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Abstract

We develop machine learning methods to decipher the neural code that links per-
ception with the firing of neurons in the cerebral cortex. We deploy Bayesian
graphical models for holistic neuron data analysis to provide a framework for un-
derstanding the neural circuitry, which is unattainable with current single neuron
methods. The proposed models are data-driven and capture the probabilistic con-
ditional dependencies between the neural activity and the visual stimuli.

1 Introduction

Despite a century of intense research, neuroscience still lacks computational models of visual stimuli
and the spatio-temporal firing patterns they elicit in the visual system of animals or humans. Tra-
ditional imaging techniques like functional magnetic resonance imaging (fMRI) indirectly measure
responses of large numbers of neurons (voxels). However, to understand how neural activity gives
rise to cognition, we need to model how collections of hundreds of neurons engage in complex inter-
actions over time. In contrast to whole-brain or micro scale imaging of a small number of neurons,
new imaging methods like two-photon calcium imaging can record the firing of hundreds to thou-
sands of neurons in living animals. Imaging the operation of neural circuits at this mesoscale will
enable better understanding of the cortical information processing algorithms relating the activity of
neurons to visual stimuli.

We have conducted targeted neurophysiological experiments that interrogate the operation of
mesoscale cortical computing circuits in awake behaving mice using two-photon calcium imag-
ing. We record spontaneous activity and activity evoked by a database of visual stimuli ranging
from drifting gratings, wavelets, composite textures and complex scenes. Using this neurophysiol-
ogy data we train Bayesian graphical models to capture the spatio-temporal functional dependencies
between neurons. The result is a compact representation that links visual stimuli to neural activ-
ity. We validate the models in the tasks of encoding (predicting) the neural activity and decoding
(classifying) the visual stimuli.

2 Dataset
We have collected Calcium image data from layer 2/3 in mouse visual cortex in an awake, behaving
animal. The mouse was head-restrained on a rotary treadmill, while visual stimuli were presented
and neuronal activity recorded. The mouse was expressing the genetically encoded calcium indicator
GCaMP6 ”fast.” We recorded spontaneous activity and evoked activity. We see strongly conserved
activity in visual cortex simply when presenting drifting gratings and textures, even without a behav-
ioral readout. We use the spatiotemporal NMF source separation code developed by Pnevmatikakis
et. al. to automatically extract regions of interest (ROIs) and spike events from the resulting time
series [3, 4].

3 Graphical Models
The MAP inference problem and the computation of the partition function are NP-hard in general.
As a result, approximations are often necessary in practice. The Bethe free energy is a standard

1



approximation to the so-called Gibbs free energy that is motivated by ideas from statistical physics.
The approximation has been generalized to include different counting numbers that result in alter-
native entropy approximations [5]. In particular, these counting numbers can be chosen such that
approximation is convex. The popularity of the Bethe approximation is due mostly to the observation
that there is a BP-like message-passing scheme whose fixed points correspond to stationary points
of the reweighted free energy. When the approximation is convex, each fixed point corresponds to a
global optimum, and we recover the typical Bethe free energy approximation. If the standard Bethe
approximation is convex, then we can leverage tools from convex optimization in an attempt to min-
imize it. If the Bethe approximation is not convex, belief propagation or a convergent algorithm can
be used in an attempt to find a local optimum of the Bethe approximation [7]. Alternatively, if the
graphical model has a maximum degree at most O(log n), then there exists a fully polynomial time
approximation scheme (FPTAS) to compute a local minimum of the Bethe approximation [1]. The
drawback of these algorithms is that, even if they converge, they are only guaranteed to find a local
optimum of the Bethe approximation. In recent work [6], we show how we can design methods
that provably find/approximate the optimum of the Bethe approximation in the non-convex case.
We obtained a FPTAS for any attractive binary pairwise model without any restriction on topology,
with much better running time guarantees. The method also applies to models that are not attractive,
thereby reducing the approximation task to a multi-label MAP inference problem.

Given the binary spike events for each visual stimuli, we perform structure learning and inference to
learn Markov Random Field models. To render the inference more tractable, we use the Bethe parti-
tion function [2] for approximating the partition function. We use l1-regularization to perform struc-
ture estimation and iterative Frank-Wolfe methods to perform parameter estimation, cross-validating
model parameters via model likelihood.

4 Preliminary Results

For each each experimental setting, namely, spontaneous activity, drifting gratings in four orien-
tations (0◦, 45◦, 180◦, 315◦) , we evaluate the models by predicting the values of each neuron in
turn, given all the other neurons, on a withheld test dataset (80− 100 test samples per experiment).
We note that for spontaneous activity, the simpler tree model outperforms the loopy model. We hy-
pothesize this is due to the random activity in this scenario, which might require more training data
to estimate a reliable loopy model. However, for evoked activity, loopy models better capture the
underlying process. The tree model has a low standard deviation for spontaneous activity (5), while
loopy has a higher (14), but for evoked tree has much higher deviation (14 − 24), while loopy has
low deviation (3). These results support previous observations that groups of neurons fire together
during evoked stimuli, making the functional dependencies more prominent in the data.
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Figure 1: Mean accuracy of predicting values for each of the 135 on the test dataset. Loopy models perform
better when the neural activity is driven by a stimulus

5 Future Work

We will model the dynamics of the system by unrolling the Bayesian networks in time to form
Dynamic Bayesian networks, which have stationary dynamics (although some non-stationary dy-
namics will also be tested). By enforcing stationarity, it is possible to learn a compact model, which
can potentially encode the temporal aspects of the neuronal data as well as temporal aspects of the
visual stimuli. the Bethe approximation recovers marginals over latent variables as well as poste-
rior distributions over parameters. It also allows straightforward introduction of latent variables and
unsupervised learning without sampling, as well as other useful extensions.
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