Sec-
tion 3 follows such an approach but restricts the con-
version further by requiring that all potential functions
enforce nand relationships among binary variables.

3 NAND MARKOV RANDOM

FIELDS

Any generic graphical model with graph G in Equa-
tion 1 can be converted into an equivalent graphical

2In this article, the variable xi, the node vi and the
index i will be used interchangeably when the meaning is
evident from the context.

3While graphical models can handle cases where xi are
scalars, this article only deals with discrete xi.

4Here, | · | is the cardinality of a variable or a set.
5This article focuses on polynomial efficiency in the

number of cliques and will not address problems related
to exponential dependence on maximum clique size.



model with graph G which will be referred to as a
nand Markov random field (NMRF). In this form, all
clique functions involve a nand operation over binary
variables as ψc(Xc) = δ(

∑

x∈Xc
x ≤ 1) where we take

the function δ ∈ B to equal 1 if the statement inside
is true and 0 otherwise. Clearly, these clique func-
tions factorize into a product over pairwise edges since
ψc(Xc) =

∏

xi 6=xj∈Xc
δ(xi + xj ≤ 1). Indeed, graphi-

cal models for solving maximum weight matchings are
usually in this form (Sanghavi et al., 2008; Bayati
et al., 2008). The NMRF form helps produce linear
programming relaxations of the MAP problem which
have desirable properties as detailed in Section 4.

Consider forming an NMRF from G which represents a
distribution over a set X of N binary variables x ∈ B.
For each clique c ∈ C in the original graph G, in-
troduce binary variables xc,k for each configuration of
the arguments of the clique function ψc(Xc). In other
words, for clique Xc, define a set of binary variables
Xc = {xc,1, . . . ,xc,|Xc|} with |Xc| =

∏

i∈c |xi|. The
NMRF represents a distribution over all such variables
X = ∪c∈CXc and, since all Xc are disjoint (with re-
dundant instantiations of the variables in each clique
Xc), the state space of the NMRF has cardinality

|X| =
∑

c∈C

(

∏

i∈c

|xi|

)

= N. (2)

Given a setting of X = {x1, . . . , xn}, the correspond-
ing setting of X = {x1, . . . ,xN} is given by:

xc,k =

{

1 if k = 1 +
∑

i∈c xi

(

∏i−1
j=1 |xi|

δ(j∈c)
)

0 otherwise.
(3)

This is a mapping from X to a setting of X as an injec-
tion since some settings of X yield invalid settings of
X if they involve disagreement in the clique configura-
tions. The expression (which is admittedly inelegant)
merely states that when Xc is in its kth configuration
from among its total of

∏

i∈c |xi| possible configura-
tions, we must have xc,k = 1 in the NMRF.

It is now possible to write an equivalent function ρ(X)
which mimics Equation 1. This need not be a nor-
malized probability density function over the space X
since we are only interested in its maximization for the
MAP estimate. The function ρ(X) is as follows

ρ(X)=
∏

c∈C

Ψc(Xc)

|Xc|
∏

k=1

efc,kxc,k

∏

d∈C
d 6=c

|Xd|
∏

l=1

Φ(xc,k,xd,l)
zc,k,d,l

(4)
where, once again, C is the set of maximal cliques
in the graph C ⊆ G and Ψc(Xc) are compatibility
functions over sets of binary variables. Furthermore,

zc,k,d,l variables are binary switches to be defined sub-
sequently. To mimic the original p(X), the factoriza-
tion contains a product over exp(fc,kxc,k) involving
non-negative scalars

fc,k = logψc(Xc)

where the appropriate configuration for Xc is recov-
ered from (c, k) as determined by the relationship in
Equation 3. Note that all fc,k > 0 since ψc(Xc) > 1.
Finally, the factorization contains additional potential
functions Φ(xc,k,xd,l) for each pair of variables xc,k

and xd,l if the binary variable zc,k,d,l equals unity (oth-
erwise, the functions are taken to the power of 0 and
disappear from the product). The important differ-
ence with this model and the one in Equation 1 is that
all its non-singleton clique potential functions Ψc(Xc)
and pairwise functions Φ(xc,k,xd,l) accept binary val-
ues and produce binary outputs as nand operations:

Ψc(Xc) =

{

1 if
∑

k xc,k ≤ 1
0 otherwise

Φ(xc,k,xd,l) =

{

1 if xc,k + xd,l ≤ 1
0 otherwise.

The binary variable zc,k,d,l indicates a potential dis-
agreement between xc,k and xd,l over settings of the
variables in Xc ∩Xd that they are both jointly impli-
cated in. This is defined more formally as follows:

zc,k,d,l = 1−

n
∏

i=1

δ

(

mod

(⌊

k − 1
∏i−1

j=1 |xj |δ(j∈c)

⌋

, |xi|

)

=

mod

(⌊

l − 1
∏i−1

j=1 |xj |δ(j∈d)

⌋

, |xi|

))δ(i∈c)δ(i∈d)

where it is understood that 00 = 1.

It is now straightforward to consider the undirected
graph G = (V , E) implied by Equation 4 which is recov-
ered from the original graph G = (V,E). This graph
contains nodes V = {vc,k : ∀c ∈ C, k = 1, . . . , |Xc|}
where each node vc,k is associated with a correspond-
ing variable xc,k. The graph G then has edges between
all pairs of nodes vc,k corresponding to variables in the
clique Xc for c ∈ C. Furthermore, for all pairs of nodes
vc,k and vd,l are connected if zc,k,d,l = 1. The formula
for the set of edges in G simplifies as:

E(vc,k,vd,l) = max (δ(c = d)δ(k 6= l), zc,k,d,l)

= zc,k,d,l.

This results in an undirected graph G of pairwise nand

functions and Equation 4 can be written as:

ρ(X)=
∏

c∈C

|Xc|
∏

k=1

efc,kxc,k

∏

d∈C

|Xd|
∏

l=1

Φ(xc,k,xd,l)
zc,k,d,l



although Equation 4 more clearly distinguishes be-
tween intra-clique edges arising from Xc and inter-
clique edges arising from Xc ∩ Xd. Thus, the NMRF
contains nand edges between all pairs of binary vari-
ables that cannot be jointly instantiated without caus-
ing a disagreement. For each edge, only one or fewer of
the vertices adjacent6 to it may be instantiated (equal
to unity); hence the term nand Markov random field.
For instance, the functions Ψc(Xc) place edges be-
tween all variables corresponding to differing config-
urations of Xc, at most one of which may be active
(i.e. equal to one) at any time. Thus, all the po-
tential functions in this graphical model are acting as
nand gates and all edges in the graph enforce a nand

relationship between the nodes they are adjacent to.
This graphical model is reminiscent of the MRF used
in (Ravikumar & Lafferty, 2006) which had xor poten-
tial functions requiring that the variables inside cliques
sum strictly to 1. The NMRF, on the other hand, re-
quires a nand relationship: pairs of variables sum to
≤ 1. Figure 1 displays a graphical model and its cor-
responding NMRF.

A

B

C

AB

00

AB

01

AB

10

AB

11

BC

00

BC

01

BC

10

BC

11

Figure 1: A graphical model (left) over binary vari-
ables with cliques {A,B} and {B,C} and its corre-
sponding binary nand Markov random field (right).

It remains to show that the MAP estimate X∗ of ρ(X)
corresponds to a valid MAP estimate X∗ of p(X) de-
spite the surjective relationship between X and X.
Since the variables in X correspond to possibly dis-
agreeing settings ofX , only some binary configurations
are admissible in X. This is because every clique Xc

must be in one configuration and overlapping cliques
may not disagree in their configurations. However, the
constraints in Equation 4 only require

∑

k xc,k ≤ 1.
This permits the possibility that some cliques will sim-
ply not be assigned a configuration when the MAP es-
timate is recovered from Equation 4. In other words, it
may be the case that

∑

k xc,k = 0. The next theorem
shows that the MAP estimate X∗ will always produce
∑

k xc,k = 1 for all c ∈ C.

Theorem 1 Given the maximum a posteriori esti-
mate X∗ = {x∗

1, . . . ,x
∗
|X|} of Equation 4, all variables

in cliques c ∈ C satisfy
∑

k x∗
c,k = 1.

6Adjacent vertices are vertices connected by an edge.

Proof 1 The MAP solution involves binary settings
x∗

c,k ∈ {0, 1} for all variables in X∗. Setting X to all
zeros produces a value ρ(X) = 1 since all functions
Ψ and Φ are satisfied and all the values of fc,k are
multiplied by zero prior to exponentiation. Therefore,
assume that the maximizer is not the all-zeros con-
figuration and that ρ(X∗) > 1, since, otherwise, all
settings of X trivially produce a MAP estimate. Re-
quiring ρ(X∗) > 1 corresponds to having at least one
nonzero setting in X∗. Choose this binary variable
as x∗

ĉ,k̂
= 1 which now satisfies

∑

k x∗
ĉ,k = 1 to pro-

duce ρ(X∗) > 1 since fc,k > 0 and exp(fc,kxc,k) > 1.
Subsequently, there can be no disagreement between the
configurations of overlapping cliques since pairwise po-
tential functions Φ(xc,k,xd,l) exist between all pairs of
binary variables when zc,k,d,l = 1 and setting binary
variables corresponding to conflicting assignments for
Xc and Xd would force ρ(X) = 0. Thus, there can be
no disagreement in the configurations of the cliques.
If ρ(X∗) > 1, it must be the case that either of the
following holds:

∑

k xc,k = 1 or
∑

k xc,k = 0 for each
c 6= ĉ. Consider finding a clique c̃ ∈ C \ ĉ where the
latter case is true. There, c̃ has no assigned config-
uration for its variables Xc̃ and

∑

k xc̃,k = 0. For
any such clique c̃ there is always a configuration that
may be selected which agrees with neighboring cliques.
Since every value of fc̃,k > 0, it is always possible to
preserve agreement and set one of the xc̃,k to unity to
strictly increase ρ(X) while preserving agreement. Re-
peating this line of reasoning on all remaining cliques
only further increases ρ(X) until all cliques satisfy
∑

k xc,k = 1. Thus, the NMRF produces a MAP esti-
mate satisfying

∑

k x∗
c,k = 1 for all cliques c ∈ C.

Lemma 1 The MAP estimate of Equation 4 corre-
sponds to the MAP estimate of Equation 1.

Proof 2 Since all configurations are in agreement and
∑

k xc,k = 1, the maximizer X∗ of Equation 4 cor-
responds to a valid setting of X∗ and we can asso-
ciate X∗ with X∗. It is straightforward to see that
ρ(X∗)/Z = p(X∗). Since ρ(X∗) ≥ ρ(X) for all X and
X spans a strict superset of the configurations of X, it
must be the case that p(X∗) ≥ p(X) for all X.

The next section will show that, when G corresponds
to a perfect graph, the LP relaxation of Equation 4 is
integral. In those settings the MAP estimate can be
recovered by linear programming.

4 PACKING LINEAR PROGRAMS

Consider the LP relaxation of the MAP estimation
problem on the NMRF in Equation 4 (which was
shown to be equivalent to MAP estimation with the
graphical model in Equation 1). A linear program is an



optimization over a vector of variables ~x ∈ R
N which

are used as surrogates for the binary variables X in the
MAP problem on the NMRF. If the LP is tight and
gives back an integral solution, then ~x recovers the ex-
act MAP estimate. Denote the all-ones vector ~1 ∈ R

N .
In general, linear programming (or any convex opti-
mization problem) can be solved in time cubic in the
number of variables. The following theorem strictly
characterizes when an LP in known specifically as a set
packing linear program (which explores the set packing
polytope) yields integral solutions ~x∗ ∈ {0, 1}N .

Theorem 2 (Lovász, 1972; Chvátal, 1975) For every

non-negative vector ~f ∈ R
N , the linear program

β = max
~x∈RN

~f⊤~x subject to ~x ≥ 0 andA~x ≤ ~1

recovers a vector ~x which is integral if and only if the
(undominated) rows of A form the vertex versus max-
imal cliques incidence matrix of some perfect graph.

We say the dth row of a matrix A is undominated if
there is no row index c 6= d such that Acj ≤ Adj

for all j = 1, . . . , N . Let G be a graph with ver-
tices V = {v1,v2, . . . ,vN} and {V1, . . . ,V|C|} its
(inclusion-wise) maximal cliques. We define the in-
cidence matrix of G as A ∈ B

|C|×N where Acj = 1 if
vj ∈ Vc and Acj = 0 otherwise.

Theorem 2 describes when the above LP will yield an
integer solution. For general graphs G and general
Markov random fields G, the MAP estimate is NP (Shi-
mony, 1994). Remarkably, by examining the topology
of the graph G, it is possible to characterize exactly
when the linear programming relaxation will be inte-
gral (or otherwise) for any NMRF G. If the graph G is
a perfect graph, then its LP relaxation is integral and
the MAP estimate can be recovered in polynomial (at
most cubic) time. This is summarized in the following
theorem.

Theorem 3 The MAP estimate of the nand Markov
random field in Equation 4 is in P if the graph G is
perfect and MAP estimation takes at most Õ(|V(G)|6)
by (Grötschel et al., 1988) if G is perfect.

Proof 3 The LP relaxation of the MAP estimate of
the nand Markov random field produces a packing lin-
ear program. Given the graph G, it is straightfor-
ward to recover its corresponding vertex versus max-
imal cliques incidence matrix A. Taking the logarithm
of Equation 4 shows that the MAP optimization is ex-
actly equivalent to the LP in Theorem 2. The LP is a
direct relaxation of the binary variables in Equation 4
and the matrix A corresponds to the graph G, the vec-
tor ~x = vec(X) is the concatenation of all the binary

random variables and the vector ~f is defined element-
wise as the logarithm of the clique functions for every
clique and every configuration:

~f = [log(ψc(Xc)) : ∀c ∈ C, ∀Xc]
⊤ .

Recall that log(ψ(Xc)) is always positive since all
clique potential functions satisfy ψ(Xc) > 1 in the
original graph G. Therefore, Equation 4 corresponds
to the LP in Theorem 2. If G is a perfect graph, the
integrality of the LP is established via Theorem 2. The
method of (Grötschel et al., 1988) then achieves the
MAP estimate in Õ(|V(G)|6).

The essential test is to show that G is (or is not) a
perfect graph, which, in turn, determines conclusively
if the LP is (or is not) integral. It is then possible
to relate the result on the NMRF above to general
graphical models via the following corollary.

Corollary 1 The MAP estimate of any graphical
model with cliques c ∈ C over variables {x1, . . . , xn}
that produces a nand Markov random field as in Equa-
tion 4 with a perfect graph G is in P and can be com-

puted in at most Õ
(

(
∑

c∈C

(
∏

i∈c |xi|
))6
)

.

Proof 4 Theorem 1 ensures that the MAP estimate
of the nand Markov random field produces the MAP
estimate of the graphical model. Theorem 3 shows that
recovering the MAP estimate of the NMRF is in P and
is polynomial in the number of vertices. The number
of vertices of the NMRF is given by Equation 2.

In summary, if graph G is a perfect graph, the LP relax-
ation is integral and recovers the MAP estimate of the
NMRF in Equation 4 as well as the MAP estimate of
the graphical model in Equation 1. Linear program-
ming is cubic in the number of variables. However,
Section 7 discusses message passing algorithms which
often yield better efficiency in practice. First, how-
ever, we discuss perfect graphs and their construction
and, in particular, a polynomial time algorithm that
answers if a graph is perfect or is not.

5 PERFECT GRAPHS

A perfect graph (Berge, 1963; Lovász, 1983) is a graph
where every induced subgraph has chromatic number
equal to its clique number. The clique number of a
graph G is denoted ω(G) and is the size of the maxi-
mum clique (fully connected subgraph) of G. The chro-
matic number of G, χ(G), is the minimum number of
colors needed to label vertices such that no two ad-
jacent vertices have the same color. Perfect graphs
have the remarkable property, ω(H) = χ(H) for every
induced subgraph H ⊆ G. Perfect graphs also have



computational properties (Grötschel et al., 1988). For
instance, in all perfect graphs, potentially intractable
problems such as graph coloring, maximum clique and
maximum independent set are in P.

In recent work (Chudnovsky et al., 2006), the strong
perfect graph conjecture as described in (Berge, 1963;
Berge & Ramı́rez-Alfonśın, 2001) was proved. Namely,
a graph is perfect if an only if it is Berge. A Berge
graph is a graph that contains no odd hole and whose
complement also contains no odd hole; both terms are
defined below.

Definition 1 (Graph Complement) The comple-
ment Ḡ of a graph G is a graph with the same vertex
set V(G) as G, where distinct vertices u, v ∈ V(G) are
adjacent in Ḡ just when they are not adjacent in G.
The complement of the complement of a graph gives
back the original graph.

Definition 2 (Hole) A hole of a graph G is an in-
duced subgraph of G which is a chordless cycle of length
at least 5. An odd (even) hole is a chordless cycle with
odd (even) length.

The proof of the strong perfect graph conjecture
(Chudnovsky et al., 2006) conclusively showed that a
graph is perfect if and only if it is a Berge graph. The
proof also specifies that any Berge graph must belong
to one of the following basic classes of Berge graph:

• bipartite graphs

• complements of bipartite graphs

• line graphs of bipartite graphs

• complements of line graphs of bipartite graphs

• double split graphs

or admit one of four structural decompositions:

• a 2-join

• a 2-join in the complement

• an M -join

• a balanced skew partition.

These decompositions are ways of breaking up the
graph such that the remaining parts may eventually be
recognized as basic Berge graphs. Note, a line graph
L(G) of a graph G is a graph which contains a vertex
for each edge of G and where two vertices of L(G) are
adjacent if and only if they correspond to two edges of
G with a common end vertex.

The family of perfect graphs makes it possible to pre-
cisely characterize if a graphical model G (or more
precisely, its equivalent nand Markov random field G)
admits efficient MAP estimation. Also, remarkably,
automatically verifying if any graph is perfect is effi-
cient. Recently, a polynomial time algorithm (in the
number of vertices of the graph) was introduced to test
if a graph is perfect.

Theorem 4 (Chudnovsky et al., 2005) Determining
if graph G is perfect is P and takes at most O(|V(G)|9).

Given a graph G, the algorithm decides either that
G is not Berge or that G contains no odd hole. To
test Bergeness, the algorithm is run on G and again
on Ḡ. The key computational bottleneck is the de-
tection of so-called pyramid structures by enumerat-
ing all nonuples (leading to a ninth order polynomial
run-time) of vertices and considering various shortest
paths between them. Further details of the algorithm
are omitted in this article for space considerations but
implementation is straightforward. This polynomial
time algorithm leads to the following straightforward
corollary for graphical models (via the conversion to
NMRFs).

Corollary 2 Verifying if MAP estimation is effi-
cient for any graphical model with cliques c ∈ C
over variables {x1, . . . , xn} is in P and takes at most

O
(

(
∑

c∈C

(
∏

i∈c |xi|
))9
)

time.

Therefore, an automatic framework is possible for ver-
ifying if MAP estimation of any graphical model is in
P. The model is first converted into a nand Markov
random field with a graph G = (V , E) and then the re-
sulting graph is efficiently tested using the algorithm
of (Chudnovsky et al., 2005). If the resulting graph is
perfect, the LP relaxation efficiently recovers the MAP
estimate. Unfortunately, the current running time of
the perfect graph verification algorithm prohibits prac-
tical application. Only small graphical models G can
be efficiently tested to date: those that map to a cor-
responding NMRF graph G with less than 20 nodes.
It may be helpful to consider the faster heuristic al-
gorithm of (Nikolopoulos & Palios, 2004) which only
requires O(|V| + |E|2). This algorithm only verifies if
a graph contains any hole or chordless cycle with 5
or more nodes. Thus, if the graph and its comple-
ment contain no holes (even or odd), the algorithm
can quickly confirm that G is perfect. However, if the
graph contains holes, it is still unclear whether these
are exclusively even holes or if there are some odd holes
in the graph. Therefore, (Chudnovsky et al., 2005) be-
comes necessary as the conclusive test for graph per-
fection.

Clearly, the above algorithms may be impractical for
large scale problems. Fortunately, a variety of decom-
position and construction tools are also available from
perfect graph theory which may be useful to formally
prove perfection without cumbersome computation.
These include the replication lemma (Lovász, 1972),
the 2-join decomposition theorem (Cornuéjols & Cun-
ningham, 2001), the M -join decomposition and the
skew-partition decomposition theorem (Chudnovsky



et al., 2006). In the remainder of this section, a direct
proof approach is used to investigate popular graphi-
cal models where MAP estimation is known to be easy
to see if these indeed produce NMRFs with perfect
graphs.

Consider the following tool from perfect graph theory
known as the replication lemma.

Lemma 2 (Lovász, 1972) Let G be a perfect graph and
let v ∈ V(G). Define a graph G′ by adding a new vertex
v′ and joining it to v and all the neighbors of v. Then
G′ is perfect.

This tool will be useful for investigating graphical
models where G is a tree (Pearl, 1988).

Lemma 3 A graphical model with a tree graph G pro-
duces an NMRF with a perfect graph G.

Proof 5 First consider the simplest case where the in-
put tree graph is merely a star graph. A star graph Gv

consists of leaf nodes {v1, . . . , v|C|}, a single internal
node v present in a total of |C| 2-cliques Xc = {vc, v}.
Construct a new graph from Gv as follows. Intro-
duce a node yc,j for each clique Xc for each of the
j = 0, . . . , |v| − 1 configurations of v for the settings
vc = 0. Connect all nodes pairwise if they correspond
to different configurations of v. The resulting graph is
a complete |v|-partite graph which is known to be per-
fect (Berge & Chvátal, 1984). To obtain the NMRF
from the current complete |v|-partite graph, sequen-
tially introduce additional nodes yc,i|v|+j for each Xc

for each of the j = 0, . . . , |v| − 1 configurations of v
as well as for each of the remaining i = 1, . . . , |vc| − 1
settings of vc. Each sequentially introduced node is
connected to the corresponding node yc,0+j that is al-
ready in the graph as well as all its neighbors. By
Lemma 2, this sequential introduction of additional
nodes and edges maintains graph perfection. Once all
nodes are added, the resulting graph is precisely the
graph Gv obtained by converting a star graph Gv into
its equivalent NMRF form. Therefore, Gv is perfect.
Applying induction on the star graph extends the per-
fect graph argument to the more general case where
G is a tree. Consider two star graphs: the first star
Gv contains nodes {v1, . . . , v|C|} with internal node v
and the second star Gw contains nodes {w1, . . . , w|D|}
with internal node w. Consider merging these two
stars by merging node v1 with node w, merging node
w1 with node v and merging edge {w,w1} and edge
{v, v1} into a single edge {v, w}. Clearly, the result-
ing merged graph, denoted Gv+w forms a tree. The
stars Gv and Gw separately give rise to NMRFs Gv

and Gw which have already been shown to be perfect.
The tree Gv+w gives rise to an NMRF denoted Gv+w.
Since V(Gv) ∩ V(Gw) = {v, w}, it is clear that the

isolated NMRFs overlap only over the configuration
nodes for the edge {v, w}. Consequently, the vertices
V(Gv) ∩ V(Gw) form a fully-connected clique in Gv, in
Gw and in Gv+w. Therefore, the merged NMRF Gv+w

introduces no additional cycles beyond the ones in Gv

and Gw in isolation. This gluing of NMRF graphs on
cliques (a clique cutset) is a special case of Chvátal’s
skew-partition decomposition which is known to pre-
serve graph perfection (Berge & Chvátal, 1984; Chud-
novsky et al., 2006). Since Gv and Gw are perfect
graphs, Gv+w must then also be a perfect graph. By
induction, merging additional stars in this manner to
sequentially construct any tree G produces an NMRF
G which must be a perfect graph.

Next consider the case where the graphical model G
corresponds to a maximum weight bipartite matching
problem (Bayati et al., 2005; Huang & Jebara, 2007;
Sanghavi et al., 2008) which is known to produce in-
tegral linear programming relaxations.

Lemma 4 The LP relaxation of the graphical model
for maximum weight bipartite matching

p(X) =
n
∏

i=1

δ





n
∑

j=1

xij ≤ 1



 δ





n
∑

j=1

xji ≤ 1





n
∏

k=1

efikxik

with non-negative fij ≥ 0 and binary xij for all i, j =
1, . . . , n is integral and produces the MAP estimate.

Proof 6 The graphical model is in NMRF form so G
and G are equivalent. G is the line graph of a (com-
plete) bipartite graph (i.e. a Rook’s graph). Therefore,
G is perfect, the LP is integral and recovers the MAP
estimate via Theorem 2.

A generalization of the bipartite matching problem is
the unipartite matching problem. It is known that the
standard LP relaxation for such problems is not always
integral7. However, (Sanghavi et al., 2008) shows that
belief propagation produces the MAP estimate in the
unipartite case if the LP relaxation is integral. It is now
possible to show when the LP is integral by recognizing
perfect graphs and guaranteeing the convergence of
belief propagation a priori.

Lemma 5 The LP relaxation of the graphical model

7The nonintegrality of the LP in unipartite matching
is why additional Blossom inequalities constraints are im-
posed in Edmonds’ algorithm (Edmonds, 1965). To ensure
integrality for any graph, one introduces an exponential
number of Blossom inequalities: for every set of edges be-
tween an odd sized set of vertices and the remaining ver-
tices, the sum over the set of edge weights is at least 1.



G = (V,E) for maximum weight unipartite matching

p(X) =
∏

i∈V

δ





n
∑

j∈Ne(i)

xij ≤ 1





∏

ij∈E

efijxij

with non-negative fij ≥ 0 and binary xij for all ij ∈ E
is integral and produces the MAP estimate if G is a
perfect graph.

Proof 7 The graphical model is in NMRF form and
graphs G and G are equivalent. By Theorem 2, the LP

relaxation is integral and recovers the MAP estimate
if G is a perfect graph.

6 PRUNING NMRFs

Clearly, as was the case in the previous two lemmas, if
the original graphical model G has some clique func-
tions that are already nand functions (as in matching
problems), then re-expanding these into NMRFs by
the method in Section 3 is redundant. Therefore, only
when the variables are involved in clique functions that
are not nand-structured, should the conversion from
Xc to Xc be implemented.

In addition, we provide the following two procedures
which are useful for pruning the NMRF prior to veri-
fying perfection of the graph and/or MAP estimation.
The procedures are Disconnect and Merge. We
emphasize that these can be applied to G optionally.
Both are efficient and may simplify the NMRF hope-
fully converting an otherwise imperfect graph NMRF
into an equivalent perfect graph NMRF (for example
by exploiting additional structure in the values of the
clique functions) thereby allowing exact MAP estima-
tion. Also, the subsequent perfect graph recognition
algorithm and MAP linear program can only be sped
up by these procedures.

First, we obtain a graph Disconnect(G) from G by
applying the Disconnect procedure to all nodes in
the NMRF that correspond to the minimal configura-
tions of each clique ψc(Xc). In other words, for each
c ∈ C, denote the minimal configurations of c as the set
of nodes {xc,k} such that fc,k = minκ fc,κ = log(1+ǫ).
Disconnect removes the edges between these nodes
and all other nodes in the clique Xc. This is because
the minimal configurations, if asserted (set to unity) or
otherwise, will have no significant effect on the MAP
score. Therefore, if they violate the nand relationship
with other variables in Ψc(Xc) and are set to unity
in addition to the other variables in Xc, an equivalent
MAP estimate can be found by setting these variables
to zero while preserving a MAP estimate. In other
words, given the MAP X∗ estimate of ρ(X) in the
graph Disconnect(G), if more than one setting in

X∗
c is active, only the maximal setting is preserved as

a post-processing. Since minimal configurations are al-
lowed to be redundantly asserted by the Disconnect

procedure and may conflict with the true assignment,
these are set to zero by a final post processing proce-
dure. After MAP estimation, given all asserted vari-
ables in X∗

c , only one xc,k is kept asserted: the one
which corresponds to the largest fc,k and all others
which have fc,k = log(1 + ǫ) get set to zero. This
does not change the score of the MAP estimate. The
Disconnect procedure only requires O(|V(G)|).

Second, we apply another procedure to the current
NMRF which is called Merge. This procedure returns
a graph where nodes in the input graph are merged.
For any pair of disconnected nodes xc,k and xd,l in the
NMRF that have the same connectivity to the rest of
the graph Ne(xc,k) = Ne(xd,l), Merge combines them
into a single equivalent variable xc,k with the same
connectivity and updates its corresponding weight as
fc,k ← fc,k + fd,l. Then, following MAP estimation,
the setting for xd,l is recovered simply by setting it to
the value of xc,k. It is straightforward to see that the
procedure Merge requires no more than O(|V(G)|3).
Thus, once the NMRF G is obtained via Section 3,
we obtain G′ = Merge(Disconnect(G)) which po-
tentially can be more readily tested for perfection and
admits more efficient MAP estimation due to the sim-
plification of the graph. Given the MAP estimate from
G′, it is straightforward to recover the MAP estimate
for G and then reconstruct the MAP estimate of G.

7 MESSAGE PASSING

While linear programming can be used to solve for
the MAP configuration whenever the NMRF involves
a perfect graph, a faster approach is to perform mes-
sage passing since such algorithms exploit the sparse
graph topology more directly. Guarantees for the ex-
actness and convergence of max-product belief propa-
gation are known in the case of singly linked graphs,
junction trees, single loop graphs and matching prob-
lems (Wainwright & Jordan, 2008). A more conver-
gent algorithm was recently proposed in (Globerson &
Jaakkola, 2007) which is known as convergent message
passing. For binary MAP problems, it recovers the
solution to the LP relaxation. It is thus investigated
here as a natural competitor to linear programming for
MAP estimation on the NMRF. To apply this method
to an NMRF with graph G = (V , E), it helps to rewrite
the objective as follows:

log ρ(X) =
∑

ij∈E

θij(xi,xj).



Here we have defined the following potential functions:

θij(xi,xj) =
xifi

|Ne(i)|
+

xjfj

|Ne(j)|
+ log δ(xi + xj ≤ 1)

where Ne(i) indicates all neighbors of the node i. Thus,
all clique functions for an NMRF have the form

θij(xi,xj) =

xj = 0 xj = 1

xi = 0 0
fj

|Ne(j)|

xi = 1 fi

|Ne(i)| −∞

and, to avoid numerical problems, each value of −∞
should be replaced with a large negative constant in
practice. The convergent message passing algorithm is
outlined below.

Convergent Message Passing:
Input: Graph G = (V , E) and θij for ij ∈ E .
1. Initialize all messages to any value.
2. For each ij ∈ E , simultaneously update
λji(xi)← −

1
2

∑

k∈Ne(i)\j λki(xi)

+ 1
2 maxxj

[

∑

k∈Ne(j)\i λkj(xj) + θij(xi,xj)
]

λij(xj)← −
1
2

∑

k∈Ne(j)\i λkj(xj)

+ 1
2 maxxi

[

∑

k∈Ne(i)\j λki(xi) + θij(xi,xj)
]

3. Repeat 2 until convergence.
4. Find b(xi) =

∑

j∈Ne(i) λji(xi) for all i ∈ V .

5. Output x̂i = argmaxxi
b(xi) for all i ∈ V .

The algorithm iterates until convergence and produces
the approximate solution denoted X̂ = {x̂1, . . . , x̂N}.
A key property of the algorithm is that it recovers the
same solution as the LP when the variables are binary.

Theorem 5 (Globerson & Jaakkola, 2007) With bi-
nary variables xi, fixed points of convergent message
passing recover the optimum of the LP.

Thus, for binary problems, instead of solving the LP,
it is possible to simply run message passing. We previ-
ously showed that when the graph G is a perfect graph
the LP is integral and thus, in such settings, message
passing recovers the MAP assignment. This permits
the following corollary.

Corollary 3 Convergent message passing on an
NMRF with a perfect graph finds the MAP estimate.

The above thus generalizes the possible settings in
which message passing converges to the MAP esti-
mate from singly linked graphs, single loop graphs and
matching graphs to the broader set of perfect graphs.

8 EXPERIMENTS

To evaluate the optimality of message passing, we
investigate convergence on the following basic Berge

graphs: bipartite graphs, complements of bipartite
graphs, line graphs of bipartite graphs and comple-
ments of these line graphs. We also consider arbitrary
random graphs which may or may not be perfect. Mes-
sage passing was used to solve unipartite matching as
in Lemma 5 on these graphs with random edge weights
sampled uniformly between [0, 1]. To show conver-
gence to the MAP problem, the message passing (i.e.
LP) estimate is compared to the exact solution using
Edmonds’ algorithm. Figure 2 show the scores ob-
tained by message passing on the vertical axis and by
exact MAP estimation on the horizontal axis. Clearly,
the four subfamilies of perfect graphs obtained the
MAP estimate via message passing (or LP) while sub-
optimal solutions were recovered on arbitrary graphs
(which need not be perfect).
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Figure 2: Scores for the exact MAP estimate (hor-
izontal axis) and message passing estimate (vertical
axis) for random graphs and weights. Figure (a) shows
scores for four types of basic Berge graphs while (b)
shows scores for arbitrary graphs. Minor score discrep-
ancies on Berge graphs arose due to numerical issues
and early stopping.

9 DISCUSSION

A procedure was provided to convert any graphical
model into a nand Markov random field. The NMRF
graph can then be efficiently diagnosed to determine if
it is perfect. If it (or a pruned version of the NMRF) is
perfect, MAP estimation is in P and can be solved ef-
ficiently via linear programming (or via message pass-
ing). This extends MAP estimation and message pass-
ing guarantees to a wider range of graphical models.

If the resulting NMRF is not a perfect graph, it may
be useful to explore slight modifications to the MAP
problem to produce a perfect graph. Replacing oth-
erwise intractable MAP estimation with exact MAP
estimation (via linear programming or message pass-
ing) on a surrogate problem is a direction of ongoing
interest. Furthermore, due to the particular nature of
nand Markov random fields, it may be the case that



simpler variants of message passing (for instance, its
predecessor, the max product algorithm (Globerson &
Jaakkola, 2007)) may also have convergence guaran-
tees. One direction for future work is the conjecture
that max product on NMRFs with perfect graphs also
recovers the MAP estimate.
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Cornuéjols, M., & Cunningham, W. (2001). Composition
for perfect graphs. Discrete Mathematics, 55, 245–254.

Edmonds, J. (1965). Paths, trees and flowers. Canadian
Journal of Mathematics, 17.

Globerson, A., & Jaakkola, T. (2007). Fixing max-product:
Convergent message passing algorithms for MAP LP-
relaxations. Neural Information Processing Systems.

Grötschel, M., Lovász, L., & Schrijver, A. (1988). Geomet-
ric algorithms and combinatorial optimization, chapter
Stable sets in graphs. Springer-Verlag.

Huang, B., & Jebara, T. (2007). Loopy belief propagation
for bipartite maximum weight b-matching. Artificial In-
telligence and Statistics.

Lovász, L. (1972). Normal hypergraphs and the weak per-
fect graph conjecture. Discrete Math., 2, 253–267.

Lovász, L. (1983). Selected topics in graph theory, volume
2, chapter Perfect graphs, 55–87. Academic Press.

Nikolopoulos, S., & Palios, L. (2004). Hole and antihole
detection in graphs. Symposium on Discrete Algorithms.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: Networks of plausible inference. Morgan Kauf-
mann.

Ravikumar, P., & Lafferty, J. (2006). Quadratic program-
ming relaxations for metric labeling and Markov random
field MAP estimation. International Conference on Ma-
chine Learning.

Salez, J., & Shah, D. (2009). Optimality of belief propa-
gation for random assignment problem. Symposium on
Discrete Algorithms.

Sanghavi, S., Malioutov, D., & Willsky, A. (2008). Lin-
ear programming analysis of loopy belief propagation
for weighted matching. Neural Information Processing
Systems.

Santos, E. (1991). On the generation of alternative expla-
nations with implications for belief revision. Uncertainty
in Artificial Intelligence.

Shimony, Y. (1994). Finding the MAPs for belief networks
is NP-hard. Aritifical Intelligence, 68, 399–410.

Wainwright, M., Jaakkola, T., & Willsky, A. (2005). MAP
estimation via agreement on trees: message-passing and
linear programming. IEEE Transactions on Information
Theory, 51, 3697–3717.

Wainwright, M., & Jordan, M. (2008). Graphical models,
exponential families and variational inference. Founda-
tions and Trends in Machine Learning, 1, 1–305.

Weiss, Y. (2000). Correctness of local probability propa-
gation in graphical models with loops. Neural Compu-
tation, 12, 1–41.

Weiss, Y., & Freeman, W. (2001). On the optimality of so-
lutions of the max-productbelief-propagation algorithm
in arbitrary graphs. IEEE Transactions on Information
Theory, 47, 736–744.

Weiss, Y., Yanover, C., & Meltzer, T. (2007). MAP esti-
mation, linear programming and belief propagation with
convex free energies. Uncertainty in Artificial Intelli-
gence.

Yedidia, J., Freeman, W., & Weiss, Y. (2001). Under-
standing belief propagation and its generalizations. In-
ternational Joint Conference on Artificial Intelligence,
Distinguished Lecture Track.


