
Fast b-Matching via Sufficient Selection Belief Propagation

Bert Huang Tony Jebara
Computer Science Department

Columbia University
New York, NY 10027

bert@cs.columbia.edu

Computer Science Department
Columbia University
New York, NY 10027

jebara@cs.columbia.edu

Abstract

This article describes scalability enhance-
ments to a previously established belief prop-
agation algorithm that solves bipartite max-
imum weight b-matching. The previous al-
gorithm required O(|V | + |E|) space and
O(|V ||E|) time, whereas we apply improve-
ments to reduce the space to O(|V |) and
the time to O(|V |2.5) in the expected case
(though worst case time is still O(|V ||E|)).
The space improvement is most significant
in cases where edge weights are determined
by a function of node descriptors, such as a
distance or kernel function. In practice, we
demonstrate maximum weight b-matchings
to be solvable on graphs with hundreds of
millions of edges in only a few hours of com-
pute time on a modern personal computer
without parallelization, whereas neither the
memory nor the time requirement of previ-
ously known algorithms would have allowed
graphs of this scale.

1 INTRODUCTION

The maximum weight perfect b-matching problem is a
generalization of maximum weight matching in which
the solver is given a weighted graph and a set of tar-
get degrees, and must output the maximum weight
induced subgraph such that each node has its tar-
get number of neighbors. The problem is solvable in
O(|V ||E|) time with min-cost flow methods (Fremuth-
Paeger and Jungnickel, 1999). In problems with dense
graphs, the running time for b-matching solvers is
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O(N3), where N = |V |. Huang and Jebara (2007) in-
troduced a belief propagation algorithm which has the
same asymptotic running time guarantee O(N3) but is
lightweight and has much smaller constant factors on
running time than other available solvers. In modern
applications, however, the more obstructive bottleneck
is the O(N2) space requirement to store messages from
each node to each of its candidate neighbors. While it
is possible to wait for time-intensive jobs to run, a task
that requires too much storage is further burdened by
the need for complicated memory swapping strategies.

This article presents an improved algorithm for
weighted b-matching that significantly reduces the
memory cost and the running time for solving b-
matching. Specifically, in problems where the edge
weights are determined by a function of node descrip-
tors, the space requirement is reduced to O(N) and
the running time can be reduced to O(N2.5) in some
cases (but no worse than previous algorithms in adver-
sarial cases). Both improvements are on each iteration
of belief propagation, and the resulting algorithm com-
putes the original belief updates exactly, so any previ-
ous analysis of the number of iterations necessary for
convergence remains intact. The memory bottleneck
is reduced by unrolling one level of recursion in the be-
lief updates such that the explicit belief need never be
stored, and the running time improvement is achieved
by a variant of the algorithm by McAuley and Caetano
(2010), in which speedups are available by decompos-
ing a maximization procedure into the maximization
of two components.

Related Work. This article extends the belief
propagation b-matching algorithm first introduced by
Huang and Jebara (2007), which is proven to converge
in O(|V |) iterations with a constant depending on the
difference between the maximum weight edge and the
minimum weight edge as well as the difference between
the maximum weight b-matching and the second best
b-matching. This algorithm was further analyzed by
Sanghavi et al. (2007) and Bayati et al. (2007), who
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showed independently that the algorithm is guaran-
teed to converge if and only if the linear program-
ming relaxation of the integer program formulation of
b-matching is tight. This result confirms the previ-
ous theorem that the algorithm converges on bipartite
problems and further extends guaranteed convergence
to some non-bipartite cases. The 1-matching with iid,
random weights was further analyzed by Salez and
Shah (2009), where the surprising result was proven
that the algorithm converges with high probability in
O(1) iterations and, thus, costs O(|V |2) time overall,
which is optimal, as it is equivalent to the time needed
to read the input edge weights.

In addition to classical optimization tasks, such as
discrete resource allocation, weighted b-matching has
been shown to be a useful tool for various ma-
chine learning tasks, including semi-supervised learn-
ing, spectral clustering, graph embedding, and man-
ifold learning (Jebara et al., 2009; Jebara and Sh-
chogolev, 2006; Shaw and Jebara, 2007, 2009).

Weighted b-matching solvers can also be used as
drivers for a maximum a posteriori estimation pro-
cedure for graph structure given edge likelihoods and
soft degree priors (Huang and Jebara, 2009). The gen-
eral formulation allows for concave penalty functions
on the degrees of nodes by constructing an augmented
graph with auxiliary edges encoding the degree penal-
ties. The augmented graph has at most double the
nodes of the original graph, so the asymptotic running
time of the algorithm is equivalent to the running time
of the b-matching solver.

For graphs restricted to nonnegative integer weights,
the bipartite maximum weight 1-matching problem
was shown to be solvable in O(

√

|V ||E| log(|V |)) time
by Gabow and Tarjan (1989). An Õ(|V |2.376) random-
ized algorithm which succeeds with high probability
was revealed by Sankowski (2009). A (1-ε) approx-
imation algorithm for nonbipartite maximum weight
matching with real weights was given by Duan and
Pettie (2010), which runs in O(|E|ε−2 log3 |V |) time.

Outline. The remainder of this paper is organized as
follows. Section 2 describes the proposed algorithm in
detail and provides analysis. Section 3 describes em-
pirical evaluation of the proposed algorithm on syn-
thetic and real data, including comparisons with a
state-of-the-art maximum weight matching solver. Fi-
nally, Section 4 concludes with a brief discussion.

2 ALGORITHM DESCRIPTION

This section describes the proposed algorithm, which
is derived from the previous belief propagation ap-
proaches for b-matching and incorporates some further

improvements to improve scalability. First, we provide
a formal definition of the problem; then we describe
the algorithm. Finally, we provide some analysis show-
ing the correctness of the enhanced algorithm as well
as the speed and space improvements.

2.1 Dense Maximum Weight b-Matching

The bipartite dense maximum weight perfect b-
matching problem (abbreviated as b-matching) is,
given a dense, bipartite graph, in which all pairs of
points that cross bipartitions have candidate edges
and a target degree for each node, to find the max-
imum weight induced subgraph such that the nodes in
the subgraph have their target degrees. Formally, the
solver is given node descriptors {x1, . . . , xm+n} drawn
from space Ω, a weight function W : (Ω,Ω) !→ R,
and a set of target degrees {b1, . . . , bm+n}, where each
bi ∈ N. The goal is to output a symmetric, binary
adjacency matrix A ∈ B(m+n)×(m+n) whose entries
Aij = 1 for all matched edges (xi, xj) and are other-
wise zero. The optimization can also be written as

argmax
A

m
∑

i=1

m+n
∑

j=m+1

AijW (xi, xj)

s.t.
m+n
∑

j=1

Aij = bi, ∀i, Aij = Aji, ∀(i, j).

In particular, we consider the bipartite scenario,
where edges may only be matched between nodes
{x1, . . . , xm} and nodes {xm+1, . . . , xm+n} but not
within each set. This can be implemented with abuse
of notation by defining the weight function W to out-
put −∞ for any edges within bipartitions. This same
problem can be expressed in many other forms, in-
cluding graph notations using node and edge sets, but
when considering the dense bipartite form of the prob-
lem, it is convenient to use matrix notation.

2.2 Linear Memory b-Matching Belief
Propagation

In this section, we describe the method to reduce
memory usage of b-matching via belief propagation to
O(N), where the total number of nodes N = m + n.
First, we review the results from previous work (Bayati
et al., 2005; Huang and Jebara, 2007; Sanghavi et al.,
2007) defining a simplified update rule for message up-
dates, which allows for the standard O(N2) space and
O(N2) per-iteration running time. A key component
of the simplified belief propagation algorithm is the
selection operation. This is the operation that finds
the k’th largest element of a set for some index k. For
notational convenience, denote the selection operation
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over any set S as

σk(S) = s ∈ S where |{t ∈ S|t ≥ s}| = k.

Belief propagation maintains a belief value for each
edge, which, in the dense case, is conveniently repre-
sented as a matrix B, where entry Bt

ij is the belief
value for the edge between xi and xj at iteration t.
The simplified update rule for each belief is

Bt
ij = W (xi, xj) − σbj

({Bt−1
jk |k (= i}). (1)

In the above equation and for the remainder of this
text, indices range from 1 to (m+n), unless otherwise
noted, and are omitted for cleanliness.

The key insight for reducing memory usage is that the
full beliefs never need to be stored (not even the com-
pressed messages). Instead, by unrolling one level of
recursion, all that need to be stored are the selected
beliefs, because the selection operation in Equation
(1) only weakly depends on index i. That is, the se-
lection operation is over all indices excluding i, which
means the selected value will be either the bj ’th or the
bj + 1’th greatest element,

σbj
({Bt−1

jk |k (= i}) ∈
{σbj

({Bt−1
jk |k}),σbj+1({Bt−1

jk |k})}.

Thus, once each row of the belief matrix B is updated,
these two selected values can be computed and stored,
and the rest of the row can be deleted from memory.
Any further reference to B is therefore abstract, as
it will never be fully stored. Any entry of the belief
matrix can be computed in an online manner from the
stored selected value. Let αj be the negation of the
bj ’th selection and βj be that of the bj +1’th selection.
Then the update rules for these parameters are

αt
j = −σbj

({Bt−1
jk |k}), βt

j = −σbj+1({Bt−1
jk |k}), (2)

and the resulting belief lookup rule is

Bt
ij = W (xi, xj) +

{

αt
j if At

ji (= 1

βt
j otherwise.

(3)

After each iteration, the current estimate of A is

At
ij =

{

1 if Bt−1
ij ≥ αt

i

0 otherwise,

which is computed when the α and β values are up-
dated in Equation (2). When this estimate is a valid
b-matching, i.e., when the columns of Aij sum to their
target degrees, the algorithm has converged to the so-
lution. The algorithm can be viewed as simply com-
puting each row of the belief matrix and performing
the selections on that row and is summarized in Algo-
rithm 1.

Algorithm 1 Belief Propagation for b-Matching.
Computes the adjacency matrix of the maximum
weight b-matching.

1: α0
j ,β

0
j ← 0, ∀j

2: A0 ← [0]
3: t ← 1
4: while not converged do
5: for all j ∈ {1, . . . , m + n} do
6: At

jk ← 0, ∀k

7: αt
j ← −σbj

({Bt−1
jk |k}) {Algorithm 2}

8: βt
j ← −σbj+1({Bt−1

jk |k})
9: for all {k|Bt−1

jk ≥ αt
j} do

10: At
jk ← 1

11: end for
12: end for
13: delete At−1, αt−1 and βt−1 from memory
14: t ← t + 1
15: end while

2.3 Sufficient Selection

This section describes the running time enhancement
in the proposed algorithm, which is a variation of
the faster belief propagation algorithm proposed by
McAuley and Caetano (2010). The enhancements aim
to reduce the running time of each iteration by ex-
ploiting the nature of the quantities being selected. In
particular, the key observation is that each belief is a
sum of two quantities: a weight and an α or β value.
These quantities can be sorted in advance, outside of
the inner (row-wise) loop of the algorithm, and the se-
lection operation can be performed without searching
over the entire row, significantly reducing the amount
of work necessary. This is done by testing a stopping
criterion that guarantees no further belief lookups are
necessary.

Some minor difficulties arise, however, when sorting
each component, so the algorithm by McAuley and
Caetano (2010) does not directly apply as-is. First,
the weights cannot always be fully sorted. In general,
storing full order information for each weight between
all pairs of nodes requires quadratic space, which is im-
possible with larger data sets. Thus, the proposed al-
gorithm instead stores a cache of the heaviest weights
for each node. In some special cases, such as when
the weights are a function of Euclidean distance, data
structures such as kd-trees can be used to implicitly
store the sorted weights. This construction can pro-
vide one possible variant to our main algorithm.

Second, the α-β values require careful sorting, because
the true belief updates mostly include αt terms but a
few βt terms. Specifically, the indices that index the
greatest bj elements of the row should use βt. One way
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to handle this technicality is to first compute the sort-
order of the αt terms and, on each row, correct the
ordering using a binary search-like strategy for each
index in the selected indices. This method is techni-
cally a logarithmic time procedure, but requires some
extra indexing logic that creates undesirable constant
time penalties. Another approach, which is much sim-
pler to implement and does not require extra indexing
logic, is to use the sort-order of the βt’s and adjust
the stopping criterion to account for the possibility of
unseen αt values.

Since the weights do not change during belief propa-
gation, at initialization, the algorithm computes index
cache I ∈ N(m+n)×c of cache size c, which is a param-
eter set by the user, where entry Iik is the index of
the k’th largest weight connected to node xi and, for
u = Iik,

W (xi, xu) = σk({W (xi, xj)|j}).

At the end of each iteration, the βt values are similarly
sorted and stored in index vector e ∈ Nm+n, where,
for v = ek, entry βt

v = σk(βt
j |j}).

The selection operation from (2) is then computed by
checking the beliefs corresponding to the sorted weight
and β indices. At each step, maintain a set S of the
greatest bj + 1 beliefs seen so far. These provide tight
lower bounds on the true α − β values. At each stage
of this procedure, the current estimates for αt

j and βt
j

are

α̃t
j ← σbj

(S), and β̃t
j ← min(S).

Incrementally scan the beliefs for both index lists (I)j

and e, computing for incrementing index k, BiIik
and

Biek
. Each of these computed beliefs is compared to

the beliefs in set S and if any member of S is less
than the new belief, the new belief replaces the mini-
mum value in S.1). This maintains S as the set of the
greatest bj + 1 elements seen so far.

At each stage, we bound the greatest possible unseen
belief as the sum of the least weight seen so far from the
sorted weight cache and the least β value so far from
the β cache. Once the estimate β̃t

j is less than or equal
to this sum, the algorithm can exit because further
comparisons are unnecessary. Algorithm 2 summarizes
the sufficient selection procedure.

1A small hash table for the indices will indicate whether
an index has been previously visited in O(1) time per
lookup. For small values of bj where (bj << n + m), a
linear scan through S to find the minimum is sufficiently
fast, but a priority queue can be used to achieve sub-linear
time insertion and replacement when bj is large.

Algorithm 2 Sufficient Selection. Given sort-order of
βt values and partial sort-order of weights, selects the
bj ’th and bj + 1’th greatest beliefs of row j.

1: k ← 1
2: bound ← ∞
3: S ← ∅
4: α̃j

t ← −∞
5: β̃j

t
← −∞

6: while β̃j
t
< bound do

7: if k ≤ c then
8: u ← Ijk

9: if (u is unvisited and (Bt−1
ju > min(S)) then

10: S ← (S \ min(S)) ∪ Bt−1
ju

11: end if
12: end if
13: v ← ek

14: if (v is unvisited and (Bt−1
jv > min(S)) then

15: S ← (S \ min(S)) ∪ Bt−1
jv

16: end if
17: bound ← W (xj , xu) + βt−1

v

18: α̃t
j ← σbj

(S)

19: β̃t
j ← σbj+1(S)

20: k ← k + 1
21: end while
22: αt

j ← α̃t
j

23: βt
j ← β̃t

j

2.4 Implementation Details

The implementation of Algorithms 1 and 2 used in
the experiments of Section 3 is in C. To perform the
initial iteration, during which the weight cache is con-
structed, our program uses the Quick Select algorithm,
which features the same pivot-based partitioning strat-
egy as Quick Sort to perform selection in (average case)
O(N) time per node (Cormen et al., 2001). For low-
dimensional data and distance-based weights, we can
run the same selection using a kd-tree and provide the
index cache as an input to the program. 2

2.5 Analysis

In this section, we analyze the correctness, space and
running time requirements of the proposed algorithm.
First, we verify that the bound from the sufficient se-
lection procedure holds even though it is computed
using only the βt

j values, when many of the beliefs are
actually computed using αt

j values.

Claim 1. At each stage of the scan, where set S con-
tains the bj + 1 greatest beliefs corresponding to the
first through k’th indices of (I)j and e, the following

2A newer C++ version of the solver is available at
http://www.cs.columbia.edu/~bert/code/bmatching/.
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properties are invariant: the current estimates bound
the true values from below, α̃t

j ≤ αt
j, β̃t

j ≤ βt
j, and the

greatest unexplored belief is no greater than the sum of
the least cached weight and the least βt−1

j value,

W (xj , xu) + βt−1
v ≥

max
({

Bt−1
j! |% ∈ {ek+1, . . . , em+n

})

, (4)

where u = Ijk and v = ek.

Proof. The first two inequalities follow from the fact
that the algorithm is selecting from but has not nec-
essarily seen the full row yet. The third inequality (4)
is the result of two bounds. First, the beliefs in the
right-hand side can be expanded and bounded by ig-
noring the conditional in the belief update rule and
always using βt−1

! :

W (xj , x!) + βt−1
! ≥ Bt−1

j! .

By definition αt−1
! ≤ βt−1

! , since the former is the
negation of a larger value than the latter. A sufficient
condition to guarantee Inequality (4) is then

W (xj , xu) + βt−1
v ≥ max({W (xj , x!) + βt−1

! |%}),

where % is in the remaining unseen indices as in (4).
Since each component on the left-hand side has been
explored in decreasing order, the maximization on the
right can be relaxed into independent maximizations
over each component, and neither can exceed the cor-
responding value on the left.

Thus, the algorithm will never stop too early. How-
ever, the running time of the selection operation de-
pends on how early the stopping criterion is detected.
In the worst case, the process examines every entry of
the row, with some overhead checking for repeat com-
parisons. McAuley and Caetano (2009, 2010) showed
that for random orderings of each dimension (and no
truncated cache size), the expected number of belief
comparisons necessary is O(

√
N) to find the maxi-

mum, where, in our case N = m + n = |V |. We show
that selection is computable with O(

√
bN) expected

comparisons. However, for problems where the order-
ings of each dimension are negatively correlated, the
running time can be worse. In the case of b-matching,
the orderings of the beliefs and potentials are in fact
negatively correlated, but in a weak manner. We first
establish the expected performance of the sufficient se-
lection algorithm under the assumption of randomly
ordered β values.

Theorem 1. Considering the element-wise sum of
two real-valued vectors &w and &β of length N with inde-
pendently random sort orders, the expected number of
elements that must be compared to compute the selec-
tion of the b’th greatest entry σb({wi + βi|i}) is

√
bN .

Proof. The sufficient selection algorithm can be equiv-
alently viewed as checking element-wise sums in the
sort orders of the &w and &β vectors, and growing a set
of k indices that have been examined. The algorithm
can stop once it has seen b entries that are in the first
k of both sort orders.

We first consider the algorithm once it has examined
k indices of each vector, and derive the expected num-
ber of entries that will be in both sets of k greatest
entries. Since the sort orders of each set are random,
the problem can be posed as a simple sampling sce-
nario. Without loss of generality, consider the set of
indices that correspond to the greatest k entries in
&w. Examining the greatest k elements of &β is then
equivalent to randomly sampling k indices from 1 to
N without replacement. Thus, the probability of any
of the k greatest entries of &β being sampled is k/N ,
and, since there are k of these, the expected number
of sampled entries that are in the greatest k entries of
both vectors is k2/N .

Finally, to determine the number of entries the algo-
rithm must examine to have, in expectation, b entries
in the top k, we simply solve the equation b = k2/N
for k, which yields that when k =

√
bN , the algorithm

will in the expected case observe b entries in the top k
of both lists and therefore completes computation.

Applying the estimated running time to analysis of the
full algorithm provides the following corollary.

Corollary 1. Assuming the β messages and the
weight potentials are always randomly, independently
ordered, and for constant b, the total running time for
each iteration of belief propagation for b-matching with
sufficient selection is O(N1.5), and the total running
time to solve b-matching is O(N2.5).

It is important to point out the differences between
the assumptions in Theorem 1 and why they do not
always hold in real data scenarios. When nodes rep-
resent actual objects or entities and the weights are
determined by a function between nodes, the weight
values have dependencies and are therefore not com-
pletely randomly ordered. Furthermore, the β values
change during belief propagation according to rules
that depend on the weights, and in some cases can
cause the selection time to grow to O(N). Neverthe-
less, in many sampling settings and real data gener-
ating processes, the weights are random enough and
the messages behave well enough that the algorithm
yields significant speed improvements. Section 3 con-
tains synthetic and real data experiments that demon-
strate the significant speed improvement as well as a
contrived, synthetic experiment where the speedup is
less significant due to a special sampling process.
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Finally, the space requirement for this algorithm has
been reduced from the O(N2) beliefs (or messages)
of the previous belief propagation algorithm to O(N)
storage for the α and β values of each row. Naturally,
this improvement is most significant in settings where
the weights are computable from an efficient function,
whereas if the weights are arbitrary, the input itself
requires O(N2) memory, so the memory reduction only
allows the additional storage to be linear. In most
machine learning applications, however, the weights
are computed from functions of node descriptor pairs,
such as Euclidean distance between vectors or kernel
values. In these applications, the algorithm needs only
to store the node descriptors, the α and β values and,
during the computation of Algorithm 2, O(N) beliefs
(which can be immediately deleted before computing
the next row). The weight cache adds O(cN) space,
where we consider c a user-selected constant.

The space reduction is also significant for the purposes
of parallelization. The computation of belief propa-
gation is easy to parallelize, but the communication
costs between processors can be prohibitive. With the
proposed algorithm, each computer in a cluster stores
only a copy of the node descriptors and the current α
and β values. At each iteration, the cluster must share
the 2N updated α and β values. This is in contrast
to previous formulations where O(N2) messages or be-
liefs needed to be transmitted between computers at
each iteration for full parallelization. Thus, when it is
possible to provide each computer with a copy of the
node descriptor data, an easy parallelization scheme is
to split the row updates between cluster computers at
each iteration.

3 EXPERIMENTS

This section describes empirical results from synthetic
tests, which provide useful insight into the behavior
of the algorithm, and a simple test on the MNIST
handwritten digits data set, which demonstrates that
the performance improvements apply to real data.

3.1 Synthetic Gaussian Data

In these experiments, the running time of the pro-
posed algorithm is measured and compared against
two baseline methods: the standard belief propaga-
tion algorithm, which is equivalent to setting the pro-
posed algorithm’s cache size to zero, and the Blossom
V code by Kolmogorov (2009), which is considered to
be a state-of-the-art maximum weight non-bipartite
matching solver.

For both experiments, node descriptors are sampled
from zero-mean, spherical Gaussian distributions with
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c = 0.00
c = 0.05 (m+n)
c = 0.15 (m+n)
c = 1.00 (m+n)

c = 0.00
c = 0.05 (m+n)
c = 0.15 (m+n)
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Figure 1: Running Time Measurements on Synthetic
Gaussian Data. Top: Square root CPU time per iter-
ation used to solve b-matching of varying sizes. The
default belief propagation algorithm is equivalent to
cache size c = 0, where the running time appears to
grow quadratically. Nonzero cache sizes are clearly
sub-quadratic (sub-linear in the square root plot).
Bottom: Count of belief lookups per iteration. The
number of belief lookups serves as a surrogate mea-
sure of running time which is not affected by other
processes running on the computer.

variance 1.0, the weight function returns negative Eu-
clidean distance, and we sample bipartitions of equal
size (m = n = N/2). In the first experiment, points
are sampled from R20. Using different cache sizes, the
running time of the algorithm is measured for varying
point set sizes from 10 to 500. We set bi = 1, ∀i. We
measure the running time using actual CPU time as
well as a count of belief lookups. The square roots of
per-iteration running times are drawn in Figure 1. It
is clear that for a cache size of zero, where the algo-
rithm is default belief propagation, the running time
per iteration scales quadratically and that for non-zero
cache sizes, the running time scales sub-quadratically.
This implies that, at least for random, iid, Gaussian
data and Euclidean weights, the weights and β values
are uncorrelated enough to achieve the random per-
mutation case speedup.

For the second experiment, node descriptors are drawn
from R5, and we compare 1-matching performance be-
tween sufficient selection belief propagation, full be-
lief propagation and Kolmogorov’s Blossom V code.
For sufficient selection, we set the cache size to c =
2
√

m + n. In this case, there is no equivalent notion
of per-iteration time for Blossom V, so we compare
the full solution time. Full belief propagation and
Blossom V seem to scale similarly, but sufficient se-
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Figure 2: Comparison against Blossom V. Running
times for solving varying sized bipartite 1-matching
problems using Kolmogorov’s Blossom V code, full be-
lief propagation and sufficient selection belief propa-
gation. Node descriptors are sampled from a spherical
Gaussian in R5 and weights are negative Euclidean
distances. Full belief propagation tends to run faster
than Blossom V, but not always. Belief propagation
with sufficient selection is significantly faster for these
random problems.

lection improves the running time significantly. For
this comparison, it is important to note some differ-
ences between the problem classes that the compared
code solve: the algorithm behind Blossom V solves
non-bipartite 1-matchings, whereas the proposed al-
gorithm is specialized for bipartite b-matchings. Nev-
ertheless, in this comparison, all algorithms are given
bipartite 1-matchings. These tests were run on a per-
sonal computer with an 8-core 3 GHz Intel Xeon pro-
cessor (though each run was single-threaded).

3.2 Synthetic Adversarial Example

In this section, we present an experiment that is an
adversarial example for the sufficient selection algo-
rithm. We construct an iid sampling scheme that
generates data where the cached nearest neighbors of
certain points will not be the b-matched neighbors
until we cache Ω(N) neighbors. The data is gen-
erated by randomly sampling points uniformly from
the surfaces of two hyperspheres in high dimensional
space R500, one with radius 1.0 and the other with
radius 0.1. The result is that, due to concentration,
the points on the outer hypersphere are closer to all
points on the inner sphere than any other points on the
outer sphere, with high probability. Yet, the minimum
distance b-matching will connect points according to
which sphere they were sampled from. The distance
between outer points to inner points will be in the
range [0.9, 1.1], and the distance between outer points
to other outer points will concentrate around

√
2 when

dimensionality is much larger than N (because each
vector is orthogonal with high probability). All outer
points will rank the inner points as their nearest neigh-
bors before any outer points, but due to b-matching

constraints, not enough edges are available from the
inner points. This is an example where, for belief prop-
agation to find the best b-matching, the α and β values
must be negatively correlated with the weights.

Using cache sizes from 0 to m + n, where c = m + n
allows the full sufficient selection, running times are
compared for different sized input. From the argu-
ments above, the sufficient selection should fail to im-
prove upon the asymptotic time of full selection for
all nodes on the outer hypersphere. Nevertheless, a
constant time speedup is still achieved by exploiting
order information. This may simply be because, suf-
ficient selection speeds up performance for the points
on the inner hypersphere but not for the adversarially
arranged points on the outer hypersphere.
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Figure 3: High Dimensional Two Hypersphere Run-
ning Times. Even for a full cache size, the running
time seems to still scale quadratically, albeit with a
smaller constant factor.

3.3 Handwritten Digits

We perform timing tests on the MNIST digits data set
(LeCun et al., 2001), which contains 60k training and
10k testing handwritten digit images. The images are
centered, and represented as 28 × 28 pixel grayscale
images. We use principle components analysis (PCA)
to reduce the 784 pixel dimensions of each image to
the top 100 principle eigenvector projections. We use
negative Euclidean distance between PCA-projected
digits as edge weights, and time sufficient selection be-
lief propagation on a subsampled data set with vary-
ing cache sizes. In particular, for this test, we sample
10% of both the training and testing sets, resulting
in 6000 training and 1000 testing digits. We generate
feasible b-matching constraints by setting the target
degree btr ∈ {1, . . . , 5} for the training points and the
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target degree bte for testing points to bte = 6btr (since
there are six times as many training points).

Since there are 600 million candidate edges between
training and testing examples, any algorithm that
stores and updates beliefs or states for each edge, such
as the original belief propagation algorithm described
by Huang and Jebara (2007) or the Blossom V algo-
rithm by Kolmogorov (2009) cannot be run on most
computers without the use of expensive virtual mem-
ory swapping. Thus, we only compare the running
times of linear memory b-matching belief propagation
as described in Section 2.2 using different cache sizes.

These timing tests were run on a Mac Pro with an 8-
core 3 GHz Intel Xeon processor, each b-matching job
running on only a single core. The results show that
for a cache size of 200, the solution time is reduced
from around an hour to fewer than ten minutes. In-
terestingly, the running time for larger b values is less,
which is because belief propagation seems to converge
in fewer iterations. For larger cache sizes, we achieve
minimal further improvement in running time; it seems
that once the cache size is large enough, the algorithm
finishes selection before running out of cached weights.

Finally, using a cache size of 3500, finding the mini-
mum distance matching for the full MNIST data set,
which contains six hundred million candidate edges
between training and testing examples, took approxi-
mately five hours for btr = 1 and btr = 4. The statis-
tics from each run are summarized in Table 1. As in
the synthetic examples, we count the number of be-
lief lookups during the entire run and can compare
against the total number that would have been nec-
essary had a standard selection algorithm been used
(which is (m + n)2 per iteration). The running time
is approximately 100 times faster than the estimated
time for belief propagation with naive selection.
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Figure 4: Minimum Euclidean Distance b-Matching
Subsampled MNIST Digit Running Times. Weighted
b-matching is solved on a subset of the MNIST data
set. Running times are measured for various target
degrees btr and bte, as well as weight cache sizes. See
Table 1 for running time measurements on the full
MNIST data set.

Table 1: Running Time Statistics on Full MNIST Data
Set. Matching the full MNIST training set to the test-
ing set considers 7000 nodes and 600 million edges.
The table columns are, from left to right, the target
degrees btr and bte for training and testing nodes, raw
running time for b-matching in minutes, the total num-
ber of belief lookups during the entire run, and the
percentage of the belief lookups that would have been
necessary using naive belief propagation (% Full).

btr bte Time (min.) Belief Lookups % Full
1 6 285.77 4.5992× 1010 0.94%
4 24 306.76 5.2208× 1010 1.11%

4 DISCUSSION

This article presented an enhanced belief propagation
algorithm that solves maximum weight b-matching.
The enhancements yield significant improvements in
space requirement and running time. The space re-
quirement is reduced from quadratic to linear, and the
running time is reduced from O(N3) to O(N2.5) under
certain assumptions. Empirical performance is con-
sistent with the theoretical analysis, yet the theoreti-
cal analysis needs restrictive assumptions, so relaxing
these to more realistic scenarios remains future work.

Further speed and space improvements may be pos-
sible by conceding exactness in favor of an approxi-
mation scheme. For example, node descriptors can be
stored using hashing schemes that preserve the recon-
struction of node distances (Karatzoglou et al., 2010).
Additionally, the initial iteration requires essentially a
k-nearest neighbor computation, for which there are
various approximate methods with speed tradeoffs.
Extra analysis is necessary, however, to provide the
error bound for the resulting b-matching, as well as to
ensure that belief propagation converges. Parallel ver-
sions of the proposed algorithm are yet to be imple-
mented, and, while they seem theoretically straight-
forward, exactly implementing the parallelization as
efficiently as possible remains future work. Finally,
because of this algorithm, the class of b-matching prob-
lems efficiently solvable is now much larger, so appli-
cation of b-matching (and the algorithms that build on
b-matching) to larger scale data is a significant direc-
tion of future research.
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