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Abstract. The eigenspectrum of a graph Laplacian encodes smooth-
ness information over the graph. A natural approach to learning involves
transforming the spectrum of a graph Laplacian to obtain a kernel. While
manual exploration of the spectrum is conceivable, non-parametric learn-
ing methods that adjust the Laplacian’s spectrum promise better perfor-
mance. For instance, adjusting the graph Laplacian using kernel target
alignment (KTA) yields better performance when an SVM is trained on
the resulting kernel. KTA relies on a simple surrogate criterion to choose
the kernel; the obtained kernel is then fed to a large margin classification
algorithm. In this paper, we propose novel formulations that jointly opti-
mize relative margin and the spectrum of a kernel defined via Laplacian
eigenmaps. The large relative margin case is in fact a strict generaliza-
tion of the large margin case. The proposed methods show significant
empirical advantage over numerous other competing methods.

Keywords: relative margin machine, graph Laplacian, kernel learning,
transduction

1 Introduction

This paper considers the transductive learning problem where a set of labeled
examples is accompanied with unlabeled examples whose labels are to be pre-
dicted by an algorithm. Due to the availability of additional information in the
unlabeled data, both the labeled and unlabeled examples will be utilized to es-
timate a kernel matrix which can then be fed into a learning algorithm such
as the support vector machine (SVM). One particularly successful approach for
estimating such a kernel matrix is by transforming the spectrum of the graph
Laplacian [8]. A kernel can be constructed from the eigenvectors corresponding
to the smallest eigenvalues of a Laplacian to maintain smoothness on the graph.
In fact, the diffusion kernel [5] and the Gaussian field kernel [12] are based on
such an approach and explore smooth variations of the Laplacian via specific
parametric forms. In addition, a number of other transformations are described
in [8] for exploring smooth functions on the graph. Through the controlled vari-
ation of the spectrum of the Laplacian, a family of allowable kernels can be
explored in an attempt to improve classification accuracy. Further, Zhang &
Ando [10] provide generalization analysis for spectral kernel design.
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Kernel target alignment (KTA for short) [3] is a criterion for evaluating a
kernel based on the labels. It was initially proposed as a method to choose a
kernel from a family of candidates such that the Frobenius norm of the differ-
ence between a label matrix and the kernel matrix is minimized. The technique
estimates a kernel independently of the final learning algorithm that will be uti-
lized for classification. Recently, such a method was proposed to transform the
spectrum of a graph Laplacian [11] to select from a general family of candidate
kernels. Instead of relying on parametric methods for exploring a family of ker-
nels (such as the scalar parameter in a diffusion or Gaussian field kernel), Zhu
et al. [11] suggest a more general approach which yields a kernel matrix non-
parametrically that aligns well with an ideal kernel (obtained from the labeled
examples).

In this paper, we propose novel quadratically constrained quadratic programs
to jointly learn the spectrum of a Laplacian with a large margin classifier. The
motivation for large margin spectrum transformation is straightforward. In ker-
nel target alignment, a simpler surrogate criterion is first optimized to obtain a
kernel by transforming the graph Laplacian. Then, the kernel obtained is fed to
a classifier such as an SVM. This is a two-step process with a different objective
function in each step. It is more natural to transform the Laplacian spectrum
jointly with the classification criterion in the first place rather than using a
surrogate criterion to learn the kernel.

Recently, another discriminative criterion that generalizes large absolute mar-
gin has been proposed. The large relative margin [7] criterion measures the mar-
gin relative to the spread of the data rather than treating it as an absolute
quantity. The key distinction is that large relative margin jointly maximizes the
margin while controlling or minimizing the spread of the data. Relative margin
machines (RMM) implement such a discriminative criterion through additional
linear constraints that control the spread of the projections. In this paper, we
consider this aggressive classification criterion which can potentially improve
over the KTA approach. Since large absolute margin and large relative margin
criteria are more directly tied to classification accuracy and have generaliza-
tion guarantees, they potentially could identify better choices of kernels from
the family of admissible kernels. In particular, the family of kernels spanned by
spectral manipulations of the Laplacian will be considered. Since the RMM is
more general compared to SVM, by proposing a large relative margin spectrum
learning, we encompass large margin spectrum learning as a special case.

1.1 Setup and notation

In this paper we assume that a set of labeled examples (xi, yi)
l
i=1 and an un-

labeled set (xi)
n
i=l+1 are given such that xi ∈ R

m and yi ∈ {±1}. We denote

by y ∈ R
l the vector whose ith entry is yi and by Y ∈ R

l×l a diagonal matrix
such that Yii = yi. The primary aim is to obtain predictions on the unlabeled
examples; we are thus in a so-called transductive setup. However, the unlabeled
examples can be also be utilized in the learning process.
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Assume we are given a graph with adjacency matrix W ∈ R
n×n where the

weight Wij denotes the edge weight between nodes i and j (corresponding to the
examples xi and xj). Define the graph Laplacian as L = D−W where D denotes
a diagonal matrix whose ith entry is given by the sum of the ith row of W. We
assume that L =

∑n

i=1
θiφiφ

⊤
i is the eigendecomposition of L. It is assumed

that the eigenvalues are already arranged such that θi ≤ θi+1 for all i. Further,
we let V ∈ R

n×q be the matrix whose ith column is the (i + 1)th eigenvector
(corresponding to the (i + 1)th smallest eigenvalue) of L. Note that the first
eigenvector (corresponding to the smallest eigenvalue) has been deliberately left
out from this definition. Further, U ∈ R

n×q is defined to be the matrix whose ith

column is the ith eigenvector. vi (ui) denotes the ith column of V⊤ (U⊤). For any
eigenvector (such as φ,u or v), we use the horizontal overbar (such as φ̄, ū or v̄)
to denote the subvector containing only the first l elements of the eigenvector,
in other words, only the entries that correspond to the labeled examples. We
overload this notation for matrices as well; thus V̄ ∈ R

l×q (Ū ∈ R
l×q) denotes

1 the first l rows of V (U). ∆ is assumed to be a q × q diagonal matrix whose
diagonal elements denote scalar values δi (i.e., ∆ii = δi). Finally 0 and 1 denote
vectors of all zeros and all ones; their dimensionality can be inferred from the
context.

2 Learning from the graph Laplacian

The graph Laplacian has been particularly popular in transductive learning.
While we can hardly do justice to all the literature, this section summarizes
some of the most relevant previous approaches.

Spectral Graph Transducer The spectral graph transducer [4] is a transductive
learning method based on a relaxation of the combinatorial graph-cut problem.
It obtains predictions on labeled and unlabeled examples by solving for h ∈ R

n

via the following problem:

min
h∈Rn

1

2
h⊤VQV⊤h + C(h − τ )⊤P(h − τ ) s.t. h⊤1 = 0, h⊤h = n (1)

where P is a diagonal matrix2 with Pii = 1

l+
( 1

l−
) if the ith example is positive

(negative); Pii = 0 for unlabeled examples (i.e., for l +1 ≤ i ≤ n). Further, Q is
also a diagonal matrix. Typically, the diagonal element Qii is set to i2 [4]. τ is
a vector in which the values corresponding to the positive (negative) examples

are set to
√

l−
l+

(
√

l+
l−

).

Non-parametric transformations via kernel target alignment (KTA) In [11], a
successful approach to learning a kernel was proposed which involved trans-
forming the spectrum of a Laplacian in a non-parametric way. The empirical

1 We clarify that V̄⊤ (Ū⊤) denotes the transpose of V̄ (Ū).
2

l+(l−) is the number of positive (negative) labeled examples.
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alignment between two kernel matrices K1 and K2 is defined as [3]:

Â(K1,K2) :=
〈K1,K2〉F

√

〈K1,K1〉F 〈K2,K2〉F
.

When the target y (the vector formed by concatenating yi’s) is known, the ideal
kernel matrix is yy⊤ and a kernel matrix K can be learned by maximizing the
alignment Â(K̄,yy⊤). The kernel target alignment approach [11] learns a kernel
via the following formulation:3

max
∆

Â(Ū∆Ū⊤,yy⊤) (2)

s.t. trace(U∆U⊤) = 1 δi ≥ δi+1 ∀2 ≤ i ≤ q − 1, δq ≥ 0, δ1 ≥ 0.

The above optimization problem transforms the spectrum of the given graph
Laplacian L while maximizing the alignment score of the labeled part of the
kernel matrix (Ū∆Ū⊤) with the observed labels. The trace constraint on the
overall kernel matrix (U∆U⊤) is used merely to control the arbitrary scaling.
The above formulation can be posed as a quadratically constrained quadratic
program (QCQP) that can be solved efficiently [11]. The ordering on the δ’s is
in reverse order as that of the eigenvalues of L which amounts to monotonically
inverting the spectrum of the graph Laplacian L. Only the first q eigenvectors
are considered in the formulation above due to computational considerations.

The eigenvector φ1 is made up of a constant element. Thus, it merely amounts
to adding a constant to all the elements of the kernel matrix. Therefore, the
weight on this vector (i.e. δ1) is allowed to vary freely. Finally, note that the φ’s
are the eigenvectors of L so the trace constraint on U∆U⊤ merely corresponds
to the constraint

∑q

i=1
δi = 1 since U⊤U = I.

Parametric transformations A number of methods have been proposed to ob-
tain a kernel from the graph Laplacian. These methods essentially compute the
Laplacian over labeled and unlabeled data and transform its spectrum with a
particular mapping. More precisely, a kernel is built as K =

∑n

i=1
r(θi)φiφ

⊤
i

where r(·) is a monotonically decreasing function. Thus, an eigenvector with a
small eigenvalue will have a large weight in the kernel matrix. Several methods
fall into this category. For example, the diffusion kernel [5] is obtained by the
transformation r(θ) = exp(−θ/σ2) and the Gaussian field kernel [12] uses the
transformation r(θ) = 1

σ2+θ
. In fact, kernel PCA [6] also performs a similar

operation. In kPCA, we retain the top k eigenvectors of a kernel matrix. From
an equivalence that exists between the kernel matrix and the graph Laplacian
(shown in the next section), we can in fact conclude that kernel PCA features
also fall under the same family of monotonic transformations. While these are
very interesting transformations, [11] showed that KTA and learning based ap-
proaches are empirically superior to parametric transformations so we will not
elaborate further on these approaches but rather focus on learning the spectrum
of a graph Laplacian.

3 In fact, [11] proposes two formulations, we are considering the one that was shown
to have superior performance (the so-called improved order method).
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3 Why learn the Laplacian spectrum?

We start with an optimization problem which is closely related to the spectral
graph transducer (1). The main difference is in the choice of the loss function.
Consider the following optimization problem:

min
h∈Rn

1

2
h⊤VQV⊤h + C

l
∑

i=1

max(0, 1 − yihi), (3)

where Q is assumed to be an invertible diagonal matrix to avoid degeneracies.4

The values on the diagonal of Q depend on the particular choice of the kernel.
The above optimization problem is essentially learning the predictions on all the
examples by minimizing the so-called hinge loss and the regularization defined
by the eigenspace of the graph Laplacian. The choice of the above formulation is
due to its relation to the large margin learning framework given by the following
theorem.

Theorem 1. The optimization problem (3) is equivalent to

min
w,b

1

2
w⊤w + C

l
∑

i=1

max(0, 1 − yi(w
⊤Q− 1

2 vi + b)). (4)

Proof. The predictions on all the examples (without the bias term) for the

optimization problem (4) are given by f = VQ− 1
2 w. Therefore Q

1
2 V⊤f =

Q
1
2 V⊤VQ− 1

2 w = w since V⊤V = I. Substituting this expression for w in
(4), the optimization problem becomes,

min
f ,b

1

2
f⊤VQV⊤f + C

l
∑

i=1

max(0, 1 − yi(fi + b)).

Let h = f + b1 and consider the first term in the objective above,

(h − b1)⊤VQV⊤(h− b1)

=h⊤VQV⊤h + 2h⊤VQV⊤1 + 1⊤VQV⊤1 = h⊤VQV⊤h,

where we have used the fact that V⊤1 = 0 since the eigenvectors in V are
orthogonal to 1. This is because 1 is always an eigenvector of L and other
eigenvectors are orthogonal to it. Thus, the optimization problem (3) follows.

⊓⊔

The above theorem5 thus implies that learning predictions with Laplacian
regularization in (3) is equivalent to learning in a large margin setting (4). It

4 In practice, Q can be non-invertible, but we consider an invertible Q to elucidate
the main point.

5 Although we excluded φ1 in the definition of V in these derivation, typically we
would include it in practice and allow the weight on it to vary freely as in the kernel
target alignment approach. However, experiments show that the algorithms typically
choose a negligible weight on this eigenvector.
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is easy to see that the implicit kernel for the learning algorithm (4) (over both
labeled and unlabeled examples) is given by VQ−1V⊤. Thus, computing pre-
dictions on all examples with VQV⊤ as the regularizer in (3) is equivalent to
large margin learning with the kernel obtained by inverting the spectrum Q.
However, it is not clear why inverting the spectrum of a Laplacian is the right
choice for a kernel. The parametric methods presented in the previous section
construct this kernel by exploring specific parametric forms. On the other hand,
the kernel target alignment approach constructs this kernel by maximizing align-
ment with labels while maintaining an ordering on the spectrum. The spectral
graph transducer in Section 2 uses6 the transformation i2 on the Laplacian for
regularization. In this paper, we explore a family of transformations and allow
the algorithm to choose the one that best conforms to a large (relative) margin
criterion. Instead of relying on parametric forms or using a surrogate criteria,
this paper presents approaches that jointly obtain a transformation and a large
margin classifier.

4 Relative margin machines

Relative margin machines (RMM) [7] measure the margin relative to the data
spread; this approach has yielded significant improvement over SVMs and has
enjoyed theoretical guarantees as well. In its primal form, the RMM solves the
following optimization problem:7

min
w,b,ξ

1

2
w⊤w + C

l
∑

i=1

ξi (5)

s.t. yi(w
⊤xi + b) ≥ 1 − ξi, ξi ≥ 0, |w⊤xi + b| ≤ B ∀1 ≤ i ≤ l.

Note that when B = ∞, the above formulation gives back the support vector
machine formulation. For values of B below a threshold, the RMM gives solutions
that differ from SVM solutions. The dual of the above optimization problem can
be shown to be:

max
α,β,η

−
1

2
γ⊤X⊤Xγ + α⊤1− B

(

β⊤1 + η⊤1
)

(6)

s.t. α⊤y − β⊤1 + η⊤1 = 0, 0 ≤ α ≤ C1, β ≥ 0, η ≥ 0.

In the dual, we have defined γ := Yα − β + η for brevity. Note that α ∈ R
l,

β ∈ R
l and η ∈ R

l are the Lagrange multipliers corresponding to the constraints
in (5).

6 Strictly speaking, the spectral graph transducer has additional constraints and a
different motivation.

7 The constraint |w⊤xi + b| ≤ B is typically implemented as two linear constraints.
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4.1 RMM on Laplacian eigenmaps

Based on the motivation from earlier sections, we consider the problem of jointly
learning a classifier and weights on various eigenvectors in the RMM setup. We
restrict the family of weights to be the same as that in (2) in the following
problem:

min
w,b,ξ,∆

1

2
w⊤w + C

l
∑

i=1

ξi (7)

s.t. yi(w
⊤∆

1
2 ui + b) ≥ 1 − ξi, ξi ≥ 0 ∀1 ≤ i ≤ l

|w⊤∆
1
2 ui + b| ≤ B ∀1 ≤ i ≤ l

δi ≥ δi+1 ∀2 ≤ i ≤ q − 1, δ1 ≥ 0, δq ≥ 0,

trace(U∆U⊤) = 1.

By writing the dual of the above problem over w, b and ξ, we get:

min
∆

max
α,β,η

−
1

2
γ⊤Ū∆Ū⊤γ + α⊤1− B

(

β⊤1 + η⊤1
)

(8)

s.t. α⊤y − β⊤1 + η⊤1 = 0, 0 ≤ α ≤ C1, β ≥ 0, η ≥ 0,

δi ≥ δi+1 ∀2 ≤ i ≤ q − 1, δ1 ≥ 0, δq ≥ 0,

q
∑

i=1

δi = 1.

where we exploited the fact that trace(U∆U⊤) =
∑q

i=1
δi. Clearly, the above

optimization problem, without the ordering constraints (i.e., δi ≥ δi+1) is sim-
ply the multiple kernel learning8 problem (using the RMM criterion instead of
the standard SVM). A straightforward derivation–following the approach of [1]–
results in the corresponding multiple kernel learning optimization. Even though
the optimization problem (8) without the ordering on δ’s is a more general
problem, it may not produce smooth predictions over the entire graph. This
is because, with a small number of labeled examples (i.e., small l), it is un-
likely that multiple kernel learning will maintain the spectrum ordering unless
it is explicitly enforced. In fact, this phenomenon can frequently be observed in
our experiments where multiple kernel learning fails to maintain a meaningful
ordering on the spectrum.

5 STORM and STOAM

This section poses the optimization problem (8) in a more canonical form to
obtain practical large-margin (denoted by STOAM) and large-relative-margin
(denoted by STORM) implementations. These implementations achieve globally
optimal joint estimates of the kernel and the classifier of interest. First, the min

8 In this paper, we restrict our attention to convex combination multiple kernel learn-
ing algorithms.
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and the max in (8) can be interchanged since the objective is concave in ∆ and
convex in α, β and η and both are strictly feasible [2]9. Thus, we can write:

max
α,β,η

min
∆

−
1

2
γ⊤

q
∑

i=1

δiūiū
⊤
i γ + α⊤1− B

(

β⊤1 + η⊤1
)

(9)

s.t. α⊤y − β⊤1 + η⊤1 = 0,

0 ≤ α ≤ C1, β ≥ 0, η ≥ 0,

δi ≥ δi+1 ∀2 ≤ i ≤ q − 1, δ1 ≥ 0, δq ≥ 0,

q
∑

i=1

δi = 1.

5.1 An unsuccessful attempt

We first discuss a naive attempt to simplify the optimization that is not fruitful.
Consider the inner optimization over ∆ in the above optimization problem (9):

min
∆

−
1

2

q
∑

i=1

δiγ
⊤ūiū

⊤
i γ (10)

s.t. δi ≥ δi+1 ∀2 ≤ i ≤ q − 1, δ1 ≥ 0, δq ≥ 0,

q
∑

i=1

δi = 1.

Lemma 1. The dual of the above formulation is:

max
τ,λ

− τ s.t.
1

2
γ⊤ūiū

⊤
i γ = λi−1 − λi + τ, λi ≥ 0 ∀1 ≤ i ≤ q.

where λ0 = 0 is a dummy variable.

Proof. Start by writing the Lagrangian of the optimization problem:

L = −
1

2

q
∑

i=1

δiγ
⊤ūiū

⊤
i γ −

q−1
∑

i=2

λi(δi − δi+1) − λqδq − λ1δ1 + τ(

q
∑

i=1

δi − 1),

where λi ≥ 0 and τ are Lagrange multipliers. The dual follows after differenti-
ating L with respect to δi and equating the resulting expression to zero. ⊓⊔

Caveat While the above dual is independent of δ’s, the constraints 1

2
γ⊤ūiū

⊤
i γ =

λi−1 −λi + τ involve a quadratic term in an equality. It is not possible to simply
leave out λi to make this constraint an inequality since the same λi occurs
in two equations. This is non-convex in γ and is problematic since, after all,
we eventually want an optimization problem that is jointly convex in γ and the
other variables. Thus, a reformulation is necessary to pose relative margin kernel
learning as a jointly convex optimization problem.

9 It is trivial to construct such α, β, η and ∆ when not all the labels are the same.
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5.2 A refined approach

We proceed by instead considering the following optimization problem:

min
∆

−
1

2

q
∑

i=1

δiγ
⊤ūiū

⊤
i γ (11)

s.t. δi − δi+1 ≥ ǫ ∀2 ≤ i ≤ q − 1, δ1 ≥ ǫ, δq ≥ ǫ,

q
∑

i=1

δi = 1

where we still maintain the ordering of the eigenvalues but require that they
are separated by at least ǫ. Note that ǫ > 0 is not like other typical machine
learning algorithm parameters (such as the parameter C in SVMs), since it can
be arbitrarily small. The only requirement here is that ǫ remains positive. Thus,
we are not really adding an extra parameter to the algorithm in posing it as a
QCQP. The following theorem shows that a change of variables can be done in
the above optimization problem so that its dual is in a particularly convenient
form; note, however, that directly deriving the dual of (11) fails to give the desired
property and form.

Theorem 2. The dual of the optimization problem (11) is:

max
λ≥0,τ

− τ + ǫ

q
∑

i=1

λi (12)

s.t.
1

2
γ⊤

i
∑

j=2

ūjū
⊤
j γ = τ(i − 1) − λi ∀2 ≤ i ≤ q

1

2
γ⊤ū1ū

⊤
1 γ = τ − λ1.

Proof. Start with the following change of variables:

κi :=







δ1 for i = 1,
δi − δi+1 for 2 ≤ i ≤ q − 1,
δq for i = q.

This gives:

δi =

{

κ1 for i = 1,
∑q

j=i κj for 2 ≤ i ≤ q.
(13)

Thus, (11) can be stated as,

min
κ

−
1

2

q
∑

i=2

q
∑

j=i

κjγ
⊤ūiū

⊤
i γ + κ1γ

⊤ū1ū
⊤
1 γ (14)

s.t. κi ≥ ǫ ∀1 ≤ i ≤ q, and

q
∑

i=2

q
∑

j=i

κj + κ1 = 1.
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Consider simplifying the following term within the above formulation:

q
∑

i=2

q
∑

j=i

κjγ
⊤ūiū

⊤
i γ =

q
∑

i=2

κi

i
∑

j=2

γ⊤ūjū
⊤
j γ and

q
∑

i=2

q
∑

j=i

κj =

q
∑

i=2

(i − 1)κi.

It is now straightforward to write the Lagrangian to obtain the dual. ⊓⊔

Even though the above optimization appears to have non-convexity prob-
lems mentioned after Lemma 1, these can be avoided. This is facilitated by the
following helpful property.

Lemma 2. For ǫ > 0, all the inequality constraints are active at the optimum
of the following optimization problem:

max
λ≥0,τ

− τ + ǫ

q
∑

i=1

λi (15)

s.t.
1

2
γ⊤

i
∑

j=2

ūjū
⊤
j γ ≤ τ(i − 1) − λi ∀2 ≤ i ≤ q

1

2
γ⊤ū1ū

⊤
1 γ ≤ τ − λ1.

Proof. Assume that λ∗ is the optimum for the above problem and constraint i
(corresponding to λi) is not active. Then, clearly, the objective can be further
maximized by increasing λ∗

i . This contradicts the fact that λ∗ is the optimum.
⊓⊔

In fact, it is not hard to show that the Lagrange multipliers of the constraints
in problem (15) are equal to the κi’s. Thus, replacing the inner optimization
over δ’s in (9), by (15), we get the following optimization problem, which we call
STORM (Spectrum Transformations that Optimize the Relative Margin):

max
α,β,η,λ,τ

α⊤1− τ + ǫ

q
∑

i=1

λi − B
(

β⊤1 + η⊤1
)

(16)

s.t.
1

2
(Yα − β + η)⊤

i
∑

j=2

ūjū
⊤
j (Yα − β + η) ≤ (i − 1)τ − λi ∀2 ≤ i ≤ q

1

2
(Yα − β + η)⊤ū1ū

⊤
1 (Yα − β + η) ≤ τ − λ1

α⊤y − β⊤1 + η⊤1 = 0, 0 ≤ α ≤ C1, β ≥ 0, η ≥ 0, λ ≥ 0.

The above optimization problem has a linear objective with quadratic con-
straints. This equation now falls into the well-known family of quadratically
constrained quadratic optimization (QCQP) problems whose solution is straight-
forward in practice. Thus, we have proposed a novel QCQP for large relative
margin spectrum learning. Since the relative margin machine is strictly more
general than the support vector machine, we obtain STOAM (Spectrum Trans-
formations that Optimize the Absolute Margin) by simply setting B = ∞.
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Obtaining δ values Interior point methods obtain both primal and dual solutions
of an optimization problem simultaneously. We can use equation (13) to obtain
the weight on each eigenvector to construct the kernel.

Computational complexity STORM is a standard QCQP with q quadratic con-
straints of dimensionality l. This can be solved in time O(ql3) with an interior
point solver. We point out that, typically, the number of labeled examples l is
much smaller than the total number of examples (which is n). Moreover, q is
typically a fixed constant. Thus the runtime of the proposed QCQP compares
favorably with the O(n3) time for the initial eigendecomposition of L which is
required for all the spectral methods described in this paper.

6 Experiments

To study the empirical performance of STORM and STOAM with respect to pre-
vious work, we performed experiments on both text and digit classification prob-
lems. Five binary classification problems were chosen from the 20-newsgroups
text dataset (separating categories like baseball-hockey (b-h), pc-mac (p-m),
religion-atheism (r-a), windows-xwindows (w-x), and politics.mideast-politics.misc
(m-m)). Similarly, five different problems were considered from the MNIST
dataset (separating digits 0-9, 1-2, 3-8, 4-7, and 5-6). One thousand randomly
sampled examples were used for each task.

A mutual nearest neighbor graph was first constructed using five nearest
neighbors and then the graph Laplacian was computed. The elements of the
weight matrix W were all binary. In the case of MNIST digits, raw pixel values
(note that each feature was normalized to zero-mean and unit variance) were
used as features. For digits, nearest neighbors were determined by Euclidean
distance, whereas, for text, the cosine similarity and tf-idf was used. In the
experiments, the number of eigenvalues q was set to 200. This was a uniform
choice for all methods which would not yield any unfair advantages for one
approach over any other. In the case of STORM and STOAM, ǫ was set to a
negligible value of 10−6.

The entire dataset was randomly divided into labeled and unlabeled exam-
ples. The number of labeled examples was varied in steps of 20; the rest of the
examples served as the test examples (as well as the unlabeled examples in graph
construction). We then ran KTA to obtain a kernel; the estimated kernel was
then fed into an SVM (this was referred to as KTA-S in the Tables) as well as to
an RMM (referred to as KTA-R). To get an idea of the extent to which the order-
ing constraints matter, we also ran multiple kernel learning optimization which
are similar to STOAM and STORM but without any ordering constraints. We
refer to the multiple kernel learning with the SVM objective as MKL-S and with
the RMM objective as MKL-R. We also included the spectral graph transducer
(SGT) and the approach of [9] (described in the Appendix) in the experiments.
Predictions on all the unlabeled examples were obtained for all the methods.
Error rates were evaluated on the unlabeled examples. Twenty such runs were
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done for various values of hyper-parameters (such as C,B) for all the methods.
The values of the hyper-parameters that resulted in minimum average error rate
over unlabeled examples were selected for all the approaches. Once the hyper-
parameter values were fixed, the entire dataset was again divided into labeled
and unlabeled examples. Training was then done but with fixed values of various
hyper-parameters. Error rates on unlabeled examples were then obtained for all
the methods over hundred runs of random splits of the dataset.

DATA l [9] MKL-S MKL-R SGT KTA-S KTA-R STOAM STORM

r-a

30 44.89±5.2 37.14±5.6 37.14±5.6 19.46±1.4 22.98±4.8 22.99±4.8 25.81±6.1 25.81±6.1

50 42.18±3.8 29.93±5.1 30.01±5.2 18.92±1.1 19.87±3.1 19.87±3.1 21.49±4.0 21.49±4.0

70 40.15±2.5 25.18±4.4 25.43±4.3 18.44±1.0 18.30±2.4 18.30±2.4 18.48±3.1 18.48±3.1

90 38.86±2.5 22.33±3.3 22.67±3.3 18.22±0.9 17.32±1.5 17.32±1.5 17.21±1.8 17.23±1.9

110 37.74±2.3 20.43±2.4 20.41±2.4 18.10±1.0 16.46±1.3 16.46±1.3 16.40±1.2 16.41±1.2

w-m

30 46.98±2.4 22.74±8.7 22.74±8.7 41.88±8.5 16.03±8.8 16.08±8.8 14.26±5.9 14.26±5.9

50 45.47±3.5 15.08±3.8 15.08±3.8 35.63±9.3 13.54±3.4 13.56±3.4 11.49±3.4 11.52±3.4

70 43.62±4.0 13.03±1.6 13.04±1.6 29.03±7.8 12.75±4.8 12.89±5.0 10.72±0.9 10.76±1.0

90 42.85±3.6 12.20±1.6 12.20±1.6 22.55±6.3 11.30±1.5 11.41±1.7 10.43±0.6 10.43±0.6

110 41.91±3.8 11.84±1.0 11.85±1.0 18.16±5.0 10.87±1.4 10.99±1.7 10.31±0.6 10.28±0.6

p-m

30 46.48±2.7 41.21±4.9 40.99±5.0 39.58±3.8 28.00±5.8 28.05±5.8 30.58±6.6 30.58±6.6

50 44.08±3.5 35.98±5.3 35.94±4.9 37.46±3.8 24.34±4.8 24.34±4.8 25.72±4.6 25.72±4.6

70 42.05±3.5 31.48±4.6 31.18±4.3 35.52±3.4 22.14±3.6 22.14±3.6 22.33±4.9 22.33±4.9

90 39.54±3.2 28.15±3.8 28.30±3.8 33.57±3.4 20.58±2.8 20.59±2.7 20.44±3.0 20.77±3.2

110 38.10±3.2 25.88±3.1 26.16±2.9 32.16±3.2 19.53±2.2 19.56±2.2 19.74±2.4 19.70±2.4

b-h

30 47.04±2.1 4.35±0.8 4.35±0.8 3.95±0.2 3.91±0.4 3.80±0.3 3.90±0.3 3.87±0.3

50 46.11±2.2 3.90±0.1 3.91±0.1 3.93±0.2 3.81±0.3 3.80±0.4 3.87±0.3 3.73±0.3

70 45.92±2.4 3.91±0.2 3.90±0.2 3.90±0.2 3.76±0.3 3.76±0.3 3.78±0.3 3.68±0.3

90 45.30±2.5 3.88±0.2 3.89±0.2 3.85±0.3 3.69±0.3 3.67±0.3 3.75±0.3 3.61±0.3

110 44.99±2.6 3.88±0.2 3.88±0.2 3.83±0.3 3.71±0.4 3.66±0.3 3.67±0.3 3.56±0.3

m-m

30 48.11±4.7 12.35±5.2 12.35±5.2 41.30±3.5 7.35±3.6 7.36±3.8 7.60±3.9 6.88±2.9

50 46.36±3.3 7.47±3.1 7.25±2.9 31.18±7.5 6.25±2.8 6.19±2.9 5.45±1.0 5.39±1.2

70 45.31±5.7 6.05±1.3 5.98±1.4 22.30±7.5 5.43±1.0 5.35±1.1 5.20±0.7 4.90±0.6

90 42.52±5.0 5.71±1.0 5.68±1.0 15.39±5.9 5.13±0.9 5.14±1.1 5.09±0.6 4.76±0.6

110 41.94±5.2 5.44±0.7 5.16±0.6 10.96±3.9 4.97±0.8 4.92±0.9 4.95±0.5 4.65±0.5

Table 1. Mean and std. deviation of percentage error rates on text datasets. In each
row, the method with minimum error rate is shown in dark gray. All the other algo-
rithms whose performance is not significantly different from the best (at 5% significance
level by a paired t-test) are shown in light gray.

The results are presented in Table 1 and Table 2. It can be seen that STORM
and STOAM perform much better than all the methods. Results in the two ta-
bles are further summarized in Table 3. It can be seen that both STORM and
STOAM have significant advantages over all the other methods. Moreover, the
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formulation of [9] gives very poor results since the learned spectrum is indepen-
dent of α.

DATA l [9] MKL-S MKL-R SGT KTA-S KTA-R STOAM STORM

0-9

30 46.45±1.5 0.89±0.1 0.89±0.1 0.83±0.1 0.90±0.1 0.90±0.1 0.88±0.1 0.88±0.1

50 45.83±1.9 0.89±0.1 0.90±0.1 0.85±0.1 0.91±0.1 0.91±0.1 0.89±0.1 0.89±0.1

70 45.55±2.0 0.88±0.1 0.87±0.1 0.87±0.1 0.89±0.1 0.93±0.2 0.88±0.1 0.88±0.1

90 45.68±1.6 0.90±0.1 0.85±0.2 0.86±0.1 0.91±0.2 0.91±0.2 0.87±0.1 0.86±0.1

110 45.40±2.0 0.85±0.2 0.90±0.2 0.87±0.1 0.89±0.1 0.89±0.1 0.92±0.3 0.86±0.1

1-2

30 47.22±2.0 3.39±3.3 4.06±5.9 11.81±6.8 2.92±0.6 2.92±0.6 2.88±0.5 2.85±0.4

50 46.02±2.0 2.85±0.5 2.58±0.4 3.57±2.7 2.78±0.4 2.84±0.5 2.80±0.7 2.80±0.7

70 45.56±2.4 2.64±0.3 2.34±0.3 2.72±0.5 2.74±0.3 2.76±0.4 2.61±0.3 2.70±0.3

90 45.00±2.7 2.71±0.3 2.35±0.3 2.60±0.2 2.76±0.3 2.73±0.4 2.70±0.4 2.70±0.3

110 44.97±2.3 2.77±0.3 2.36±0.3 2.61±0.2 2.61±0.6 2.61±0.6 2.51±0.3 2.51±0.3

3-8

30 45.42±3.0 13.02±3.7 12.63±3.6 9.86±0.9 8.54±2.7 7.58±2.2 7.93±2.2 7.68±1.8

50 43.72±3.0 9.54±2.3 9.04±2.2 8.76±0.9 6.93±1.8 6.61±1.6 6.42±1.5 6.37±1.4

70 42.77±3.1 7.98±2.1 7.39±1.7 8.00±0.8 6.31±1.6 6.07±1.4 5.85±1.3 5.85±1.1

90 41.28±3.4 7.02±1.6 6.60±1.3 7.33±0.8 5.69±1.1 5.69±1.1 5.45±1.0 5.40±0.9

110 41.09±3.5 6.56±1.2 6.15±1.0 6.91±0.9 5.35±0.9 5.43±0.9 5.25±0.8 5.24±0.9

4-7

30 44.85±3.5 5.74±3.4 5.54±3.3 5.60±1.2 4.27±1.9 4.09±1.9 3.64±1.4 3.57±1.1

50 43.65±3.3 4.31±1.2 3.97±0.9 4.50±0.5 3.50±0.9 3.40±0.8 3.24±0.7 3.17±0.6

70 44.05±3.3 3.66±0.8 3.31±0.6 4.04±0.4 3.38±0.8 3.23±0.7 3.11±0.6 3.04±0.5

90 42.04±3.3 3.46±0.8 3.13±0.6 3.77±0.4 3.12±0.6 3.00±0.6 2.92±0.5 2.89±0.5

110 41.85±3.1 3.28±0.7 3.00±0.5 3.60±0.4 2.99±0.6 2.98±0.6 2.92±0.5 2.91±0.5

5-6

30 46.75±2.6 5.18±2.7 4.91±3.2 2.49±0.2 3.48±1.3 3.32±1.1 3.19±1.4 2.96±0.9

50 45.98±3.1 3.30±1.3 2.93±0.8 2.46±0.2 2.94±0.7 2.86±0.5 2.73±0.4 2.67±0.4

70 45.75±3.5 2.80±0.5 2.62±0.3 2.49±0.2 2.70±0.4 2.65±0.4 2.63±0.3 2.83±0.6

90 45.19±3.8 2.68±0.3 2.60±0.3 2.49±0.2 2.62±0.4 2.60±0.4 2.60±0.3 2.52±0.4

110 43.59±2.8 2.62±0.3 2.52±0.3 2.51±0.2 2.57±0.4 2.53±0.4 2.55±0.4 2.49±0.4

Table 2. Mean and std. deviation of percentage error rates on digits datasets. In each
row, the method with minimum error rate is shown in dark gray. All the other algo-
rithms whose performance is not significantly different from the best (at 5% significance
level by a paired t-test) are shown in light gray.

To gain further intuition, we visualized the learned spectrum in each prob-
lem to see if the algorithms yield significant differences in spectra. We present
four typical plots in Figure 1. We show the spectra obtained by KTA, STORM
and MKL-R (the difference between the spectra obtained by STOAM (MKL-
S) was much closer to that obtained by STORM (MKL-R) compared to other
methods). Typically KTA puts significantly more weight on the top few eigen-
vectors. By not maintaining the order among the eigenvectors, MKL seems to
put haphazard weights on the eigenvectors. However, STORM is less aggressive
and its eigenspectrum decays at a slower rate. This shows that STORM obtains
a markedly different spectrum compared to KTA and MKL and is recovering a
qualitatively different kernel. It is important to point out that MKL-R (MKL-S)
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solves a more general problem than STORM (STOAM). Thus, it can always
achieve a better objective value compared to STORM (STOAM). However, this
causes over-fitting and the experiments show that the error rate on the unlabeled
examples actually increases when the order of the spectrum is not preserved. In
fact, MKL obtained competitive results in only one case (digits:1-2) which could
be attributed to chance.

[9] MKL-S MKL-R SGT KTA-S KTA-R STOAM STORM

#dark gray 0 1 5 9 5 2 8 22
#light gray 0 1 2 4 8 12 16 13
#total 0 2 7 13 13 14 24 35

Table 3. Summary of results in Tables 1 & 2. For each method, we enumerate the
number of times it performed best (dark gray), the number of times it was not signif-
icantly worse than the best performing method (light gray) and the total number of
times it was either best or not significantly worse from best.

7 Conclusions

We proposed a large relative margin formulation for transforming the eigenspec-
trum of a graph Laplacian. A family of kernels was explored which maintains
smoothness properties on the graph by enforcing an ordering on the eigenvalues
of the kernel matrix. Unlike the previous methods which used two distinct crite-
ria at each phase of the learning process, we demonstrated how jointly optimizing
the spectrum of a Laplacian while learning a classifier can result in improved
performance. The resulting kernels, learned as part of the optimization, showed
improvements on a variety of experiments. The formulation (3) shows that we
can learn predictions as well as the spectrum of a Laplacian jointly by convex
programming. This opens up an interesting direction for further investigation. By
learning weights on an appropriate number of matrices, it is possible to explore
all graph Laplacians. Thus, it seems possible to learn both a graph structure
and a large (relative) margin solution jointly.
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A Approach of Xu et al. [9]

It is important to note that, in a previously published article [9], other authors
attempted to solve a problem related to STOAM. While this section is not
the main focus of our paper, it is helpful to point out that the method in [9]
is completely different from our formulation and contains serious flaws. The
previous approach attempted to learn a kernel of the form K =

∑q
i=1

δiuiu
⊤
i

while maximizing the margin in the SVM dual. They start with the problem
(Equation (13) in [9] but using our notation):

max
0≤α≤C1,α⊤y=0

α⊤1−
1

2
α⊤YKtrYα (17)

s.t δi ≥ wδi+1 ∀1 ≤ i ≤ q − 1, δi ≥ 0, K =

q
∑

i=1

δiuiu
⊤
i , trace(K) = µ

which is the SVM dual with a particular choice of kernel. Here Ktr =
∑q

i=1
δiūiū

⊤
i .

It is assumed that µ, w and C are fixed parameters. The authors discuss op-
timizing the above problem while exploring K by adjusting the δi values. The
authors then claim, without proof, that the following QCQP (Equation (14) of
[9]) can jointly optimize δ’s while learning a classifier:

max
α,δ,ρ

2α⊤1− µρ (18)

s.t. µ =

q
∑

i=1

δiti, 0 ≤ α ≤ C1, α⊤y = 0, δi ≥ 0 ∀1 ≤ i ≤ q

1

ti
α⊤Yūiū

⊤
i Yα ≤ ρ ∀1 ≤ i ≤ q, δi ≥ wδi+1 ∀1 ≤ i ≤ q − 1

where ti are fixed scalar values (whose values are irrelevant in this discussion).
The only constraints on δ’s are: non-negativity, δi ≥ wδi+1, and

∑q
i=1

δiti = µ
where w and µ are fixed parameters. Clearly, in this problem, δ’s can be set
independently of α! Further, since µ is also a fixed constant, δ no longer has any
effect on the objective. Thus, δ’s can be set without affecting either the objec-
tive or the other variables (α and ρ). Therefore, the formulation (18) certainly
does not maximize the margin while learning the spectrum. This conclusion is
further supported by empirical evidence in our experiments. Throughout all the
experiments, the optimization problem proposed by [9] produced extremely weak
results.


