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Abstract

When belief propagation (BP) converges, it does
so to a stationary point of the Bethe free en-
ergy F , and is often strikingly accurate. How-
ever, it may converge only to a local optimum
or may not converge at all. An algorithm was
recently introduced by Weller and Jebara for at-
tractive binary pairwise MRFs which is guaran-
teed to return an ε-approximation to the global
minimum of F in polynomial time provided the
maximum degree ∆ = O(log n), where n is the
number of variables. Here we extend their ap-
proach and derive a new method based on an-
alyzing first derivatives of F , which leads to
much better performance and, for attractive mod-
els, yields a fully polynomial-time approxima-
tion scheme (FPTAS) without any degree restric-
tion. Further, our methods apply to general (non-
attractive) models, though with no polynomial
time guarantee in this case, demonstrating that
approximating log of the Bethe partition func-
tion, logZB = −minF , for a general model to
additive ε-accuracy may be reduced to a discrete
MAP inference problem. This allows the merits
of the global Bethe optimum to be tested.

1 INTRODUCTION

Undirected graphical models, also termed Markov random
fields (MRFs), are central tools in machine learning. A set
of variables and a score function is specified such that the
probability of a configuration of variables is proportional to
the value of the score function, which factorizes into sub-
functions over subsets of variables in a way that defines a
topology on the variables.

Three central problems are: (1) To evaluate the partition
function Z , which is the sum of the score function over
all possible settings, and hence is the normalization con-

stant for the probability distribution; (2) Marginal infer-
ence, which is computing the probability distribution of a
given subset of variables; and (3) Maximum a posteriori
(MAP) inference, which is the task of identifying a setting
of all the variables which has maximum probability.

All these are NP-hard, and (1) and (2) are closely related
(marginals are a ratio of two partition functions). Vari-
ational methods show that the partition function may be
obtained by minimizing the free energy over the marginal
polytope, and that if instead the Bethe free energy (Bethe,
1935) is minimized over the local polytope, this should
yield a good approximation1. Although this is not a for-
mal result, and there are cases where it performs poorly
- typically when there are many short cycles with strong
edge interactions (Wainwright and Jordan, 2008, § 4.1),
still, the approach has proved very popular and often strik-
ingly accurate. Belief propagation is often used to perform
this minimization (Pearl, 1988; Yedidia et al., 2001). Per-
formance is often excellent (McEliece et al., 1998; Mur-
phy et al., 1999), but when applied to models with cycles,
termed loopy belief propagation (LBP), convergence is not
guaranteed in general, even to a local minimum. Some con-
jectured that when LBP behaves poorly, it is likely that the
Bethe approximation, as given by the globalminimum, also
performs poorly, but it has not previously been possible to
test this.

Approaches such as gradient descent (Welling and Teh,
2001), double-loop methods (Yuille, 2002) or Frank-Wolfe
(Belanger et al., 2013) will converge but only to a local
minimum, and with no runtime guarantee. Recently, two
methods with polynomial runtime were given for the im-
portant subclass of binary pairwise models: one returns
an approximately stationary point (Shin, 2012), though its
value may be far even from a local minimum; the other re-
turns an ε-approximate global optimum value (Weller and
Jebara, 2013a) but only for the restricted case of attrac-
tive models (where pairwise relationships tend to pull con-
nected variables to the same value)1. Both these methods
restrict the topology to have maximum degree O(log n),

1All terms are defined in §2.



where n is the number of variables.

1.1 CONTRIBUTION AND SUMMARY

We obtain results for binary pairwise MRFs by expanding
on ideas from Weller and Jebara (2013a). The approach is
to construct a sufficient mesh of discretized points in such a
way that the optimum mesh point q∗ is guaranteed to have
F(q∗) within ε of the true optimum. Our first derivative
method typically results in a mesh that is much coarser (by
many orders of magnitude, see §6.1), yet still sufficient, and
admits adaptive methods to focus points in regions where
F may vary rapidly. This leads to a FPTAS for attractive
models with no restriction on topology. In addition, we re-
fine and extend the second derivative approach of Weller
and Jebara (2013a) to derive a method that performs well
for very small ε. With our new methods, both approaches
apply to general binary pairwise models (not necessarily at-
tractive) to reduce the problem of finding an ε-approximate
global optimum to solving a derived discrete optimization
problem, which may be framed as multi-label MAP infer-
ence, where a rich family of methods already exists.

There are several motivations for this work:

• To our knowledge, we present the first way to solve
for the global Bethe optimum (within ε accuracy) of a
general binary pairwise MRF. Runtime is practical for
small real-world problems.

• This now allows the accuracy of the global Bethe op-
timum to be tested.

• For attractive models, we obtain a fully polynomial
time approximation scheme for any topology, thus an-
swering an open theoretical question.

In §2, we establish notation and present preliminary results,
then apply these in §3 to derive our new approach for mesh
construction based on analyzing first derivatives of F . In
§4 we revisit the second derivative approach of Weller and
Jebara (2013a). We show how this method can be refined
and extended to yield better performance and also to admit
non-attractive models, though for most cases of interest,
unless ε is very small, the method of §3 is much superior.

In §5, we discuss the resulting discrete optimization prob-
lem. In certain settings this is tractable, and in general we
mention several features that can make it easier to find a
satisfactory solution, or at least to bound its value. Experi-
ments are described in §6 demonstrating practical applica-
tion of the algorithm. Conclusions are presented in §7.

For a sketch of the overall approach, see Algorithm, 1.

1.2 RELATED WORK

Jerrum and Sinclair (1993) derived a fully polynomial-time
randomized approximation scheme (FPRAS) for the true

Algorithm 1 Mesh method to return ε-approximate global
optimum logZB for a general binary pairwise model
Input: ε, model parameters (convert using §2.1 if required)
Output: estimate of global optimum logZB guaranteed
to be in range [logZB − ε, logZB], together with cor-
responding pseudo-marginal as arg for the discrete opti-
mum
1: Preprocess by computing bounds on the locations of
minima, see §2.4.

2: Construct a sufficient mesh using one of the methods in
this paper, see §3 & 4. All approaches are fast, so sev-
eral may be used and the most efficient mesh selected.

3: Attempt to solve the resulting multi-label MAP infer-
ence problem, see §5.

4: If unsuccessful, but a strongly persistent partial solu-
tion was obtained, then improved location bounds may
be generated (see §5.2.1), repeat from 2.

At anytime, one may stop and compute bounds on logZB ,
see §5.2.

partition function, but only when singleton potentials are
uniform (i.e. a uniform external field), and the runtime
is high at O(ε−2m3n11 logn). Heinemann and Glober-
son (2011) have shown that models exist such that the true
marginal probability cannot possibly be the location of a
minimum of the Bethe free energy. Approaches have been
developed to solve related convex problems but results are
typically less good (Meshi et al., 2009). Our work demon-
strates an interesting connection between MAP inference
techniques (NP-hard) and estimating the partition function
Z (#P-hard). A different connection was shown by using
MAP inference on randomly perturbed models to approxi-
mate and bound Z (Hazan and Jaakkola, 2012).

2 NOTATION & PRELIMINARIES

Our notation is similar to Weller and Jebara (2013a) and
Welling and Teh (2001). We focus on a binary pairwise
model with n variables X1, . . . , Xn ∈ B = {0, 1} and
graph topology (V , E) with m = |E|; that is V contains
nodes {1, . . . , n} where i corresponds toXi, and E ⊆ V ×
V contains an edge for each pairwise score relationship.
Let N (i) be the neighbors of i. Let x = (x1, . . . , xn) be
one particular configuration, and introduce the notion of
energy E(x) through2

p(x) =
e−E(x)

Z
, E = −

∑

i∈V
θixi −

∑

(i,j)∈E

Wijxixj , (1)

2The probability or score function can always be reparameter-
ized in this way, with finite θi and Wij terms provided p(x) >
0 ∀x, which is a requirement for our approach. There are rea-
sonable distributions where this does not hold, i.e. distributions
where ∃x : p(x) = 0, but this can often be handled by assigning
such configurations a sufficiently small positive probability ε.



where the partition functionZ =
∑

x e
−E(x) is the normal-

izing constant, and {θi,Wij} are parameters of the model.

Given any joint probability distribution p(X1, . . . , Xn)
over all variables, the (Gibbs) free energy is defined as
FG(p) = Ep(E) − S(p), where S(p) is the (Shannon)
entropy of the distribution. Using variational methods, a
remarkable result is easily shown (Wainwright and Jordan,
2008): minimizingFG over the set of all globally valid dis-
tributions (termed the marginal polytope) yields a value of
− logZ at the true marginal distribution, given in (1).

This minimization is, however, computationally in-
tractable, hence the approach of minimizing the Bethe free
energy F makes two approximations: (i) the marginal
polytope is relaxed to the local polytope, where we re-
quire only local consistency, that is we deal with a pseudo-
marginal vector q, which in our context may be considered
{qi = q(Xi = 1) ∀i ∈ V , µij = q(xi, xj) ∀(i, j) ∈ E}
subject to qi =

∑

j∈N (i) µij , qj =
∑

i∈N (j) µij ∀i, j ∈ V ;
and (ii) the entropy S is approximated by the Bethe entropy
SB =

∑

(i,j)∈E Sij +
∑

i∈V(1 − di)Si, where Sij is the
entropy of µij , Si is the entropy of the singleton distribu-
tion and di = |N (i)| is the degree of i. The local polytope
constraints imply that, given qi and qj ,

µij =

(

1 + ξij − qi − qj qj − ξij
qi − ξij ξij

)

(2)

for some ξij ∈ [0,min(qi, qj)], where µij(a, b) = q(Xi =
a,Xj = b). Hence, the global optimum of the Bethe free
energy,

F(q) = Eq(E)− SB(q) (3)

=
∑

(i,j)∈E

−
(

Wijξij + Sij(qi, qj)
)

+
∑

i∈V

(

− θiqi + (di − 1)Si(qi)
)

,

is achieved by minimizing F over the local polytope, with
ZB defined s.t. the result obtained equals − logZB. See
(Wainwright and Jordan, 2008) for details. Let αij =
eWij − 1. αij = 0 ⇔ Wij = 0 may be assumed not to
occur else the edge (i, j) may be deleted. αij has the same
sign asWij , if positive then the edge (i, j) is attractive; if
negative then the edge is repulsive. The MRF is attractive
if all edges are attractive. As shown by Welling and Teh
(2001), one can solve for ξij explicitly in terms of qi and
qj by minimizing F , leading to a quadratic with real roots,

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0. (4)

For αij > 0, ξij(qi, qj) is the lower root, for αij < 0 it is
the higher. Thus we may consider the minimization of F
over q = (q1, . . . , qn) ∈ [0, 1]n. Collecting the pairwise
terms of F from (3) for one edge, define

fij(qi, qj) = −Wijξij(qi, qj)− Sij(qi, qj). (5)

We are interested in discretized pseudo-marginals where
for each qi, we restrict its possible values to a discrete mesh
Mi of points in [0, 1]. The points may be spaced unevenly
and we may haveMi '= Mj . Let Ni = |Mi|, and define
N =

∑

i∈V Ni and Π =
∏

i∈V Ni, the sum and product
respectively of the number of mesh points in each dimen-
sion. Write M for the entire mesh. Let q̂ be the location
of a global optimum of F . We say that a mesh construc-
tionM(ε) is sufficient if, given ε > 0, it can be guaranteed
that ∃ a mesh point q∗ ∈

∏

i∈V Mi s.t. F(q∗)−F(q̂) ≤ ε.
The resulting discrete optimization problemmay be framed
as MAP inference in a multi-label MRF, where variable i
takes values inMi, with the same topology (see §5).

2.1 INPUT MODEL SPECIFICATION

To be consistent with Welling and Teh (2001) and Weller
and Jebara (2013a), for all theoretical analysis in this paper,
we assume the reparameterization in (1). However, when
an input model is specified, in order to avoid bias, we use
singleton terms θi as in (1), but instead use pairwise energy
terms given by−Wij

2 xixj−Wij

2 (1−xi)(1−xj). With this
form, varying Wij simply alters the degree of association
between i and j. We assume maximum possible valuesW
and T are known with |θi| ≤ T ∀i ∈ V , and |Wij | ≤
W ∀(i, j) ∈ E . The required transformation to convert
from input model to the format of (1), simply takes θi ←
θi −

∑

j∈N (i) Wij/2, leavingWij unaffected.

2.2 SUBMODULARITY

If all pairwise cost functions fij over Mi × Mj from
(5) are submodular3, then the global discretized optimum
may be found efficiently using graph cuts (Schlesinger and
Flach, 2006). We require the following earlier result.
Theorem 1 (Submodularity for any discretization of an at-
tractive model, see Weller and Jebara (2013a) Theorem 8,
Korc̆ et al. (2012)). In a binary pairwise MRF, if an edge
(i, j) is attractive, i.e. Wij > 0, then the discretized multi-
label MRF for any mesh M is submodular for that edge.
Hence if the MRF is fully attractive, then the discretized
multi-label MRF is fully submodular for any discretization.

2.3 FLIPPING VARIABLES

A useful technique for our analysis is to consider a model
where some variables are flipped, i.e. given a model on
{Xi}, consider a new model on {X ′

i} whereX ′
i = 1−Xi

for some i ∈ V . New model parameters {θ′i,W ′
ij} may be

identified as in (Weller and Jebara, 2013a, §3) to preserve
3Here a pairwise multi-label function on a set of ordered labels

Xij = {1, . . . ,Ki} × {1, . . . , Kj} is submodular iff ∀x, y ∈
Xij , f(x∧y)+f(x∨y) ≤ f(x)+f(y), where for x = (x1, x2)
and y = (y1, y2), (x ∧ y) = (min(x1, y1),min(x2, y2)) and
(x∨y) = (max(x1, y1),max(x2, y2)). For binary variables this
is equivalent to the edge potential being attractive.



energies of all states up to a constant. If all variables are
flipped, new parameters are given by

W ′
ij = Wij , θ′i = −θi −

∑

j∈N (i)

Wij . (6)

If the original model was attractive, so too is the new. If
only a subsetR ⊆ V is flipped, let X ′

i = 1 −Xi if i ∈ R,
elseX ′

i = Xi for i ∈ S, where S = V\R. Let Et = {edges
with exactly t ends in R} for t = 0, 1, 2. Then we obtain

W ′
ij =

{

Wij (i, j) ∈ E0 ∪ E2,
−Wij (i, j) ∈ E1,

θ′i =

{

θi +
∑

(i,j)∈E1
Wij i ∈ S,

−θi −
∑

(i,j)∈E2
Wij i ∈ R.

(7)

Lemma 2. Flipping variables changes affected pseudo-
marginal matrix entries’ locations but not values. F is un-
changed up to a constant, hence the locations of stationary
points are unaffected. Proof in Weller and Jebara (2013a)

2.4 PRELIMINARY BOUNDS

We use the following earlier results.
Lemma 3 (Weller and Jebara (2013a) Lemma 2). αij ≥
0 ⇒ ξij ≥ qiqj ,αij ≤ 0 ⇒ ξij ≤ qiqj .
Lemma 4 (Upper bound for ξij for an attractive edge,
Weller and Jebara (2013a) Lemma 6). If αij > 0, then
ξij − qiqj ≤ αijm(1−M)

1+αij
, where m = min(qi, qj) and

M = max(qi, qj).
Theorem 5 (Weller and Jebara (2013a) Theorem 4). For
general edge types (associative or repulsive), let Wi =
∑

j∈N (i):Wij>0 Wij , Vi = −
∑

j∈N (i):Wij<0 Wij . At any
stationary point of the Bethe free energy, σ(θi−Vi) ≤ qi ≤
σ(θi +Wi), where σ(x) = 1/(1 + exp(−x)) (sigmoid).

For the efficiency of our overall approach, it is very desir-
able to tighten these bounds on locations of minima of F
since this both reduces the search space and allows a lower
density of discretizing points in the mesh. For our theo-
retical results, we do not assume this can be done but in
practice, it can be attempted efficiently by running either
of the following two algorithms: Bethe bound propagation
(BBP) from (Weller and Jebara, 2013a, §6), or using the ap-
proach fromMooij and Kappen (2007) which we termMK.
Either method can achieve striking results quickly, though
MK is our preferred method4 - this considers cavity fields
around each variable and determines the range of possible
beliefs after iterating LBP, starting from any initial values;
since any minimum of F corresponds to a fixed point of
LBP (Yedidia et al., 2001), this bounds all minima.

4Both BBP and MK are anytime methods that converge
quickly, and can be implemented such that each iteration runs in
O(m) time. MK takes a little longer but can yield tighter bounds.

Let the lower bounds obtained for qi and 1−qi respectively
be Ai and Bi so that Ai ≤ qi ≤ 1 − Bi, and let the Bethe
box be the orthotope given by

∏

i∈V [Ai, 1 − Bi]. Define
ηi = min(Ai, Bi), i.e. the closest that qi can come to the
extreme values of 0 or 1.

2.5 DERIVATIVES OF F

Welling and Teh (2001) derived first partial derivatives of
the Bethe free energy as

∂F
∂qi

= −θi + logQi, (8)

where Qi =
(1− qi)di−1

qdi−1
i

∏

j∈N (i)(qi − ξij)
∏

j∈N (i)(1 + ξij − qi − qj)
.

Weller and Jebara (2013a) derived all second partial deriva-
tives.
Theorem 6 (All terms of the Hessian, see Weller and Je-
bara (2013a) §4.3 and Lemma 9). Let H be the Hessian of
F for a binary pairwise model, i.e. Hij = ∂2F

∂qi∂qj
, and di

be the degree of variableXi, then

Hii = − di − 1

qi(1− qi)
+

∑

j∈N (i)

qj(1− qj)

Tij
≥ 1

qi(1− qi)
,

Hij =

{

qiqj−ξij
Tij

(i, j) ∈ E
0 (i, j) /∈ E , i '= j,

where Tij = qiqj(1− qi)(1 − qj)− (ξij − qiqj)
2 (9)

≥ 0 with equality iff qi or qj ∈ {0, 1}.

3 NEW APPROACH: GRADMESH

We develop a new approach to constructing a sufficient
mesh M by analyzing bounds on the first derivatives of
F . To help distinguish between methods, we call the new
first derivative approach gradMesh, and the earlier, sec-
ond derivative approach curvMesh. The new gradMesh ap-
proach yields several attractive features:

• For attractive models, we obtain a FPTAS with worst
case runtime O(ε−3n3m3W 3) and no restriction on
topology, unlike earlier work (Weller and Jebara,
2013a) which required max degree ∆ = O(log n).

• Our sufficient mesh is typically dramatically coarser
than the earlier method of Weller and Jebara (2013a)
unless ε is very small, leading to a much smaller
subsequent MAP problem. Here, the sum of the
number of discretizing points in each dimension,
N = O

(

nmW
ε

)

. For comparison, the earlier method,
even after our improvements in §4, forms a mesh with
N = O

(

ε−1/2n7/4∆3/4 exp
[

1
2 (W (1 +∆/2) + T )

])

.
See §6.1 for examples.



• The approach immediately handles a general model with
both attractive and repulsive edges. Hence approxi-
mating logZB may be reduced to a discrete multi-
label MAP inference problem. This is valuable due
to the availability of many MAP techniques, see §5.

First consider a model which is fully attractive around vari-
able Xi, i.e. Wij > 0 ∀j ∈ N (i). From (8) and Lemma 3,
we obtain

∂F
∂qi

= −θi + logQi ≤ −θi + log
qi

1− qi
. (10)

Flip all variables (see §2.3). Write ′ for the parameters of
the new flipped model, which is also fully attractive, then
using (6) and (10),

∂F ′

∂q′i
≤ −θ′i + log

q′i
1− q′i

⇔ −θi −Wi + log
qi

1− qi
≤ ∂F

∂qi
.

Combining this with (10) yields the sandwich result

−θi −Wi + log
qi

1− qi
≤ ∂F

∂qi
≤ −θi + log

qi
1− qi

.

Now generalize to consider the case that i has some neigh-
bors R to which it is adjacent by repulsive edges. In this
case, flip those nodesR (see §2.3) to yield a model, which
we denote by ′′, which is fully attractive around i, hence we
may apply the above result. By (7) we have θ′′i = θi − Vi,
and using W ′′

i = Wi + Vi, we obtain that for a general
model,

−θi −Wi + log
qi

1− qi
≤ ∂F

∂qi
≤ −θi + Vi + log

qi
1− qi

.

(11)

This bounds each first derivative ∂F
∂qi

within a range of
width Vi + Wi =

∑

j∈N (i) |Wij |, which is sufficient for
the main theoretical result, see (15). We take the opportu-
nity, however, to describe a method which sometimes sig-
nificantly narrows this range, thereby improving the result
in practice.

Using one O(m) iteration of the belief propagation algo-
rithm (BBP) derived in (Weller and Jebara, 2013a, Supple-
ment), allows us to refine the bounds for variableXi of (11)
based on the [Aj , 1−Bj ] location bounds on its neighbors
j ∈ N (i), to show

fL
i (qi) ≤

∂F
∂qi

≤ fU
i (qi), where

fL
i (qi) = −θi −Wi + log

qi
1− qi

+ logUi

fU
i (qi) = −θi + Vi + log

qi
1− qi

− logLi. (12)
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Figure 1: Upper and Lower Bounds for ∂F
∂qi
. Solid blue curves

show worst case bounds (11) as functions of qi, and are different
by a constant Vi + Wi =

∑
j∈N (i) |Wij |. Dashed red curves

show the upper fU
i (qi) and lower fL

i (qi) bounds (12) after being
lowered by logLi and raised by logUi respectively, which incor-
porate the information from the bounds of neighboring variables.
All bounding curves are strictly monotonic. The Bethe box region
for qi must lie within the shaded region demarcated by vertical red
dashed lines, but we may have better bounds available, e.g. from
MK, as shown by Ai and 1−Bi.

Li, Ui are each > 1 with logLi + logUi ≤ Vi +Wi. They
are computed as Li =

∏

j∈N (i) Lij , Ui =
∏

j∈N (i) Uij ,

with Lij =

{

1 + αijAj

1+αij(1−Bi)(1−Aj)
ifWij > 0

1 + αijBj

1+αij(1−Bi)(1−Bj)
ifWij < 0

,

Uij =

{

1 + αijBj

1+αij(1−Ai)(1−Bj)
ifWij > 0

1 + αijAj

1+αij(1−Ai)(1−Aj)
ifWij < 0

.

See Figure 1 for an example. We make the following ob-
servations:

• The upper bound is equal to the lower bound plus the
constantDi = Vi +Wi − logLi − logUi ≥ 0.

• The bound curves are monotonically increasing with qi,
ranging from −∞ to +∞ as qi ranges from 0 to 1.

• A necessary condition to be within the Bethe box is
that the upper bound is ≥ 0 and the lower bound is
≤ 0. Hence, anywhere within the Bethe box, we must
have bounded derivative, | ∂F∂qi | ≤ Di. BBP gener-
ates {[Ai, 1−Bi]} bounds by iteratively updatingwith
Li, Ui terms. In general, however, we may have better
bounds from any other method, such as MK, which
lead to higher Li and Ui parameters and lowerDi.

F is continuous on [0, 1]n and differentiable everywhere in
(0, 1)n with partial derivatives satisfying (12). fL

i (qi) and
fU
i (qi) are continuous and integrable. Indeed, using the



notation
[

φ(x)
]x=b

x=a
= φ(b)− φ(a),

∫ b

a
log

qi
1− qi

dqi =
[

qi log qi + (1− qi) log(1− qi)
]qi=b

qi=a

(13)
for 0 ≤ a ≤ b ≤ 1, which relates to the binary entropy
functionH(p) = −p log p− (1 − p) log(1 − p), recall the
definition of F . We remark that although ∂F∂qi tends to −∞
or +∞ as qi tends to 0 or 1, the integral converges (taking
0 log 0 = 0).

Hence if q̂ = (q̂1, . . . , q̂n) is the location of a global mini-
mum, then for any q = (q1, . . . , qn) in the Bethe box,

F(q)−F(q̂) ≤
∑

i:q̂i≤qi

∫ qi

q̂i

fU
i (qi)dqi+

∑

i:qi<q̂i

∫ q̂i

qi

−fL
i (qi)dqi.

(14)

To construct a sufficient mesh, a simple initial bound relies
on | ∂F∂qi | ≤ Di. If mesh points Mi are chosen s.t. in di-
mension i there must be a point q∗ within γi of a global
minimum (which can be achieved using a mesh width in
each dimension of 2γi), then by setting γi =

ε
nDi

, we ob-
tain F(q∗)−F(q̂) ≤

∑

i Di
ε

nDi
= ε. It is easily seen that

Ni ≤ 1 + / 1
2γi

0, hence the total number of mesh points,
N =

∑

i∈V Ni, satisfies

N ≤ 2n+
n

2ε

∑

i

Di ≤ 2n+
n

ε

∑

(i,j)∈E

|Wij |

= O





n

ε

∑

(i,j)∈E

|Wij |



 = O

(

nmW

ε

)

, (15)

since Di ≤ Vi + Wi =
∑

j∈N (i) |Wij |. Here W =
max(i,j)∈E |Wij | andm = |E| is the number of edges.

If the initial model is fully attractive, then by Theo-
rem 1 we obtain a submodular multi-label MAP problem
which is solvable using graph cuts with worst case runtime
O(N3) = O(ε−3n3m3W 3) (Schlesinger and Flach, 2006;
Greig et al., 1989; Goldberg and Tarjan, 1988).

Note from the first expression in (15) that if we have in-
formation on individual edge weights then we have a better
bound using

∑

(i,j)∈E |Wij | rather than justmW .

For comparison, the earlier second derivative approach of
Weller and Jebara (2013a) has runtime O(ε−

3
2n6Σ

3
4Ω

3
2 ),

where, even using the improved method in §4 here, Ω =
O(∆eW (1+∆/2)+T ). Unless ε is very small, the new first
derivative approach is typically dramatically more efficient
and more useful in practice. Further, it naturally handles
both attractive and repulsive edge weights in the same way.

3.1 REFINEMENTS, ADAPTIVE METHODS

Since the resulting multi-label MAP inference problem
(which is not submodular in general) is NP-hard (Shimony,

1994), it is helpful to minimize its size. As noted above,
setting γi = ε

nDi
, which we term the simple method,

yields a sufficient mesh, where | ∂F∂qi | ≤ Di = Vi + Wi −
logLi − logUi. However, since the bounding curves are
monotonic with fU

i ≥ 0 and fL
i ≤ 0, a better bound

for the magnitude of the derivative is available by setting
Di = max{fU

i (1 −Bi),−fL
i (Ai)}.

3.1.1 The minsumMethod

We define Ni = the number of mesh points in dimension
i, with sum N =

∑

i∈V Ni and product Π =
∏

i∈V Ni.
For a fully attractive model, the resulting MAP problem
may be solved in time O(N3) by graph cuts (Theorem 1,
(Schlesinger and Flach, 2006; Greig et al., 1989; Goldberg
and Tarjan, 1988)), so it is sensible to minimizeN . In other
cases, however, it is less clear what to minimize. For ex-
ample, a brute force search over all points would take time
Θ(Π).

Define the spread of possible values in dimension i as Si =
1−Bi − Ai and note Ni = 1 + / Si

2γi
0 is required to cover

the whole range. To minimize N while ensuring the mesh
is sufficient, consider the Lagrangian L =

∑

i∈V
Si

2γi
−

λ(ε−
∑

i∈V γiDi), whereDi is set as in the simple method
(§3.1). Optimizing gives

γi =
ε

∑

j∈V
√

SjDj

√

Si

Di
, and N≤ 2n+

1

2ε

(

∑

i∈V

√

SiDi

)2

(16)
which we term the minsum method. Note Di ≤ diW
where di is the degree of Xi, hence

(
∑

i∈V

√
SiDi

)2 ≤
W

(
∑

i∈V

√
di
)2. By Cauchy-Schwartz and the handshake

lemma,
(
∑

i∈V

√
di
)2 ≤ n

∑

i∈V di = 2mn, with equal-
ity iff the di are constant, i.e. the graph is regular.

If instead Π is minimized, rather than N , a similar argu-
ment shows that the simple method (§3.1) is optimal.

3.1.2 Adaptive Methods

The previous methods rely on one boundDi for | ∂F∂qi | over
the whole range [Ai, 1 − Bi]. However, we may increase
efficiency by using local bounds to vary the mesh width
across the range. A bound on the maximum magnitude of
the derivative over any sub-range may be found by check-
ing just −fL

i at the lower end and fU
i at the upper end.

This may be improved by using the exact integral as in (14).
First, constant proportions ki > 0 should be chosen with
∑

i ki = 1. Next, the first or smallest mesh point γi
1 ∈ Mi

should be set s.t.
∫ γi

1

Ai
fU
i (qi)dqi = kiε. This will ensure

that γi
1 covers all points to its left in the sense that F [qi =

γi
1] − F [qi ∈ [Ai, γi

1]] ≤ kiε where all other variables
qj , j '= i, are held constant at any values within the Bethe
box. γi

1 also covers all points to its right up to what we term



its reach, i.e. the point ri1 s.t.
∫ ri1
γi
1

−fL
i (qi)dqi = kiε. Next,

γi
2 is chosen as before, using ri1 as the left extreme rather
than Ai, and so on, until the final mesh point is computed
with reach ≥ 1 − Bi. This yields an optimal mesh for the
choice of {ki}.

If ki = 1
n , we achieve an optimized adaptive simple

method. If ki =
√
SiDi

∑

j∈V

√
SjDj

, we achieve an adaptive
minsum method. For many problems, this adaptive min-
sum method will be the most efficient.

Integrals are easily computed using (13). To our knowl-
edge, computing optimal points {γi

s} is not possible ana-
lytically, but each may be found with high accuracy in just
a few iterations using a search method, hence total time to
compute the mesh is O(N), which is negligible compared
to solving the subsequent MAP problem.

4 REVISITING THE SECOND
DERIVATIVE APPROACH:
CURVMESH

We shall review and then refine the second derivative ap-
proach used in (Weller and Jebara, 2013a, §5), which we
call curvMesh. Its mesh size (measured by N , the total
number of points summed over the dimensions) grows as
O(ε−1/2) rather than as O(ε−1) in the new first derivative
gradMesh approach. In practice, however, unless ε is very
small, gradMesh is much more efficient (see Figure 2).

As in this paper, the possible location of a global min-
imum q̂ was first bounded in the Bethe box given by
∏

i∈V [Ai, 1 − Bi]. Next an upper bound Λ was derived
on the maximum possible eigenvalue of the Hessian H
of F anywhere within the Bethe box, where it was re-
quired that all edges be attractive. Then a mesh of constant
width in every dimension was introduced s.t. the nearest
mesh point q∗ to q̂ was at most γ away in each dimen-
sion. Hence the +2 distance δ satisfies δ2 ≤ nγ2 and by
Taylor’s theorem, F (q∗) ≤ F (q̂) + 1

2Λδ2. Λ was com-
puted by bounding the maximum magnitude of any ele-
ment of H . Considering Theorem 6, this involves sepa-
rate analysis of diagonalHii terms, which are positive and
were bounded above by the term b; and edge Hij terms,
which are negative for attractive edges, whose magnitude
was bounded above by a. Then Ω was set as max(a, b),
and Σ as the proportion of non-zero entries in H . Finally,
Λ ≤

√

tr(HTH) ≤
√
Σn2Ω2 = nΩ

√
Σ.

4.1 IMPROVED BOUND FOR AN ATTRACTIVE
MODEL

We improve the upper bound for Λ by improving the a
bound for attractive edges to derive ã, a better upper bound
on −Hij . Essentially, a more careful analysis allows a po-

tentially small term in the numerator and denominator to be
canceled before bounding. Writing η̄ = mini∈V ηi(1−ηi),
i.e. the closest that any dimension can come to 0 or 1, the
result is that

−Hij ≤
(

αij

1 + αij

)

/

η̄

(

1−
(

αij

1 + αij

)2
)

(17)

= O(eW (1+∆/2)+T ).

Thus, ã = O(eW (1+∆/2)+T ) which compares favorably
to the earlier bound in Weller and Jebara (2013a) , where
a = O(eW (1+∆)+2T ). Recall b = O(∆eW (1+∆/2)+T )
and Ω = max(a, b), so using the new ã bound, now
Ω = O(∆eW (1+∆/2)+T ). Details and derivations are in
the supplement.

4.2 EXTENDING TO A GENERAL MODEL

Using flipping arguments from §2.3, we are able to extend
the method ofWeller and Jebara (2013a) to apply to general
(non-attractive) models. Interestingly, the bounds derived
for Ω = max(a, b) take exactly the same form as for the
purely attractive case, except that now −W ≤ Wij ≤ W ,
whereas previously it was required that 0 ≤ Wij ≤ W .
Details and derivations are in the supplement.

5 RESULTING MULTI-LABEL MAP

After computing a sufficient mesh, it remains to solve the
multi-label MAP inference problem on a MRF with the
same topology as the initial model, where each qi takes val-
ues inMi. In general, this is NP-hard (Shimony, 1994).

5.1 TRACTABLE CASES

If it happens that all cost functions are submodular (as is al-
ways the case if the initial model is fully attractive by The-
orem 1), then as already noted, it may be solved efficiently
using graph cut methods, which rely on solving a max
flow/min cut problem on a related graph, with worst case
runtime O(N3) (Schlesinger and Flach, 2006; Greig et al.,
1989; Goldberg and Tarjan, 1988). Using the algorithm of
Boykov and Kolmogorov (2004), performance is typically
much faster, sometimes approachingO(N). This submod-
ular setting is the only known class of problem which is
solvable for any topology.

Alternatively, the topological restriction of bounded tree-
width allows tractable inference (Pearl, 1988). Further, un-
der mild assumptions, this was shown to be the only re-
striction which will allow efficient inference for any cost
functions (Chandrasekaran et al., 2008). We note that if
the problem has bounded tree-width, then so too does the
original binary pairwise model, hence exact inference (to
yield the true marginals or the true partition function Z) on



the original model is tractable using the junction tree algo-
rithm, making our approximation result less interesting for
this class. In contrast, although MAP inference is tractable
for any attractive binary pairwise model, marginal infer-
ence and computing Z are not (Jerrum and Sinclair, 1993).

A recent approach reducing MAP inference to identifying
a maximum weight stable set in a derived weighted graph
(Jebara, 2014; Weller and Jebara, 2013b) shows promise,
allowing efficient inference if the derived graph is perfect.
Further, testing if this graph is perfect can be performed in
polynomial time (Jebara, 2014; Chudnovsky et al., 2005).

5.2 INTRACTABLE MAP CASES

Many different methods are available, see Kappes et al.
(2013) for a recent survey. Some, such as dual approaches,
may provide a helpful bound even if the optimum is not
found. Indeed, a LP relaxation will run in polynomial time
and return an upper bound on logZB that may be useful.
A lower bound may be found from any discrete point, and
this may be improved using local search methods.

Note that the Bethe box bounds on each qi ∈ [Ai, 1 − Bi]
are worst case, irrespective of other variables. However,
given a particular value for one or more qj , j ∈ N (i), ei-
ther BBP (Weller and Jebara, 2013a, §6) or MK (Mooij and
Kappen, 2007) can produce better bounds on qi, which may
be helpful for pruning the solution space.

5.2.1 Persistent partial optimization approaches

The multi-label implementation of quadratic pseudo-
Boolean optimization (Kohli et al., 2008, MQPBO), and
the method of Kovtun (2003), are examples of this class.
Both consider LP-relaxations and run in polynomial time.
In our context, the output consists of ranges (which in the
best case could be one point) of settings for some sub-
set of the variables. If any such ranges are returned, the
strong persistence property ensures that any MAP solu-
tion satisfies the ranges. Hence, these may be used to up-
date {Ai, Bi} bounds (padding the discretized range to the
full continuous range covered by the end points if needed),
compute a new, smaller, sufficient mesh and repeat until no
improvement is obtained.

6 EXPERIMENTS

6.1 COMPARISON TO EARLIER WORK

We compared the new mesh construction methods from
this paper with the earlier approach by Weller and Je-
bara (2013a), see Figure 2. We considered two values of
ε: 1 (medium resolution) and 0.1 (fine resolution). For
each value, we generated random MRFs on n variables,
all pairwise connected, where θi ∼ U [−2, 2] and Wij ∼
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Figure 2: Variation in N = sum of number of mesh points in
each dimension, log scale, as: (top) n = number of variables
is changed, keeping W = 5 fixed; (bottom) W = maximum
coupling strength is changed, keeping n = 10 fixed. On the left,
ε = 1 (medium resolution); on the right, ε = 0.1 (fine resolution).
In each case the topology is a complete graph, edge weights are
chosen Wij ∼ U [−W,W ] and θi ∼ U [−2, 2]. Average over
10 random models for each value. curvMeshOrig is the original
method of Weller and Jebara (2013a); curvMeshNew is our re-
finement, see §4; gradMesh is our new first derivative minsum
method, see §3. For more details, see text of §6.1.

U [−W,W ], using the input convention of §2.1.5 We show
results first for fixed W = 5 as n is varied from 3 to 20,
then for fixed n = 10 as W is varied from 1 to 10, gen-
erating 10 random models for each value. Of the various
first derivative gradMesh methods, only minsum is shown
since the others would not be sufficiently distinguishable
on these plots.6

Note that N is shown on a log axis, thus we observe that
the new methods dramatically outperform that of Weller
and Jebara (2013a) by many orders of magnitude for most
cases of interest, even for small ε. Further, recall that
N =

∑

i Ni is the sum of the number of mesh points in
each dimension. The runtime of the overall algorithm is
certainly Ω(N), even for attractive models7, and for gen-
eral models is typically a significantly higher power, thus
further demonstrating the benefit of the new methods.

5The original method of Weller and Jebara (2013a) could only
handle attractive models but we augment it as in §4.2. Plots for
attractive models, whereWij ∼ U [0, W ] are very similar to those
shown.

6In practice, the adaptive methods typically produce a mesh
with about half the number of points in each dimension.

7In our experiments on attractive models, the Boykov-
Kolmogorov algorithm typically runs in time O(N1.5) to
O(N2.5).



6.2 POWER NETWORK

As a first step toward applying our algorithm to explore
the usefulness of the global optimum of the Bethe approx-
imation, here we consider one setting where LBP fails to
converge, yet still we achieve reasonable results.

We aim to predict transformer failures in a power network
(Rudin et al., 2012). Since the real data is sensitive, our
experiments use synthetic data. Let Xi ∈ {0, 1} indicate
if transformer i has failed or not. Each transformer has a
probability of failure on its own which is represented by
a singleton potential θi. However, when connected in a
network, a transformer can propagate its failure to nearby
nodes (as in viral contagion) since the edges in the network
form associative dependencies. We assume that homoge-
neous attractive pairwise potentials couple all transformers
that are connected by an edge, i.e. Wij = W ∀(i, j) ∈ E .
The network topology creates a Markov random field spec-
ifying the distribution p(X1, . . . , Xn). Our goal is to com-
pute the marginal probability of failure of each transformer
within the network (not simply in isolation as in Rudin et al.
(2012)). Since recovering p(Xi) is hard, we estimate Bethe
pseudo-marginals qi = q(Xi = 1) through our algorithm,
which emerge as the argmin when optimizing the Bethe
free energy.

A single simulated sub-network of 55 connected transform-
ers was generated using a random preferential attachment
model, resulting in average degree 2 (see Figure 3 in the
Appendix). Typical settings of θi = −2 and W = 4
were specified (using the inputmodel specification of §2.1).
We attempted to run BP using the libDAI package (Mooij,
2010) but were unable to achieve convergence, even with
multiple initial values, using various sequential or par-
allel settings and with damping. However, running our
gradMesh adaptive minsum algorithm with ε = 1 achieved
reasonable results as shown in Table 1, where true values
were obtained with the junction tree algorithm.

ε = 1 PTAS for logZB Error from true value
Mean +1 error of single marginals 0.003
Log-partition function 0.26

Table 1: Results on simulated power network

It has been suggested that the Bethe approximation is poor
when BP fails to converge (Mooij and Kappen, 2005). Our
new method will allow this to be explored rigorously in
future work. The initial result above is a promising first
step and justifies further investigation.

7 DISCUSSION & FUTURE WORK

To our knowledge, we have derived the first ε-
approximation algorithm for logZB for a general binary
pairwise model. Our approaches are useful in practice, and

much more efficient than the earlier method of Weller and
Jebara (2013a). From experiments run, we note that the ε
bounds for the adaptive minsum first derivative gradMesh
approach appear to be close to tight since we have found
models where the optimum returned when run with ε = 1
is more than 0.5 different to that for ε = 0.1. When applied
to attractive models, we guarantee a FPTAS with no degree
restriction.

As described in §6.2, Bethe pseudo-marginals may be re-
covered from our approach by taking the q∗ that is returned
as the argmin of F over the discrete mesh. However, al-
though F(q∗) is guaranteed within ε of the optimum, there
is no guarantee that q∗ will necessarily be close to a true
Bethe optimum pseudo-marginal. For example, the surface
could be very flat over a wide region, or the true optimum
might be ε2 better at a location far from q∗. We sketch out
how our approach may be used to bound the location of a
global optimum pseudo-marginal, though note that there is
no runtime guarantee. First pick an initial ε1 and run the
main algorithm to find q∗1 . Now use any method to solve
for the second best discretized mesh point q∗2 . If it happens
that F(q∗2) ≥ F(q∗1) + ε1 then, by the nature of the mesh
construction, there must be a global minimum within the
orthotope given by the neighboring mesh points of q∗1 in
each dimension8 and we terminate. On the other hand, if
F(q∗2) < F(q∗1) then we reduce ε, for example to ε12 and
repeat until we’re successful.

Future work includes further reducing the size of the mesh,
considering how it should be selected to simplify the subse-
quent discrete optimization problem, and exploring appli-
cations. Importantly, we now have the opportunity to ex-
amine rigorously the performance of the global Bethe op-
timum. In addition, this will provide a benchmark against
which to compare other (non-global) Bethe approaches that
typically run more quickly, such as LBP or CCCP (Yuille,
2002). Another interesting avenue is to use our algorithm
as a subroutine in a dual decomposition approach to opti-
mize over a tighter relaxation of the marginal polytope.
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APPENDIX: SUPPLEMENTARY MATERIAL FOR APPROXIMATING THE BETHE
PARTITION FUNCTION

Here we provide further details and proofs of several of the results in the main paper, using the original numbering.

4 REVISITING THE SECOND DERIVATIVE APPROACH

4.1 Improved bound for an attractive model

In this section, we improve the upper bound for Λ (the maximum eigenvalue of the Hessian H) by improving the a bound
for attractive edges to derive ã, an improved upper bound on−Hij . Essentially, a more careful analysis allows a potentially
small term in the numerator and denominator to be canceled before bounding.

Using Theorem 6, equation (9) and Lemma 4,

−Hij = (ξij − qiqj)
1

Tij

≤ m(1−M)αij

1 + αij

1

m(1−M)

[

(1−m)M −m(1−M)
(

αij

1+αij

)2
]

=

(

αij

1 + αij

)

1

(1 −m)M −m(1−M)
(

αij

1+αij

)2 (18)

wherem = min(qi, qj),M = max(qi, qj). Now we use the following result.
Lemma 7. For any k ∈ (0, 1), let y = minqi∈[Ai,1−Bi],qj∈[Aj ,1−Bj](1−m)M −m(1−M)k, then

y =







































BiAj − (1 −Bi)(1 −Aj)k if (1−Bi) ≤ Aj i range ≤ j range
(1− k)min{Aj(1 −Aj), Bi(1−Bi)} if Ai ≤ Aj ≤ 1−Bi ≤ 1−Bj ranges overlap, i lower
(1− k)min{Aj(1 −Aj), Bj(1−Bj)} if Ai ≤ Aj ≤ 1−Bj ≤ 1−Bi j range ⊆ i range
(1− k)min{Ai(1−Ai), Bi(1−Bi)} if Aj ≤ Ai ≤ 1−Bi ≤ 1−Bj i range ⊆ j range
(1− k)min{Ai(1−Ai), Bj(1 −Bj)} if Aj ≤ Ai ≤ 1−Bj ≤ 1−Bi ranges overlap, j lower
BjAi − (1 −Bj)(1−Ai)k if (1−Bj) ≤ Ai j range ≤ i range.

Proof. The minimum is achieved by minimizing the larger and maximizing the smaller of qi and qj . The result follows for
cases where their ranges are disjoint. If ranges overlap, then the minimum is achieved at some qi = qj in the overlap, with
value qi(1− qi)(1 − k), which is concave and minimized at an extreme of the overlap range.

Lemma 7 is useful in practice, and should be used to compute ã = max(i,j)∈E of the bound above. To analyze the
theoretical worst case, it is straightforward to see the corollary that y ≥ (1 − k)η̄, where η̄ = mini∈V ηi(1 − ηi). This
bound can be met, for example, if all ranges coincide. Hence, from (18), and with the reasoning for 1

η̄ from Weller and
Jebara (2013a) §5.3, where it is shown that 1

ηi(1−ηi) = O(eT+∆W/2), and using αij = eWij − 1, we obtain

−Hij ≤
(

αij

1 + αij

)

/

η̄

(

1−
(

αij

1 + αij

)2
)

= O(eW (1+∆/2)+T ). (19)

4.2 Extending the second derivative approach to a general (non-attractive) model

Here we extend the analysis of Weller and Jebara (2013a) by considering repulsive edges to show that for a general binary
pairwise model, we can still calculate useful bounds (which turn out to be very similar to the earlier bounds for attractive
models) for a sufficient mesh width.



Our main tool for dealing with a repulsive edge is to flip the variable at one end (see §2.3) to yield an attractive edge, then
we can apply earlier results. We denote the flipped model parameters with a ′. For example, if just variableXj is flipped,
then q′j = q(X ′

j = 1) = q(1−Xj = 1) = 1− qj . Since αij = eWij − 1 and hereW ′
ij = −Wij , the following relationship

holds if one end of an edge is flipped,
α′
ij

1 + α′
ij

=
e−Wij − 1

e−Wij
= 1− eWij = −αij . (20)

Note that, for an attractive edge, α′
ij

1+α′
ij

∈ (0, 1), as is −αij for a repulsive edge. Recall that when we flip some set of
variables, by construction F ′ = F + constant (see §2.3).

The Hessian terms from Theorem 6 still apply. Our goal is to bound the magnitude of each entryHij for a general binary
pairwise model, then the earlier analysis will provide the result. Whereas for a fully attractive model, we assumed a
maximum edge weightW with 0 ≤ Wij ≤ W , now we assume |Wij | ≤ W .

4.2.1 Edge terms

First consider Hij for an edge (i, j) ∈ E . If the edge is attractive, then the earlier analysis holds (it makes no difference
if other edges are attractive or repulsive). If it is repulsive, then Hij > 0. Consider a model where just Xj is flipped.
Hij = ∂2F

∂qi∂qj
= − ∂2F ′

∂q′i∂q
′
j
= −H ′

ij . Hence using (18) and (20), in practice an upper bound may be computed from
Lemma 7 using k = −αij and A′

j = Bj , B′
j = Aj . The theoretical bound for an attractive edge from (19) becomes

Hij ≤ −αij

η̄(1−α2
ij)
. As we should expect from the attractive case, the following result holds.

Lemma 8. For a repulsive edge, 1
1−α2

ij

= O(e−Wij ).

Proof. Let u = −Wij , then αij = e−u − 1 and 1
1−α2

ij

= 1
(1−αij)(1+αij)

= 1
e−u(2−e−u) = O(eu).

Hence, noting that we may flip any neighbors j of i which are adjacent via repulsive edges to obtain 1
ηi(1−ηi) =

O(eT+∆W/2) as before, where now W = max(i,j)∈E |Wij |, we see that for our new second derivative method, just as
in the fully attractive case, ã = O(eW (1+∆/2)+T ).

For comparison interest, we also show how the earlier, worse bound for an attractive edge given in Weller and Jebara
(2013a) may similarly be combined with flipping to provide a worse upper bound for Hij when (i, j) is repulsive. See
Weller and Jebara (2013a) §5.2: considering the proof of Lemma 10 and using (20) from this paper, we see that for a
repulsive edge, the Kij minimum bound for Tij becomes Kij = ηiηj(1 − ηi)(1 − ηj)(1 − α2

ij); then from Weller and
Jebara (2013a) Theorem 11, the equivalent bound is Hij ≤ −αij

4Kij
which gives a = O(eW (1+∆)+2T ) as it was for the fully

attractive case.

We provide a further interesting result, deriving a lower bound for ξij for a repulsive edge.
Lemma 9 (Lower bound for ξij for a repulsive edge, analogue of Lemma 4). For any repulsive edge (i, j),
qiqj − ξij ≤ −αijpij where pij = min{qiqj , (1− qi)(1− qj)}.

Proof. Consider a model where just variable Xj is flipped, and let all new quantities be designated by the symbol ′.
Consider the joint pseudo-marginal (2). In the new model the columns are switched since µ′

ij(a, b) = q(X ′
i = a,X ′

j =
b) = q(Xi = a,Xj = 1− b) = µij(a, 1− b), hence

µ′
ij =

(

1 + ξ′ij − q′i − q′j q′j − ξ′ij
q′i − ξ′ij ξ′ij

)

=

(

qj − ξij 1 + ξij − qi − qj
ξij qi − ξij

)

. (21)

Applying Lemma 4 to the new model, ξ′ij − q′iq
′
j ≤

α′
ij

1+α′
ij
m′(1−M ′). Substituting in ξ′ij = qi − ξij from (21) and using

(20), we have (qi− ξij)− qi(1− qj) ≤ −αijm′(1−M ′). Sincem′ = min{qi, 1− qj} andM ′ = max{qi, 1− qj}, noting
qi ≤ 1− qj ⇔ qi + qj ≤ 1 ⇔ qiqj ≤ (1− qi)(1− qj), the result follows.

Hence for a repulsive edge (i, j), using (9), we have

Tij = qiqj(1− qi)(1− qj)− (ξij − qiqj)
2 ≥ pijPij − α2

ijp
2
ij ,

where Pij = max{qiqj , (1− qi)(1− qj)}.



4.2.2 Diagonal terms

Consider theHii terms from Theorem 6, which is true for a general model. If all neighbors ofXi are adjacent via attractive

edges, then, as in Weller and Jebara (2013a) Theorem 11,Hii ≤ 1
ηi(1−ηi)

(

1− di +
∑

j∈N (i)
1

1−
(

αij
1+αij

)2

)

.

If any neighbors are connected to Xi by a repulsive edge, then consider a new model where those neighbors are flipped,
so now all edges incident to Xi are attractive, and designate the new model parameters with a ′. As before, observe
F = F ′ + constant, henceHii =

∂2F
∂q2i

= ∂2F ′

∂q′2i
= H ′

ii. Using (20) we obtain that for a general model,

Hii ≤
1

ηi(1− ηi)






1− di +

∑

j∈N (i):Wij>0

1

1−
(

αij

1+αij

)2 +
∑

j∈N (i):Wij<0

1

1− α2
ij






. (22)

Similarly to the analysis in §4.2.1, using Lemma 8 gives that for a general model, b = maxi∈V Hii = O(∆eW (1+∆/2)+T ),
just as for a fully attractive model, where nowW = max |Wij |.

6.2 POWER NETWORK

Here we show the simulated sub-network used in the experiment.
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Figure 3: Sub-network used for the experiment described in the main text §6.2.


