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ABSTRACT

The Sparse Linear Method (Slim) [15] is a well-established approach
for top-N recommendations. This article proposes several improve-
ments that are enabled by the Alternating Directions Method of
Multipliers (ADMM) [3, 8, 9], a well-known optimization method
with many application areas. First, we show that optimizing the
original Slim-objective by ADMM results in an approach where the
training time is independent of the number of users in the training
data, and hence trivially scales to large numbers of users. Second,
the flexibility of ADMM allows us to switch on and off the various
constraints and regularization terms in the original Slim-objective,
in order to empirically assess their contributions to ranking accu-
racy on given data. Third, we also propose two extensions to the
original Slim training-objective in order to improve recommenda-
tion accuracy further without increasing the computational cost. In
our experiments on three well-known data-sets, we first compare
to the original Slim-implementation and find that not only ADMM
reduces training time considerably, but also achieves an improve-
ment in recommendation accuracy due to better optimization. We
then compare to various state-of-the-art approaches and observe
up to 25% improvement in recommendation accuracy in our ex-
periments. Finally, we evaluate the importance of sparsity and the
non-negativity constraint in the original Slim-objective with sub-
sampling experiments that simulate scenarios of cold-starting and
large catalog sizes compared to relatively small user base, which
often occur in practice.
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1 INTRODUCTION

The Sparse Linear Method (Slim) [15] was found to yield compet-
itive top-N recommendation-accuracy in numerous experiments
in the literature. At the same time, it is known that training the
Slimmodel can be computationally expensive. This motivated us to
develop a computationally efficient approach that is geared toward
the scenario where the number of users in the training data can be
very large, while the number of items is moderate (of the order of
10,000 to 100,000). This is a realistic scenario in many real world ap-
plications, like for instance on premium video-streaming web-sites.
Furthermore, this paper sheds light on the contributions of each
individual term in Slim’s training-objective, which is comprised
of several constraints and regularization terms. We also propose
two additions to the original Slim-objective as to improve ranking
accuracy. To this end, we have employed the Alternating Directions
Method of Multipliers (ADMM) [3, 8, 9], a well-known optimiza-
tion method with numerous applications areas. While it has been
applied to related areas (e.g., see [4, 6]), it has not yet been used
for optimizing the Slim-objective for improved recommendations.
We derive the iterative update equations for this model in Section
3, and outline convergence criteria of the approach in Section 6.
The flexibility of ADMM is pivotal, as it enables us to modify the
original Slim-objective by switching on and off as well as modifying
various terms, resulting in several model-variants as outlined in Sec-
tion 5. In our experiments on three well-known publicly available
data-sets in Section 7, we empirically compare the different model-
variants with each other, and identify the modifications that lead to
further improvements. We also make a comparison to various state-
of-the-art models in Section 7, including probabilistic deep learning
approaches, and remarkably find that they are outperformed by
our ADMM-based variants by up to 25% in ranking accuracy on the
largest of the three data-sets used in our experiments. The various
contributions and insights are summarized in Section 8.

2 MODEL DEFINITION

We assume that implicit feedback data are given in the form of
a sparse (typically binary) matrix X ∈ R |U |×|I | , regarding the
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sets of users U and items I; and | · | denotes the size of a set. A
positive value (typically 1) in X indicates that the user interacted
with an item, while a value of 0 indicates that no interaction has
been observed.

The item-item weight-matrix B ∈ R |I |×|I | is comprised of the
model-parameters to be learned. The predicted score Su, j for an
item j ∈ I given a user u ∈ U is defined in our model by the dot
product

Su, j = Xu, · · B ·, j (1)

where Xu, · refers to row u, and B ·, j to column j. The original
optimization problem of Slim was defined in [15] as follows:

min
B

1
2
· ∥X − XB∥2F +

λ2
2

· ∥B∥2F + λ1 · ∥B∥1

s.t. diag(B) = 0
Bi, j ≥ 0 ∀i, j ∈ I (2)

where the matrix of model parameters B is learned by minimizing
the square loss between the dataX and the predicted scores S = XB,
using the elastic net regularization [24] with hyper-parameters λ2
and λ1 (∥·∥F denotes the Frobenius norm and ∥B∥1 =

∑
i, j |Bi, j | the

L1-norm of matrix B). The minimization problem is subject to two
constraints in the Slim-approach: (1) the diagonal of B has to be zero
in order to avoid the trivial solution B = I (where I is the identity
matrix), and (2) all the weights Bi, j have to be non-negative.

3 OPTIMIZATION VIA ADMM

As to solve the optimization problem in Eq. 2, the Slim-paper [15]
as well as follow-up papers [13, 18], took advantage of the fact that
this problem regarding the matrix B decouples into independent
optimization problems, one for each of the n = |I | columns (i.e.,
vectors) B ·, j , due to the identity

∥X − XB∥2F =
∑
j ∈I

| |X ·, j − XB ·, j | |
2
2

Computationally efficient algorithms exist for solving a vector-
valued elastic-net problem, e.g., the so-called LARS-EN algorithm
[7, 24]. However, n = |I | such problems need to be solved, which
can be computationally expensive.

For this reason, we take a different approach in this paper, op-
timizing the entire matrix B at once. This results not only in com-
putational speed-ups in our experiments (see Section 7), but we
also observe improved optimization compared to the original Slim-
implementation [15], as reflected by the increased recommendation
accuracy in Table 2. Moreover, this approach allows one to readily
switch on and off the various constraints and regularization terms
in the original optimization problem (see Eq. 2) – the resulting
insights based on the empirical results are discussed in Section 7.

The key idea of this paper is to use the method of Lagrangian
multipliers (see also [21]), as well as one of its generalizations,
Alternating Directions Method of Multipliers (ADMM). ADMM
was developed in the 1970s in [8, 9], and is summarized in the
recent review article [3]. The original optimization problem in Eq.
2, where B is involved in several functions and constraints, can be
recast in an equivalent optimization problem where the matrix B is
now replaced by two matrices B,C ∈ R |I |×|I | that are constrained

to be equal:

min
B,C

f (B) + д(C)

s.t. B = C (3)

In the formulation of Eq. 3,

f (B) =
1
2
∥X −XB∥2F +

λ2
2
· ∥B∥2F , dom f = {B |diag(B) = 0} (4)

is the objective of a ridge regression problem with a restricted
domain (dom) that absorbs the zero-diagonal constraint, and

д(C) = λ1 · ∥C ∥1, dom д = {C |Ci, j ≥ 0} (5)

is the L1 penalty term with a restricted domain (dom) regarding
the non-negativity constraint.

In ADMM, the equality constraint B = C is absorbed into the
objective function by using the so-called augmented Lagrangian:

Lρ (B,C, Γ) = f (B) + д(C) + ⟨Γ,B −C⟩F +
ρ

2
· ∥B −C ∥2F (6)

where Γ ∈ R |I |×|I | denotes the matrix of Lagrangian multipliers
associated with the constraint B −C = 0, and ρ > 0 is the penalty
parameter that applies to the squared difference between B and C ,
while ⟨Γ,B −C⟩F is the Frobenius inner product of matrices Γ and
B −C . Matrices B and C are called the primal variables, and matrix
Γ the dual variable in ADMM.

ADMM proceeds with iterative update equations that solve the
constrained optimization-problem in Eq. 3. ADMM comes with
several convergence guarantees regarding these iterative updates
(e.g., see [3]), which allow for coordinate descent, i.e., one variable
can be updated at a time, as opposed to a joint update of all variables
at once. At each iterative step k + 1, one may hence update first
matrix B, then matrix C , and finally matrix Γ:1

B(k+1) = argmin
B

Lρ
(
B,C(k ), Γ(k )

)
(7)

C(k+1) = argmin
C

Lρ
(
B(k+1),C, Γ(k )

)
(8)

Γ(k+1) = Γk + ρ ·

(
B(k+1) −C(k+1)

)
(9)

3.1 Update of B
We observe from Eq. 6 that the update of matrix B is not subject
to the L1-norm regularization nor the non-negativity constraint.
Hence, Eq. 7 can be re-written as:

B(k+1) = argmin
B

(
1
2
∥X − XB∥2F +

λ2
2

· ∥B∥2F + γ
⊤diag(B)

+ ⟨Γ(k ),B −C(k )⟩F +
ρ

2
· ∥B −C(k )∥2F

)
(10)

In Eq. 10, we have introduced the vector of Lagrangian multipliers
γ ∈ R |I | in order to absorb the zero-diagonal domain-constraint,
diag(B) = 0, of Eq. 4 in the term γ⊤diag(B). The update of matrix
B can be solved in closed form by setting the derivative of Eq. 10
to zero and rearranging terms (see also [21]). Given the values of

1Note that we use the unscaled notation of ADMM throughout this paper, while the
scaled versionU = Γ/ρ is often used in [3].



C(k ) and Γ(k) obtained at the previous iteration k of ADMM, the
solution for B(k+1) at iteration k + 1 is given by

B(k+1) =
(
X⊤X + (λ2 + ρ)I

)−1 (
X⊤X − Γ(k ) + ρC(k) − diagMat(γ )

)
= B̃(k+1) − P · diagMat(γ ) (11)

where diagMat(γ ) denotes the diagonal matrix with the vector of
Lagrangian multipliers γ on its diagonal, and we defined

P :=
(
X⊤X + (λ2 + ρ) · I

)−1 (12)

B̃(k+1) := P · X⊤X + P ·

(
ρ ·C(k ) − Γ(k)

)
(13)

Note that both P and P · X⊤X can be pre-computed. Also note
that both look like the solution of a ridge-regression problem (with
the difference that the diagonal is additionally loaded with ρ prior
to inversion). Finally, the vector γ of Lagrangian multipliers is
determined by the constraint of the zero diagonal, so that it follows
from Eq. 11:

diag
(
B(k+1)

)
= diag

(
B̃(k+1)

)
− diag(P) ⊙ γ = 0

where ⊙ denotes the elementwise product of the vectors. This yields
the closed-form solution

γ = diag
(
B̃(k+1)

)
⊘ diag(P) (14)

where ⊘ denotes the elementwise division of the two vectors on
the diagonal of the matrices B̃(k+1) and P .

3.2 Update of C
We observe from Eq. 6 that the update of matrix C is only subject
to the L1-norm regularization and the non-negativity constraint.
Hence, it follows from Eq. 8 that

C(k+1) = argmin
C

(
λ1∥C∥1 + ⟨Γ(k ),B(k+1) −C⟩F +

ρ

2
∥B(k+1) −C∥2F

)
(15)

As outlined in [3], the solution forC(k+1) at iteration k + 1 is given
by

C(k+1) =

(
sλ1/ρ

(
B(k+1) +

1
ρ
· Γ(k)

))
+

(16)

where sκ (a) = (a−κ)+−(−a−κ)+ is the soft-thresholding operator
(e.g., see [3]) applied elementwise to matrix B(k+1) + 1

ρ · Γ(k ), while
the function (·)+ preserves all positive values and sets all negative
values to zero.

3.3 Update of Γ

Finally, the update of the dual variable Γ(k+1) at iteration k + 1
is given by Eq. 9 above. Note that the penalty parameter ρ in the
augmented Lagrangian in Eq. 6 plays the role of the step-size in Eq.
9, where the matrix of Lagrangian multipliers Γ is updated. Hence,
the value chosen for the hyper-parameter ρ has a crucial effect on
the speed of convergence of ADMM in practice. This is discussed
in more detail in Section 6.

ALGORITHM 1: ADMM Training in Python 2.7
Input: User-item interaction-matrix X

Regularization parameters lambda1, lambda2 > 0
ADMM penalty parameter rho > 0
Number of ADMM iterations K

Output: Item-item weight-matrix C
# pre-compute
XtX = X.T.dot(X)
diag_indices = numpy.diag_indices(XtX.shape[0])
XtX[diag_indices] += lambda2 + rho
P = numpy.linalg.inv(XtX)
XtX[diag_indices] -= lambda2 + rho
B_aux = P.dot(XtX)
# initialize
Gamma = numpy.zeros(XtX.shape, dtype=float)
C = numpy.zeros(XtX.shape, dtype=float)
# iterate until convergence
for _ in range(K):

B_tilde = B_aux + P.dot(rho * C - Gamma)
gamma = numpy.diag(B_tilde) / numpy.diag(P)
B = B_tilde - P * gamma
C = softthreshold(B + Gamma/rho, lambda1/rho)
C = numpy.maximum(C, 0.)
Gamma += rho * (B - C)

return C

4 ALGORITHM

The Python 2.7 code of ADMM for collaborative filtering is pre-
sented in Algorithm 1, where the function ‘softthreshold’ may be
implemented as outlined in Section 3.2. Note that the result is given
by matrix C (and not B), as it obeys all the constraints.

5 MODEL VARIANTS

In this section we discuss several variants of Slim: two simplified
and two improved ones.

5.1 Removing the Non-Negativity Constraint

When the non-negativity constraint regarding the model parame-
ters B is dropped from Slim, the model can learn both similarities
and dissimilarities between pairs of items. In this case, the opti-
mization problem becomes

min
B

1
2
∥X − XB∥2F +

λ2
2

∥B∥2F + λ1 ∥B∥1 s.t. diag(B) = 0 (17)

Even in this simpler formulation, the presence of the non-smooth
L1 penalty justifies the usage of ADMM. The ADMM formulation
is identical to the one outlined above, except for the function д(C)
in Eq. 5 that now has an unrestricted domain. The update ofC(k+1)

at step k + 1 is now given by (instead of Eq. 16):

C(k+1) = sλ1/ρ

(
B(k+1) +

1
ρ
· Γ(k )

)
(18)

5.2 Removing the L1 Penalty

When the L1 penalty is dropped, but the non-negativity constraint
is kept, ADMM can be used as outlined above, but with a modified



update of C(k+1) at step k + 1 (instead of Eq. 16):

C(k+1) =
(
B(k+1)

)
+

(19)

so that only the positive values in B(k+1) are retained in C(k+1).

5.3 Removing the Non-Negativity Constraint

and the L1 Penalty

A dense weight matrix B is obtained when both the non-negativity
constraint and the L1-norm regularization are dropped from the
original Slim objective in Eq. 2. In this case, the resulting objective
is a ridge-regression problem with the constraint that the diagonal
of B is zero:

min
B

1
2
∥X − XB∥2F +

λ2
2

∥B∥2F s.t. diag(B) = 0 (20)

This can be solved in closed form, using the method of Lagrangian
multipliers, analogous to the derivation of the update of B in Section
3.1. Here, it is much simpler, however: again, we use the term
γ⊤ · diag(B) in the Lagrangian. Compared to Section 3.1, we now
have the simplified case where Ck = Γk = 0 and ρ = 0. Hence, Eqs.
12 and 13 immediately simplify and we obtain

P =
(
X⊤X + λ2 · I

)−1
as well as B̃(k+1) = P · X⊤X . It follows from Eq. 11 that the closed-
form solution B(dense) with a zero diagonal is 2

B(dense) = P ·X⊤X − P · diagMat(γ ) = I − P · diagMat(1 ⊘ diag(P))
(21)

Computing the dense solution B(dense) is hence considerably sim-
plified, as no iterations are needed, unlike ADMM.

5.4 Adding Item-Bias Terms

The weight matrix B is the only model parameter in the original
Slim-approach [15]. Besides these pairwise parameters in B, one
may also use so-called (unary) item-bias termsbi for each i ∈ I (also
called the intercepts of the items in regression). Instead of learning
them as part of the model training, it is easier to estimate their
values in a pre-processing step, where bi = µi =

1
|U |

∑
u ∈U Xu,i is

the mean of column i ∈ I of the user-item matrix X . The matrix B
is then learned (as outlined above) by using the centered matrixX −

®1®b⊤ in place of the original matrix X , where ®1 is a vector of ones in
the outer product with the vector of item-biases ®b = (b1, ...,b |I |)

⊤.
In other words, the mean is subtracted from each column, resulting
in a matrix with zero mean in each column. Having determined
B and ®b from the training data, the resulting prediction rule for
the score regarding user u and item j now reads (instead of Eq. 1)
Su, j = (Xu, · − ®b⊤) · B ·, j + bj .

5.5 Item-Specific Regularization

In the original Slim-approach [15], only two (scalar) regularization
parameters λ1, λ2 are used, i.e., either one takes the same value
across all items. In this section, we replace them by item-specific
regularization parameters: given that the item-popularities typi-
cally follow a power-law distribution in good approximation (e.g.,
2Substituting X⊤X = P−1 − λ2 · I into P ·X⊤X = P · (P−1 − λ2 · I ) = I − P · λ2 · I ,
and then from the zero-diagonal constraint it follows γ + λ2 = 1 ⊘ diag(P ).

see [19]), we parameterize the item-specific regularization parame-
ters in terms of these item-popularities. If X is a binary user-item
interaction matrix, then the popularity of item i is proportional
to the mean µi in column i of X . We now define the L1 and L2
penalties as follows:

λ1 · ∥diagMat(®µ)α1/2 · B∥1 = λ1 ·
∑
i, j ∈I

µ
α1/2
i · |Bi, j |

λ2 · ∥diagMat(®µ)α2/2 · B∥2F = λ2 ·
∑
i, j ∈I

µα2
i · B2i, j (22)

where we introduced the exponents α1,α2 > 0 as to control the
power-law in the regularization terms. The optimal values of these
exponents are determined via grid-search, alongside the values of
λ1, λ2 > 0.

When both L1 and L2 regularization are applied, then the learned
parameters Bi, j are shrunk towards zero by both penalties. In
[24], it was motivated that un-doing the shrinkage due to the L2-
norm regularization improves prediction accuracy: B(rescaled) =
diagMat(1 + ®λ(2)

|U |
) · B, where ®λ(2) = λ2 · (µ

α2
1 , ..., µ

α2
I
)⊤ denotes the

vector of L2-norm regularization parameters (see above).3 Given
that we are eventually interested in only the ranking of the items,
this correction factor only has an effect if ®λ(2) has different values
for different items (as motivated in this section). If all its values are
identical, like in Slim [15], this correction factor has no effect on
the ranking and hence may be ignored.

6 CONVERGENCE

In this section, we adapt the stopping criteria presented in [3] for
the purpose of the optimization problem presented in Section 3: the
necessary and sufficient optimality conditions for ADMM is primal
and dual feasibility.

The primal and dual residuals at iteration k + 1 of ADMM are [3]

R
(k+1)
primal = B(k+1) −C(k+1)

R
(k+1)
dual = −ρ ·

(
C(k+1) −C(k )

)
Hence, a reasonable termination criterion for the ADMM iterations
is that the primal and dual residuals are small,

∥R
(k+1)
primal∥F ≤ ϵprimal and ∥R

(k+1)
dual ∥F ≤ ϵdual (23)

where ϵprimal, ϵdual > 0 are the tolerances for primal and dual
feasibility, respectively. Following [3], one can choose an absolute
tolerance, ϵabs, which depends on the scale of the values of matrix
B, as well as a relative tolerance, ϵrel, which is typically chosen
to be 10−3 or 10−4, see [3]. Then the primal and dual feasibility
tolerances are given by the formulae

ϵprimal = |I | · ϵabs + ϵrel ·max
{
∥B(k+1)∥F , ∥C

(k+1)∥F
}

ϵdual = |I | · ϵabs + ϵrel · ∥Γ
(k+1)∥F

As discussed in [3] and verified in our experiments in Section 7,
ADMM reaches an accuracy level that is reasonable for most large-
scale practical applications within a few tens of iterations. For
3Note that dividing by |U | in the correction factor is necessary here, unlike in [24],
as we did not divide the square loss by |U |.



this reason, we ran 50 iterations of ADMM in our experiments in
Section 7. However, if one wishes for higher accuracy solutions,
the aforementioned stopping criteria can be used.

In practice, the choice of penalty parameter ρ is also crucial for
convergence speed. In Section 7, we swept a set of values for ρ as
part of the grid-search. Convergence may be sped up in practical
applications by adapting the value of ρ along the ADMM iterations,
which also makes it less dependent on the initial choice of ρ. As out-
lined in [3], ρ may be increased when the primal residuals are much
larger than the dual residuals (i.e., if ∥R(k+1)primal∥F > t · ∥R

(k+1)
dual ∥F ) as

follows: ρ(k+1) = τ · ρ(k ). Typical choices are τ = 2 and t = 10 [3].
Conversely, the value of ρ may be decreased when the dual residu-
als are much larger than the primal residuals (i.e., if ∥R(k+1)dual ∥F >

t · ∥R
(k+1)
primal∥F ) according to ρ(k+1) = ρ(k )/τ , and keeping its value

unchanged when the primal and dual residuals are within a factor
of t .

7 EXPERIMENTS

In the experimental set-up, we follow the setting in [14], as the
authors provided publicly available code4 for reproducibility of
the results. We first summarize the three data-sets, the evaluation
protocol as well as the baseline approaches used in [14] (for details,
see their paper). Then, regarding the model-variants proposed in
this paper, we introduce the naming used throughout this section,
including the tables. We discuss the results regarding the full-size
training data in Section 7.1, and regarding the sub-sampled training
data in Section 7.2.

Three data-sets were used in the experiments in [14], and were
pre-processed and filtered for items and users with a certain activity
level, resulting in the following data-set sizes, see [14] and their
publicly available code for details:

• MovieLens 20 Million (ML-20M) data [10]: 136,677 users
and 20,108 movies with about 10 million interactions,

• Netflix Prize (Netflix) data [1]: 463,435 users and 17,769
movies with about 57 million interactions,

• Million Song Data (MSD) [2]: 571,355 users and 41,140 songs
with about 34 million interactions.

We also follow the evaluation protocol used in [14], which is
based on strong generalization, i.e., we create train-user, validation-
user and test-user sets, Utrain, Uvalid, Utest, which are disjoint
(while the set I of items is the same in test, validation and training).
This is in contrast to weak generalization, where the training and
test sets are disjoint in terms of user-item interaction-pairs, but not
in terms of users. The test data X test ∈ R |U

test |× |I | are further split
into two disjoint sets of user-item interactions: one serves as the
input to the recommender system, based on which the other one
has to be predicted, see [14] for details.

In [14], results for the following models were reported, which
we now use as baselines:

• Sparse LinearMethod (Slim) [15]: Besides the originalmodel,
a computationally faster approximation that drops the con-
straints on the weights [13] was also considered. However,

4The code regarding ML-20M in [14] is publicly available at
https://github.com/dawenl/vae_cf. Upon request, the authors kindly pro-
vided the code for the other two data-sets.

Table 1: NDCG@100 for various values of λ1 and λ2 on Net-
flix data for ‘ADMML1’ (ρ = 10, 000). Results within the stan-

dard error of 0.001 of best NDCG@100 are highlighted.

λ1

λ2 0 1 5 50 1,000 5,000

0 – 0.381 0.383 0.388 0.393 0.391
0.1 0.390 0.390 0.390 0.391 0.393 0.391
0.5 0.390 0.390 0.390 0.391 0.393 0.391
1 0.391 0.391 0.391 0.391 0.394 0.391
2 0.392 0.392 0.392 0.392 0.394 0.391
3 0.392 0.391 0.392 0.392 0.394 0.391
4 0.392 0.393 0.393 0.393 0.394 0.391
5 0.393 0.393 0.393 0.393 0.394 0.391
10 0.393 0.393 0.393 0.393 0.393 0.391
20 0.392 0.392 0.392 0.392 0.392 0.388
50 0.386 0.386 0.386 0.386 0.385 0.381

the results of this approximation were not found to be on
par with the other models in the experiments in [14].

• WeightedMatrix Factorization (wmf) [12, 16]: A linearmodel
with a latent representation of users and items.

• Collaborative Denoising Autoencoder (cdae) [23]: A non-
linear model with one hidden layer.

• Denoising Autoencoder (Mult-dae) and Variational Au-
toencoder (Mult-vae

pr) [14]: Both are trained using the
multinomial likelihood, which was found to outperform the
Gaussian and logistic likelihoods. Best results were obtained
in [14] for theMult-vae pr andMult-daemodels that were
rather shallow ‘deepmodels’, namely with a 200-dimensional
latent representation, as well as a 600-dimensional hidden
layer in both the encoder and decoder. Both models are non-
linear, andMult-vae pr is also probabilistic.

We do not use Neural Collaborative Filtering [11] or Bayesian Per-
sonalized Ranking (BPR) [17] as baselines, as their accuracies were
found to be so low on these data-sets that no results were reported
in [14], see also [5]. We compare these baselines to the following
variants of the ADMM-approach outlined in Section 3:

• ADMM ≥ 0 & L1: ADMM with non-negative weights, L1-
norm and L2-norm regularization – the original objective
function in the Slim-paper [15], but optimized via ADMM
(instead of the original optimizer).

• ADMM ≥ 0: ADMM with non-negative weights and only
L2-norm regularization, i.e., without the L1 penalty. Sparsity
is only induced due to the non-negativity constraint.

• ADMML1: ADMMwith unrestricted weights, L1-norm and
L2-norm regularization – this yields a sparse solution, where
the weights are allowed to be positive, zero or negative.

In our experiments, we ran ADMM for 50 iterations. We also ran
ADMM to full convergence based on the stopping criteria outlined
in Section 6. The ranking metrics were almost identical as with
stopping after 50 iterations in our experiments, which aligns with
the remarks in [3] and in Section 6 that ADMM reaches sufficient
accuracy for most practical applications after a few tens of itera-
tions. The values of the ADMM penalty term ρ and the L1/L2-norm



Table 2: Ranking accuracy (with standard errors ≈ 0.002, 0.001, and 0.001 onML-20M, Netflix, and MSD data).

(a) ML-20M (b) Netflix (c) MSD
model-variants Recall Recall NDCG Recall Recall NDCG Recall Recall NDCG

@20 @50 @100 @20 @50 @100 @20 @50 @100
ADMM ≥ 0 0.376 0.502 0.407 0.352 0.435 0.384 0.330 0.425 0.388
ADMM L1 0.391 0.521 0.420 0.362 0.445 0.394 0.334 0.428 0.390
ADMM ≥ 0 & L1 0.376 0.502 0.407 0.352 0.435 0.384 0.330 0.425 0.388
Dense 0.391 0.521 0.420 0.362 0.445 0.393 0.333 0.428 0.389
Dense ≥ 0 0.373 0.499 0.402 0.345 0.429 0.377 0.324 0.418 0.379
Sparse Approx. 0.391 0.521 0.420 0.361 0.445 0.393 0.333 0.427 0.389
Sparse Approx. ≥ 0 0.373 0.499 0.402 0.344 0.428 0.376 0.324 0.417 0.377
Centered 0.391 0.521 0.421 0.363 0.446 0.394 0.333 0.428 0.389
Centered & item-L2 0.391 0.522 0.422 0.365 0.448 0.397 0.334 0.429 0.391

Centered & item-L2 & L1 0.391 0.522 0.422 0.365 0.449 0.398 0.334 0.430 0.392

Results reproduced from [14]:
Slim 0.370 0.495 0.401 0.347 0.428 0.379 — did not finish in [14] —
wmf 0.360 0.498 0.386 0.316 0.404 0.351 0.211 0.312 0.257
cdae 0.391 0.523 0.418 0.343 0.428 0.376 0.188 0.283 0.237
Mult-vae pr

0.395 0.537 0.426 0.351 0.444 0.386 0.266 0.364 0.316
Mult-dae 0.387 0.524 0.419 0.344 0.438 0.380 0.266 0.363 0.313

regularization-parameters λ1 and λ2 were chosen w.r.t. NDCG@100
via grid-search. An interesting observation was that NDCG@100
changed very slowly with these hyper-parameters, as illustrated
in Table 1 for the model ‘ADMM L1’ (with unrestricted weights).
For this reason, it was essential to search over several orders of
magnitude, while a rather coarse granularity of our grid-search
was sufficient for obtaining close-to-optimal results. When training
the model with non-negative weights (ADMM ≥ 0 & L1), however,
the relevant range in grid-search was considerably reduced, as was
also used in [15].

In addition, we evaluated the dense weight-matrix, which we
obtained via the closed-form solution of the simplified training
objective (see Section 5.3). As a computationally cheap alternative
to ADMM, we also tried the simple heuristic of thresholding the
dense solution as to obtain non-negative or sparse weight-matrices:

• Dense: the closed-form solution B(dense) in Eq. 21, where
both the L1 penalty and the non-negativity constraint are
dropped from the training objective (see Eq. 20).

• Dense ≥ 0: based on the dense solution, the suboptimal
non-negative solution (B(dense))+, where the function (·)+

sets all negative elements to zero.
• Sparse Approx.: based on the dense solution, the subopti-
mal sparse solution obtained by setting all entries of B(dense)

to zero where |B(dense)u,i | ≤ θ ; as to allow for a fair compari-
son, θ is chosen so that the resulting matrix has the same
level of sparsity as the ‘ADMM L1’ solution.

• Sparse Approx. ≥ 0 : based on the dense solution, the sub-
optimal sparse solution obtained by setting all entries of
B(dense) to zero where B(dense)u,i ≤ θ ; θ is chosen so that the
resulting matrix has the same level of sparsity as the ‘ADMM
≥ 0 & L1’ solution.

When learning the dense solution, B(dense), we found the optimal
L2-norm regularization parameter λ2 to be about 500 on ML-20M,
1,000 on Netflix, and 200 on MSD data. Note that these values are
much larger than the typical values used for Slim, which often are
of the order of 1 [15].

Besides these simplifications of the Slim approach, we also eval-
uated the model-variants outlined in Sections 5.4 and 5.5:

• Centered: the dense weight-matrix B(dense) in Section 5.3
is trained on centered data (see Section 5.4), i.e., additional
item-bias terms are used.

• Centered & item-L2: the dense weight-matrix B(dense) in
Section 5.3 is trained on centered data (see Section 5.4) using
item-specific L2-penalties (see Section 5.5).

• Centered & item-L2 & L1: the weight-matrix is trained on
centered data (see Section 5.4) using item-specific L2 and
also L1 penalties (see Section 5.5).

Note that the first two variants can be obtained via the closed-form
solution in Eq. 21, while the third variant is obtained via ADMM.

7.1 Discussion: Full-size Data-Sets

Table 2 summarizes the evaluation of the various approaches with
respect to the ranking metrics Recall@20, Recall@50 as well as
NDCG@100 on the three data-sets ML-20M, Netflix and MSD, fol-
lowing the experimental set-up in [14]. In the following, we discuss
several interesting insights.
ADMM vs. best competing baseline in [14]. In Table 2, we ob-
serve that the best model-variant trained via ADMM (Centered &
item-L2 & L1) is slightly worse (-1%) on ML-20M, slightly better
(+3%) on Netflix and considerably better (+25%) on MSD data in
terms of NDCG@100 compared to the best competing model, which
is Mult-vae pr.
ADMMvs. Slim. Even though ‘ADMM ≥ 0& L1’ optimizes exactly
the same training objective as the original Slim-code [15] does (see



Eq. 2, i.e., including the non-negativity constraint and the L1-norm
regularization), Table 2 shows that it obtains significantly better
ranking accuracy. This suggests that ADMM is able to get closer to
the optimum of the Slim-objective than the optimizer in the original
code does. Moreover, it is also computationally more efficient: the
50 iterations of ADMM took about 40 minutes, 30 minutes and
5 hours on the ML20M, Netflix and MSD data-sets, respectively,
running on an AWS instance with 64 GB RAM and 16 vCPUs (same
for the other ADMM approaches). This is in contrast to the original
Slim-code [15], where [14] reported that parallelized grid search
for Slim took approximately two weeks on the Netflix data and
that the MSD data ‘was too large for Slim to finish in a reasonable
amount of time’ in their experiments [14].
Non-negativity Constraint on Weights. The constraint regard-
ing non-negative weights in Slim [15] tends to hurt performance
on the full-size data in Table 2: the variant ‘ADMM ≥ 0& L1’, which
optimizes the original Slim-objective, obtains significantly lower
accuracy than the variant ‘ADMM L1’, where the non-negativity
constraint is dropped. The same finding also holds when comparing
the variants ‘ADMM ≥ 0’ and ‘Dense’, which also differ only in the
non-negativity constraint; also ‘Dense’ vs. ‘Dense ≥ 0’ as well as
‘Sparse Approx.’ vs ‘Sparse Approx. ≥ 0’ show the same behavior.
Intuitively, this means that increased recommendation accuracy
can be achieved by removing the non-negativity constraint and
allowing the model-parameters to learn both similarities and dis-
similarities among the items. Note, however, that we found the
non-negativity constraint to possibly improve recommendation
accuracy when training on extremely small data-sets (see Section
7.2).
Sparsity via L1-Penalty. Although slightly better in some cases,
remarkably we found that the sparse model (‘ADMM L1’) did not
perform significantly better than the dense solution (‘Dense’) on
the full-size data-sets in Table 2. Note that the dense solution can
be obtained via the closed-form solution in Eq. 21, which took less
than 2, 2 and 20 minutes on the ML20M, Netflix and MSD data-
sets, respectively. This is about 15 times faster than running 50
iterations of ADMM (see above). Note that the training-time may
be reduced even further by exploiting model-sparsity as to reduce
the number of parameters that have to be estimated, as outlined in
[22]. Once learned, a sparse solution may have several advantages
such as smaller memory footprint and decreased recommendation
time [15]. Even then, obtaining an approximate sparse solution by
thresholding the dense solution (‘Sparse Approx.’) also performs
about equally well as obtaining the optimal sparse solution via
ADMM (‘ADMM L1’) in Table 2. On the other hand, obtaining an
approximate non-negative solution by setting the negative weights
of the dense solution to zero (‘Dense ≥ 0’) performs worse than
obtaining the optimal non-negative solution via ‘ADMM ≥ 0’. Note,
however, that these findings were different when we trained on
extremely small data-sets (see Section 7.2).
CenteredData and Item-specificRegularization.Table 2 shows
that adding item-bias terms to the model did not significantly im-
prove recommendation accuracy (‘Centered’ vs. ‘Dense’). In the
grid-search regarding the optimal α1,α2 ∈ {0, 1/4, 1/2, 3/4, 1}, we
found that exponent α1 = 0, i.e., a constant L1 penalty across items,
was optimal, while the optimal L2 penalty grew with the item’s
popularity (α2 = 1/4 onML-20M, and α2 = 3/4 on Netflix andMSD).

Table 2 shows that item-specific L2 penalties (‘Centered & item-L2’
vs. ‘Centered’) may result in small but significant improvements in
recommendation accuracy. Interestingly, these improvements were
larger than the ones resulting from L1-norm regularization in our
experiments. As an aside, note that further variants are outlined in
[20].

7.2 Discussion: Subsampled Data-Sets

The surprising findings on the full-sized training-sets in the previ-
ous section were that (1) the non-negativity constraint tended to de-
crease recommendation accuracy, and (2) the sparsity promoted by
the L1-norm regularization did not significantly improve it. This mo-
tivated us to examine these two terms in the original Slim-objective
further by training the models on smaller data-sets (the test-set
remained unchanged). To this end, we randomly down-sampled
the training data (without replacement), as to obtain smaller data-
sets of various sizes, all the way down to only 1,000 users. For
each subsample-size, we randomly generated 5 samples, trained the
model on each, and then averaged the obtained ranking metrics.
All results in Table 3 are based on the variant ‘ADMM L1’, which
corresponds to the original Slim-objective, where we dropped the
non-negativity constraint as to focus on the effect of L1-norm reg-
ularization. For sample-size 1,000, Table 3 also shows the results
obtained by optimizing the original Slim-objective, including the
non-negativity constraint, using the variant ‘ADMM ≥ 0 & L1’.
Regarding the full-size training-data, the results of ‘ADMM ≥ 0 &
L1’ are shown in Table 2.

Moreover, Table 3 also shows the improvement of the sparse
solution due to the L1 penalty, obtained by ‘ADMM L1’ (or ‘ADMM
≥ 0 & L1’), over the dense solution as well as over the heuristic
of thresholding the dense solution as to match the density of the
ADMM-based solution.

Our subsampling experiments may simulate two real-world sce-
narios. First, subsampling simulates the case of a small number of
training observations compared to a very large catalog size, which
may occur in applications such as e-commerce, especially for the
long-tail items. Second, subsampling may also simulate the case of
item cold-starting, in which there are very few user-item interac-
tions for certain or all items.

Comparing the three data-sets in Table 3, it is apparent that the
ML-20M data has unexpected properties, which are also different
from the (expected) behavior of the Netflix and MSD data: the
sparse solution does not improve over the dense solution as the
sample size diminishes, and the density as well as the fraction of
positive weights stays about constant across the different sample
sizes. The Netflix andMSD data agree with each other, and we base
the following discussion on these two data-sets.
L1-norm regularized solution via ADMM vs. dense solution

for small sample-sizes. Although the variants ‘ADMM L1’ and
‘Dense’ are on par for the full-size training-data in Table 2, the
advantage of ‘ADMM L1’ over ‘Dense’ increases toward smaller
sample-sizes (i.e., ∆(dense)

drop increases) in Table 3 on the Netflix and
MSD data-sets. In this table, the number of non-zero model param-
eters tend to decrease with shrinking sample size on the Netflix
and MSD data-sets, which shows that the L1-penalty adapts the



Table 3: Results on sub-sampled training-data for ‘ADMM L1’ (also ‘ADMM ≥ 0 & L1’ shown for sample size 1,000), averaged

over 5 samples: besides the absolute values of the ranking metrics, also the difference to the dense solution (∆
(dense)
drop : ‘ADMM

L1’ - ‘Dense’) and to the thresholded dense solution that has the same level of sparsity as the ADMM-solution (∆
(sparse)
drop : ‘ADMM

L1’ - ‘Sparse Approx.’) are shown.We highlighted differences that are larger than the standard errors of about 0.002, 0.001, and

0.001 on the ML-20M, Netflix, and MSD data, respectively. Also the density of the learned weight matrix, and the fraction of

positive weights among the non-zero weights are shown. The last columns show the best hyper-parameters determined via

grid-search for each sample-size.
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sample ADMM ADMM ADMM ρ λ2 λ1
size L1 L1 L1
(a) ML-20M
full-size 0.391 0.000 0.000 0.521 0.000 0.000 0.420 0.000 0.000 7.48% 54 % 10,000 500 1
10,000 0.366 0.000 0.000 0.490 0.000 0.000 0.396 0.000 0.000 4.75% 65 % 10,000 500 0.5
1,000 0.324 0.003 0.003 0.437 0.003 0.002 0.352 0.003 0.003 1.03% 74% 10,000 2 0.5
trained with non-negative weights (i.e., model variant ‘ADMM ≥ 0 & L1’), and ∆

(sparse)
drop w.r.t. model ‘Sparse Approx. ≥ 0’:

1,000 0.321 0.000 0.010 0.433 -0.001 0.011 0.350 0.001 0.013 0.65% 100% 1,000 100 0.2
(b) Netflix
full-size 0.362 0.000 0.000 0.445 0.000 0.001 0.394 0.000 0.001 7.83% 53 % 10,000 1,000 3
10,000 0.334 0.004 0.006 0.412 0.002 0.005 0.366 0.004 0.006 0.35% 64 % 10,000 50 5
1,000 0.293 0.009 0.011 0.365 0.008 0.011 0.324 0.010 0.012 0.26% 74% 10,000 2 2
trained with non-negative weights (i.e., model variant ‘ADMM ≥ 0 & L1’), and ∆

(sparse)
drop w.r.t. model ‘Sparse Approx. ≥ 0’:

1,000 0.295 0.011 0.016 0.367 0.010 0.017 0.327 0.013 0.021 0.80% 100% 1,000 100 0.5
(c) MSD
full-size 0.333 0.000 0.001 0.428 0.000 0.001 0.390 0.000 0.001 5.05% 57 % 1,000 50 1
10,000 0.272 0.022 0.025 0.354 0.025 0.027 0.321 0.025 0.026 0.16% 78 % 1,000 0.5 1
1,000 0.147 0.013 0.016 0.197 0.014 0.016 0.182 0.015 0.017 0.22% 98% 1,000 0.2 0.5
trained with non-negative weights (i.e., model variant ‘ADMM ≥ 0 & L1’), and ∆

(sparse)
drop w.r.t. model ‘Sparse Approx. ≥ 0’:

1,000 0.148 0.015 0.021 0.199 0.015 0.022 0.184 0.017 0.023 0.22% 100% 1,000 0 0.5

model-complexity to the sample-size in the expected way, result-
ing in the observed improvements over the dense model on small
sample-sizes. The improvement due to the L1 penalty is most strik-
ing on the MSD data, on which ‘ADMM L1’ has about 8% higher
NDCG@100 than ‘Dense’ on a training sample with 1,000 users.
In comparison, ‘ADMM L1’ has about 3% higher NDCG@100 than
‘Dense’ for a training sample with 1,000 users in the Netflix data-set.
This is to be expected, as L1 regularization is helpful when the ratio
of training observations (i.e., users in this case) to the number of
parameters (i.e., items in this case) is small, and the MSD data-set
has more than twice the items of the Netflix data-set.
L1-norm regularized solution via ADMM vs. sparse approxi-

mation from dense solution in small sample sizes. Although,
the variants ‘ADMM L1’ and ‘Sparse Approx.’ are on par in Table 2,
when using all the available training data for ML-20M, Netflix and
MSD, on smaller sample sizes ‘Sparse Approx.’ does not perform
as well (∆(sparse)

drop grows) in Table 3. Specifically, ‘ADMM L1’ has
about 10% higher NDCG@100 than ‘Sparse Approx.’ for a training
sample with 1,000 users on MSD data, and 4% higher NDCG@100
than ‘Sparse Approx.’ when trained on 1,000 users of the Netflix
data.

Non-negativity Constraint on Weight-Matrix. Table 3 shows
that the fraction of positive weights among the non-zero weights
increases as the sample size diminishes. Intuitively, this means that,
as the sample size decreases, the solution focuses more and more
on learning similarities rather than dissimilarities among the items.
This agrees with the finding for the sample size of 1,000 users in
Table 3, where the non-negativity constraint introduced by [15]
tends to help improve the ranking accuracy when the training
data are small. Hence, even though the non-negativity constraint
introduced in [15] tends to hurt in large samples (see Table 2), it
may become helpful in (extremely) small samples.
Optimal Regularization Parameters. As determined by grid
search, Table 3 shows that the optimal L2-penalty diminishes con-
siderably with decreasing sample-size, while the optimal L1-penalty
stays approximately constant. This agrees with our results regard-
ing the item-specific regularization terms, where we found that
the optimal L2 penalty increases with item-popularity, while the
optimal L1 penalty is (approximately) constant.



8 SUMMARY AND CONCLUSIONS

In this paper, we demonstrated in experiments on several well-
known data-sets that ADMM [3, 8, 9] is a scalable and flexible ap-
proach for learning Slim-like models [15]. Besides its computational
efficiency, we found empirically that ADMM is able to reach the
optimum of Slim’s convex-optimization problem more closely than
the original implementation does, resulting in statistically signifi-
cant increases in ranking accuracy. Compared to various competing
models in our experiments, including probabilistic deep learning
models, we observed up to 25% higher recommendation accuracy,
especially on the largest of the three well-known data-sets used.
The flexibility of ADMM was essential for switching on and off the
various constraints and regularization-terms in the original Slim-
objective, as to understand their individual contributions. The ex-
perimental results showed that the non-negativity constraint on the
learned weight-matrix as well as the sparsity-promoting L1-norm
regularization-term are able to improve recommendation accuracy
in the regime where the number of users is much smaller than the
number of items that are available for recommendation, like in
the cold-start scenario or in the case of a large catalog size com-
pared to a relatively small user-base. In the case of having a large
number of users, however, our experiments indicate that the non-
negativity constraint tends to hurt, while the sparsity-promoting
L1-penalty may not significantly improve ranking-accuracy. If both
of these terms are dropped from the original Slim-objective, ADMM
is not necessary, and the provided closed-form solution can be used,
which requires orders of magnitude less training time. Among the
two improvements of the training-objective we proposed – which
do not increase training time – the item-specific L2-norm regu-
larization turned out to yield accuracy-gains that are statistically
significant, except for the smallest publicly available data-set used
in our experiments.
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