A Kernel Between Sets of Vectors

Risi Kondor
Tony Jebara

RISIQCS.COLUMBIA.EDU
JEBARAQCS.COLUMBIA.EDU

Computer Science Department, Columbia University M.C. 0401, 1214 Amsterdam Ave., New York, NY10027

Abstract

In various application domains, including im-
age recognition, it is natural to represent
each example as a set of vectors. With a
base kernel we can implicitly map these vec-
tors to a Hilbert space and fit a Gaussian
distribution to the whole set using Kernel
PCA. We define our kernel between exam-
ples as Bhattacharyya’s measure of affinity
between such Gaussians. The resulting ker-
nel is computable in closed form and enjoys
many favorable properties, including graceful
behavior under transformations, potentially
justifying the vector set representation even
in cases when more conventional representa-
tions also exist.

1. Introduction

Kernel methods, such as Support Vector Machines,
Gaussian Processes, etc., have proved to be extremely
successful at a wide variety of supervised and unsu-
pervised Machine Learning tasks. Whilst the core al-
gorithms in this field are now fairly well crystallized
(Schélkopf & Smola, 2001) and their theoretical prop-
erties have been thoroughly investigated, finding op-
timal ways of representing real life data as input to
these algorithms is still a largely open issue.

Instead of operating on training and testing exam-
ples x1, 42, .., xm €X directly (where X is the input
space), kernel based algorithms only make recourse to
the value of the kernel function K(x, x’) evaluated for
each pair of examples. The kernel K can be any sym-
metric similarity measure satisfying positive (semi-)
definiteness,

m
Z ciciK(xi,x5) 20
ij=1

for any m €N, any selection of examples x1x2...xm €
X, and any set of coefficients ¢y, co, ..., ¢y, €R. These

conditions ensure the existence of a mapping ®x :
X +— F to some Hilbert space F (called feature space),
in which K turns into the inner product:

K(x,x') = (P (x), Px ()

Traditionally, examples have been represented as vec-
tors, x; € R™, and the kernel was defined as a closed
form positive definite function on R", such as the Gaus-
sian Radial Basis Function (RBF') kernel

K(x, 1) = e lle=x'I7/(20%),

More recently, it has been realized that one of the
strengths of the kernel based learning paradigm is
its ability to support much more general representa-
tions of the data. Indeed, the input space can be
almost anything, as long as we can define a func-
tion on it that is both positive definite, and a plau-
sible similarity measure between examples for the
task at hand. This idea has given rise to a whole
host of novel kernels, such as string kernels (Watkins,
2000)(Lodhi et al., 2002)(Leslie et al., 2003)(Vish-
wanathan & Smola, 2003), kernels on graphs (Kondor
& Lafferty, 2002), kernels on automata (Cortes et al.,
2003), kernels on the statistical manifold (Jaakkola
& Haussler, 1999)(Lafferty & Lebanon, 2003), and
kernels on more general discrete objects (Haussler,
1999)(Collins & Duffy, 2002).

In this paper we focus on representing examples as
sets of vectors x ={x1,xa,..., 2}, x; ER™. Such a
“bag of tuples” approach (Figure 1) can suit diverse
domains in a natural way. For images, each tuple may
correspond to a single pixel, encoding its (x,y) co-
ordinates and the corresponding intensity value. In
time series analysis, tuples may encode (value,time)
pairs. A video sequence can be seen as a collection of
(z, vy, intensity, time) 4-tuples.

In all of the above cases, the emphasis is not on the
representation for its own sake, but rather the behavior
it confers on the kernel. For instance, our kernel be-
tween sets of vectors is automatically invariant under

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

Figure 1. The bag of tuples representation for images.
Each tuple encodes the (z,y) coordinates of a pixel and
the corresponding intensity value.

permutations of vectors within the set. More to the
point, we are interested in kernels that are relatively
insensitive to transformations x; — x; + 8, especially
when 4 is a smoothly varying function of . Such “soft
invariances” match intuitive notions of similarity, and
are a key element in the design of high performance
kernels. For example, for images, when § is a slowly
varying function of (z,y), transformations of this kind
correspond to translations, rotations and warpings.

To achieve this soft invariance property, we fit dis-
tributions p and p’ to the sets x = {1, x2,..., 2k}
and x'={x}, x5, ..., x},} and define the kernel as the
Bhattacharyya overlap measure between p and p’. The
intermediate step of fitting the distributions ensures
explicit invariance in permutation and affords a de-
gree of smoothing in R”. In the following we concern
ourselves with finding the right parametric family of
distributions to choose p and p’ from, being sufficiently
general to capture the structure of the objects we wish
to represent, afford controllable smoothing, and still
allow us to compute the kernel in closed form.

A similar vector set representation for images in con-
junction with using the kernel trick has been proposed
by Wolf and Shashua (2003). Other approaches to
handling sets of vectors, collections of tuples or bags
of pixels include applying PCA to the data (i.e. for
several images) while maintaining each image’s built-
in permutational invariance (Jebara, 2003).

2. Kernels Between Distributions
Estimated from Samples

In this paper we investigate the case when examples

are presented as collections x = {@1,@a,...,xr} of n
dimensional vectors (n-tuples) ¢; ER™ or x; € C R".

Monochrome bitmap images can naturally be repre-
sented in this form by letting & = (z,y) " encode the

x and y coordinates of each pixel, and letting x be
the set of all foreground pixels. For gray-scale or color
images, representations of the form x = (x,y,'y)T or
x=(2,Y,Vr Vg 75) " may be used to encode informa-
tion about brightness or the intensity of the RGB color
components. The set x will then contain one such tu-
ple for every pixel, or a random subset of pixels. If
desired, images can be described in terms of more com-
plex features (Gabor wavelets, edge features, etc.), and
each tuple can code one occurrence of such a feature.

In this paper, instead of defining a kernel directly be-
tween sets of tuples, we regard x and x’ as i.i.d. sam-
ples from unknown distributions p and p’ from some
parametric family P. We proceed by defining a ker-
nel between members of P, and a statistical proce-
dure for estimating p from x and p’ from x’. The
vector set kernel between x and x’ is then defined
as the kernel between the corresponding distributions:
K(x,x') = K(p,p'). To simplify the notation, in the
following we omit the use of bold face font for vector
quantities, in the understanding that z, z’, z;, etc.
will always denote members of R"™.

2.1. Bhattacharyya Kernels

There are several well-known definitions of similar-
ity or distance between distributions, such as the
Kullback-Leibler divergence, Fisher kernel, x? dis-
tance, and so on. To define our kernel, in this paper
we use Bhattacharyya’s affinity (Bhattacharyya, 1943)

mmszmm:/wwwwmm,<n

trivially related to the better known Hellinger’s dis-
tance

How) = | [(Vi - i)]

by H =+2—-2K. Expressing /p(x) in any orthogo-
nal basis of functions shows that K is automatically
positive definite. In addition, it also satisfies the nor-
malization property

-Mnm=/MﬂM=1

for any peP.

2.2. The Multivariate Normal Model

In the following we shall restrict our attention to the
case where P is the family of multivariate normal dis-
tributions A (p1, ¥) with probability density function

p(x) =

1 (@) S @—p)/2
172 ¢
(2m)/2| 2|

A2 B .

Figure 2. Handwritten letter “R” at 16 x 20 resolution and the first three kernel principal components for the Gaussian

kernel with o, = 1 pixels.

where | 3 | denotes the determinant. For more general
applications of kernels of the form (1) see (Jebara &
Kondor, 2003).

We set 1 and ¥ to their Maximum Likelihood esti-
mates, given by the sample mean

k
Z T (2)

and empirical covariance matrix

'[:L:

==

k
L= Z(xi—ﬂ) (wi—f1) " (3)

x| =

A short computation shows that the Bhattacharyya
kernel (1) between p = N (i, X) and p’ = N (p/, ¥’) is

_ —1/4 1/2
K(p,p) =S| 7V | st

1 1 - 1

exp (—=p TS =~ T TN St TS (4)
4 4 2

where $f = (3714 %Z’_l)_l and pf = 357 tu +

%E’flu’. Hence, by plugging (2) and (3) into (4), the

kernel K (x,x’) can be computed in closed form.

3. Distributions on Hilbert Space

At this point, the representational power of our ker-
nels might seem rather limited. Certainly, for images
we cannot truly hope that two dimensional Gaussians
will capture sufficient detail for successful learning. To
overcome this difficulty, we introduce a second positive
definite kernel, k : R™ x R" — R, this time defined be-
tween the elementary vectors x.

Recall that for any such kernel, we can construct a
Hilbert space H and a mapping ®: R”—H such that

Kz, ') = (B(x), 2(2')) .

We can now repeat the construction of Section 2, this
time letting P be a family of distributions over H,

fitting p to the Hilbert space points ®(x1), ..., P(xy),
and defining the kernel as

K(o) = K(p.p) = /H VIOV @ de. (5)

For typical kernels, the ®(z;) will span a subspace in H
of dimensionality much greater than n, allowing simple
parametric families of distributions over H to capture
complex structures in the original sample.

Our choice of k in our experiments on images in Sec-
tion 5 will be the familiar Gaussian RBF kernel

k() = e~llo=a 12/(02)

but our method is not in any way limited to this par-
ticular kernel.

Independent of our work, the same idea of defining
a kernel between a swarm of Hilbert space vectors in-
duced by another kernel has recently been proposed by
Wolf and Shashua (2003), also in the context of rep-
resenting images as sets of vectors. In contrast to our
distribution-based approach, Wolf and Shashua con-
centrate on the subspaces spanned by the ®(x;) and
define their kernel via principal angles between such
subspaces.

We now discuss how, in the special case of the multi-
variate normal model, (5) can be computed in closed
form without the need to explicitly construct the im-
ages ®(x;).

3.1. Normal Distributions on H

To facilitate the following discussion, we adopt Dirac’s
bra-ket notation (Dirac, 1930) for Hilbert space ob-
jects. The “ket” |z) will denote ®(x) and the “bra”
(z| will denote its dual, the analog of ®(z)T for finite
dimensional vector spaces. Bras and kets labeled with
letters other than x will denote general elements of H,
which might or might not be the images of some x € R"
under ®.

The inner product between |£) and |¢’) is simply writ-
ten (£|¢’), while expressions of the form &) (¢'|, or

2222

Figure 3. Reconstruction of the letter “R” from the first » = 1,2,3 and 4 principal components in H. For each pixel z,
the shading reflects the p.d.f. at ®(z) of a Gaussian fitted to the first r principal components of the images under ® of
elementary (z,y) vectors of the black pixels in the original figure (in all orthogonal directions, the p.d.f. is uniform).

weighted sums of such expressions, ¥ = . [&)a; (&l
are symmetric bilinear forms on H, corresponding to
symmetric matrices in the finite dimensional case. The
power of Dirac’s notation begins to show when consid-
ering the corresponding linear mapping % : H — H:

€)= (Z |&>ai<&> €)= l&)ai(&lS)

)

where, of course, each (§;|() is just a number. Let Vy
denote the orthogonal complement to the nullspace
of 8, Vs, = {|z) e H : (2|¢) =0 VI|Z) e H
such that X |2’y =10) }. Note that for invertible X
(Vx =H), provided the |¢;) form an orthonormal set
((&il&5) = 6i5), the inverse of the ¥ will simply be
=3 1G)ar ().

A finite dimensional Normal distribution N'(|u), X) on
H is of the form

p(l) = ——

me—«z\—mnz*1<|z>—|u>)/2 (6)
i

where Y. is a symmetric, positive definite bilinear form
of rank d. Note that this is a proper distribution only
on Vy, not on the whole of H, since p(]z)) is uniform
in all directions orthogonal to Vy. Plugging in the
empirical mean and covariance

k
5= %Z () =) (sl — ()

as before is unlikely to lead to good results, since in
the Bhattacharyya kernel this will not penalize for the
lack of alignment between the spaces Vs, and Vs, .

A related problem is that of overfitting. In particular,
for the Gaussian RBF kernel it can be shown that the
|x;) will span a subspace of dimension exactly k in H.
Fitting a k£ dimensional Normal distribution to k data

points is not robust in the directions of low covariance,
nor are these directions informative. Generally, the
first few eigenvectors of the covariance matrix give a
good description of the data: carrying around all the
eigenvectors is wasteful and potentially misleading.

To address both problems at the same time, instead of
Y, we take X to be the regularized covariance form

Sreg = Yo M (ol 40) [6) (Gl (8)
=1 1

where |v1) , ..., |v,) are the r largest eigenvectors of 3,
A1,. .., A\ are the corresponding eigenvalues, 7 is a reg-
ularization constant, and the |(;) form an orthonormal

basis for H.

Note that in the case that H is infinite dimensional,
the denominator in (6) becomes divergent. Strictly
speaking, p is not a normal distribution anymore but
a Gaussian Process, as we shall discuss in Section 4.
However, in the formula for the Bhattacharyya kernel
(4) these diverging normalization factors will cancel,
conforming to our intuition that all action is limited
to the finite dimensional subset of H spanned by the
data.

The technique of computing eigenvectors in feature
space is known as Kernel Principal Component Anal-
ysis (Kernel PCA), and was developed in (Schélkopf
et al., 1998) in the context of unsupervised learning.
We now review this technique and show how to con-
struct the eigenvectors |v;) without any explicit calcu-
lations in H.

3.2. Kernel PCA

The key observation in Kernel PCA is that the eigen-
vectors |v;) lie in the span of the images |x;), or, equiv-
alently, the centered images |z})=|z;)—|):

k
|v) = Z a; |x}) a; €R. (9)

EEEE

Figure 4. Reconstruction of the letter “R” from a Gaussian based on the first 3 KPCA components augmented by a

diagonal term with n =1, 0.1, 0.01 and 0.001.

Plugging (9) in the eigenvector equation 3 |v) = A [v),

k
%Z ZCMQU —)\Zaz\x
i=1

and multiplying on the left by any (x;

Ek:zk: xl L7 <:rj\x Z

j=1i=1 i=1

| gives

> =

Observe that these sums are but regular matrix mul-
tiplications in disguise, so equivalently,

K20 =) kK*a

where K* is the centered Gram matrix, K7, =
<xf|x§> =k(z},z7) and a=(ay, a9, ..., ar) . Hence,
finding the principal components of the typically very
high, possibly infinite, dimensional vectors |z;) reduces
to the k-dimensional eigenvector problem

K*aW =k oW, (10)

Figure 2 shows the first three kernel principal compo-
nents of 3 for a handwritten letter R, mapped back
to the original image plane by v‘nd“CEd(i) = (z|v).
The principal components capture visually recogniz-
able features of the figure.

Figure 3 shows the reconstruction of the same letter
from 1, 2,3 and 4 dimensional Normal distributions in
‘H with no regularization term in . Note that thanks
to the nonlinearity of ®, four components can already
capture the appearance of the original letter quite well.

Finally, Figure 4 shows the reconstruction based on
regularized Gaussian model with three principal com-
ponents. Note that the recovered images are closer
to the original than in Figure 3 and that the effect of
tuning 7 is similar to smoothing in the image plane.

3.3. Computing the Bhattacharyya Kernel

It remains to put all the pieces together and compute
the Bhattacharyya kernel between p = N (|u) , %) and
' =N(|i'), %), where now £=3 and ¥/ =3,

Recall that Vy is the orthogonal complement of the
nullspace of ¥. It is easy to see that in (5) dimensions
orthogonal to W =V @ Vs, integrate out to 1, relieving
us of the need to take determinants, etc., of infinite
dimensional forms: as in (4), the kernel is given by

—1/4 —1/4
K(p,p') = | Sw | ~V4 2 |74 0,12

e (WZTH M) /4 = (W15) /4 = (et BTty /2

where [ST) = (3[Z71) +2(271) " and |uf) =
137 Yu) + 337 u). The subscript W denotes the
matrix corresponding to the restriction of the given
form to the subspace W.

The term (u|X~!|u) and its dashed counterpart can
be evaluated by expansion into linear combinations
of centered and then uncentered bras and kets, ulti-
mately reducing it to a weighted sum of kernel eval-
uations (x;|z;) = k(z;,z;). The determinant |X| is
easily computed via |S| = pdmW=r T (N + n)
and similarly for | X' |.

The mixed determinant and the mixed term in the
exponent require explicit construction of the matri-
ces Ly = [(&|X€;)]i; and XYy, where {|§)}; is an
orthonormal basis for W. It is easiest to construct
this basis by starting with the basis of Vy given by
the eigenvectors |v;) and extending it one vector at a
time by adding the eigenvectors of ¥’ and performing
Gram-Schmidt orthogonalization.

4. Relationship to Gaussian Processes

So far, we have not said anything about what the ele-
ments of H actually are. We now show that the nat-
ural interpretation is that they are functions over our
original space, R™.

Let us identify |z) = ®(z) with the function f, =
k(x,-) and extend this linearly, |£) =), ¢; |z;) for any
Z1,2,...€R™ and cq, ca, ... €R corresponding to fe=
> ¢ifz,- In the continuous limit |€) = [¢(x) |z)dx
is identified with f¢ = [¢(x)f, dz. In the following,

|€) and | f¢) will be used interchangeably. The curious-
looking property

el = ([et gl a0’) 112 =
[e@)ntas) s’ = feo)

in particular, (fu/|fz) = fo(x) = k(x,2’), lends this
construction the name of Reproducing Kernel Hilbert
Space, commonly abbreviated RKHS.

For images, the interpretation of the above is par-
ticularly clear. Suppose that we are dealing with
monochrome images over the unit square, i.e. z€Q=
[0,1]2. Each |€) is now a function fe : [0, 1] — R with
fe(x)=(&|fz) i-e., it is itself an image.

The analog of the normal distribution for function
spaces is the Gaussian Process. More precisely, a set
of real valued random variables {y, : z€ Z} for some
index set Z is said to form a Gaussian Process G if
for any z1,z29,...,2r € Z, the marginal distribution
D (YzysYzay- - -+ Yz,) is multivariate normal.

When Z C R”, it is natural to regard G as a distribu-
tion over functions g : Z — R, g¢(z)=y.. An impor-
tant property is that by defining the mean E[g(z)] and
covariance function Cov(g(z), g(z’)), all the marginals,
and hence G itself, is uniquely defined.

The Gaussian Process concept meshes in naturally
with the above RHKS point of view. Setting Z=, re-
placing the z’s with 2’s and letting g(z) = ({|z) = fe(2)
makes G into a distribution on H. We see that the
previously laboriously fitted “generalized normal dis-
tribution” p over H is nothing but a Gaussian Pro-
cess with mean E[f(z)] = 1 >, (2, z) and covariance

Cov(f(x), f(2") = (fu| Lreg | far)-

Our kernel PCA-based procedure can then be inter-
preted as fitting a Gaussian Process to the sample of
functions { fz, = k(x;,+) : x;€x }. The resulting dis-
tribution over functions, p(f) really encodes our beliefs
of how similar each f is to the image whose pixels are
x. The Bhattacharyya kernel (5) then defines similar-
ity between x and x’ as the integral over all f of (the
square root of) how similar x is to f and how similar
fis to x’.

In the Machine Learning literature, there is a long
history of using Gaussian Processes as a compact
Bayesian function learning tool by itself, without the
need to invoke any outside estimation procedure (Zhu
et al., 1997)(Mackay, 1997). This method is based
on the fact that a Gaussian Process prior updated
with observations t(z;) = f(z;) + € (where € is ad-

ditive Gaussian noise of known variance) gives rise to
a posterior that is also a Gaussian Process.

The question arises as to why we do not estimate p
using this Bayesian approach. The answer is that al-
though both methods yield GP estimators, they are
fundamentally different: whereas the “classical” GP
procedure is a regression tool, our Kernel PCA-based
procedure is a density estimator.

The justification for our estimation procedure is essen-
tially the same as that for the traditional MLE estima-
tor for Normal distributions. Given a sample of func-
tions { f.,(7) = x(2;, 2)}_,, the maximum likelihood
Gaussian Process to generate these functions is that
with mean E[f(x)] = %Zle k(x;,x) and covariance
Cov[f(z), f(z")] = %Zle k(x, z;)k(x;, "), Our esti-
mator p is a regularized approximation to this GP, us-
ing only the first 7 components of the covariance form.
A potentially more satisfying Bayesian approach to es-
timating p and ¥ that would also involve estimating r
and 7 along the lines of (Zhu et al., 1997) remains the
subject of further research.

5. Experiments
5.1. Crosses and Squares

To explore the robustness of the vector sets kernel
to spatial variation, in a preliminary classification ex-
periment we generated 100 monochromatic images of
crosses and squares at various positions and scales in
a 40 x 40 pixel field (Figure 5).

BEEEEBEEER
+ +

Figure 5. Synthetic Images Data Set. Crosses and squares
were generated under random translation and rescaling.

We trained a support vector machine to separate the
cross images from the square images using half the
dataset for training and the other half for testing. As
a baseline, we compare against the standard method
of treating each image as a single vector in R6% to
which we apply a conventional Gaussian RBF kernel.
Figure 6 depicts the classification accuracy as a func-
tion of the SVM regularization parameter C'. Multiple
curves are shown for the various settings of o for the
conventional RBF and for various settings of the anal-
ogous o, parameter in the Gaussian base kernel of our
novel point set kernel. For regularization we keep the
first =4 principal components and use n=0.01, which

were empirically found to be reasonable values.

Clearly, provided that o, is appropriate, the point
set kernel can easily outperform the traditional RBF.
The latter is severely handicapped by the crosses and
squares appearing in different parts of the figure be-
cause it is only sensitive to coincidence of pixels and is
unaware of the relative position of pixels. In contrast,
the point set kernel can abstract shape from position
to some degree.

—— o221
o g2
0.5+ St 44444 kx| > g?=4 |
Kok *ox o 2=
-] * o [a} o a o o o o°=8

o
~
‘
)
.
.
=]
- % 0O
Q
!
I
i
()]
|

Classification Error
[=] h
w
T
.

o
)
T
.

0.11 q

0 ‘ ‘
10° 10" 10> 10°

Regularization C

Figure 6. The Bhattacharyya point set kernel (solid lines)
can achieve much lower testing error on the synthetic image
dataset than the best conventional RBF (dotted lines).

5.2. Handwritten Digits

Towards comparing our kernel with common bench-
marks in a familiar setting, we conducted experiments
on an intentionally small dataset of handwritten dig-
its, consisting of just the first twenty examples of each
of the digits 0,1,...,9 from the NIST dataset. To
test how well we can learn visual patterns from sparse,
noisy examples, instead of the original images, we sam-
pled 30 pixels from the foreground region of each im-
age (intensity greater than 191 on a 0 to 255 scale)
and only presented the coordinates of these pixels to
the algorithm.

Experiments were performed by training on 120 im-
ages and testing on the remaining 80, averaging the
performance over 10 such random splits, thereby on
average giving 12 positive training examples for each
class. Pursuing a simple one-versus-all strategy, sepa-
rate Support Vector Machines were built for each class,
and in testing the predicted class was chosen to be the
one with highest >, a; K (xi, 1) + b, where «; are the
usual support vector coefficients and b is the bias term.

Results are compared to the baseline of using a conven-

tional RBF or a dot product kernel on the sparsified
images (Figure 7). Clearly, the performance of the
point set kernel is very sensitive to the choice of o,
but has the potential to far outperform the baseline.
As in the previous experiment, no attempt has been
made to optimize performance over r and 1 (10 and
0.1, respectively): a more systematic study would set
these parameters by cross-validation or by identifying
a drop-off point (eigen-gap) in the spectrum of X.

0.7

dot product (dotted)
—0- RBF sigma=1 (dash) |1
—» RBF sigma=5 (dash)

—* RBF sigma=10 (dash)
—&— Bhattach. sigma=1
—— Bhattach. sigma=5

E —+— Bhattach sigma=10

s
]
c
2 FIT-szz-O- B
e e s S-S
= D o —x— ==
2 o x
&
(@]

0.2 : :

10° 10" 10° 10°

Regularization C
Figure 7. The Bhattacharyya point set kernel (solid lines)
is very sensitive to 0., but can far outperform the conven-
tional Gaussian RBF (dashed) and dot product (dotted)
kernels on the sparsified NIST images task.

6. Conclusions

We have proposed a novel kernel that applies to a wide
class of learning problems where instances can be rep-
resented as sets of vectors. The kernel is defined as
Bhattacharyya’s affinity between Gaussian models fit-
ted to the set. The resulting kernel becomes powerful
when the whole procedure is “kernelized” by the in-
troduction of a second kernel k, defined between ele-
mentary vectors.

The “bag of tuples” representation of instances is itself
worthy of further exploration. In addition to explicit
invariance to permutation, by treating all variables on
the same footing, the base kernel can extend its favor-
able smoothness properties to all variables. Contrast
this with a conventional Gaussian RBF kernel between
images, where (z,y) pixel coordinates are treated as
indices and the kernel only behaves gracefully in in-
tensity. Such a traditional kernel has no concept of
the metric structure of (z, y) and consequently behaves
poorly under translation, rotation, etc..

The choice of parametric model is essentially con-
strained to Gaussians by the dual requirements of ker-

nelizability and the existence of a closed form formula
for Bahattacharyya’s affinity. On the other hand, the
base kernel k can be chosen freely, making our method
quite flexible. Indeed, the restriction to sets of vectors
in the title is unnecessary: the x; could come from
any continuous or discrete set X on which a meaning-
ful kernel can be defined. Another possible extension
of this work is to apply our method recursively to sets
of sets. Finally, it might be possible to integrate each
step of our procedure, including estimating r and 7,
into a single consistent Bayesian operation.

Acknowledgments

We would like to thank Lior Wolf, Patrick Haffner and
the anonymous referees for corrections and several im-
portant comments which have been integrated into the

paper.

References

Bhattacharyya, A. (1943). On a measure of divergence
between two statistical populations defined by their
probability distributions. Bull. Calcutta Math Soc.,
85, 99-110.

Collins, M., & Duffy, N. (2002). Convolution kernels
for natural language. Advances in Neural Informa-
tion Processing Systems 14 (pp. 625-632). Cam-
bridge, MA: MIT Press.

Cortes, C., Haffner, P., & Mohri, M. (2003). Rational
kernels. Advances in Neural Information Processing
Systems 15. Cambridge, MA: MIT Press.

Dirac, P. A. M. (1930). The principles of quantum
mechanics. Oxford University Press.

Haussler, D. (1999). Convolution kernels on dis-
crete structures (Technical Report UCSC-CRL-99-
10). Department of Computer Science, University
of California at Santa Cruz.

Jaakkola, T., & Haussler, D. (1999). Exploiting gener-
ative models in discriminative classifiers. Advances

in Neural Information Processing Systems 11. Cam-
bridge, MA: MIT Press.

Jebara, T. (2003). Convex invariance learning. Ninth
International Workshop on Artificial Intelligence
and Statistics.

Jebara, T., & Kondor, R. (2003). Bhattacharyya and
expected likelihood kernels. Proceedings of the Siz-
teenth Annual Conference on Learning Theory and
Seventh Kernel Workshop. In press.

Kondor, R., & Lafferty, J. (2002). Diffusion kernels
on graphs and other discrete input spaces. Ma-
chine Learning: Proceedings of the Nineteenth In-
ternational Conference (ICML 02).

Lafferty, J., & Lebanon, G. (2003). Information diffu-
sion kernels. Advances in Neural Information Pro-
cessing Systems 15. Cambridge, MA: MIT Press.

Leslie, C., Eskin, E., Weston, J., & Noble, W. S.
(2003). Mismatch string kernels for SVM protein
classifiaction. Advances in Neural Information Pro-
cessing Systems 15. Cambridge, MA: MIT Press.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristian-
ini, N., & Watkins, C. (2002). Text classification
using string kernels. Journal of Machine Learning
Research, 2, 419-444.

Mackay, D. J. C. (1997). Gaussian processes:
A replacement for neural networks? Tutorial
at the Tenth Annual Conference on Neural In-
formation Processing Systems. Available from
http://wol.ra.phy.cam.ac.uk/pub/mackay/.

Scholkopf, B., & Smola, A. J. (2001). Learning with
kernels: Support vector machines, regularization,
optimization and beyond. Cambridge, MA: MIT
Press.

Scholkopf, B., Smola, A. J., & Miiller, K.-R. (1998).
Nonlinear principal component analysis as a kernel
eigenvalue problem. Neural Computation, 10, 1299—
1319.

Vishwanathan, S. V. N.; & Smola, A. J. (2003). Fast
kernels for string and tree matching. Advances in
Neural Information Processing Systems 15. Cam-
bridge, MA: MIT Press.

Watkins, C. (2000). Dynamic alignment kernels. In
A. J. Smola, B. Scholkopf, P. Bartlett, and D. Schu-
urmans (Eds.), Advances in kernel methods. Cam-
bridge, MA: MIT Press.

Wolf, L., & Shashua, A. (2003). Kernel principal an-
gles for classification machines with applications to
image sequence interpretation. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR).

Zhu, H., Williams, C. K. I., Rohwer, R., & Morciniec,
M. (1997). Gaussian regression and optimal fi-
nite dimensional linear models (Technical Report
NCRG/97/011). Aston University, Neural Comput-
ing Research Group.

