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Abstract

Incorporating feature selection into a clas-
si�cation or regression method often carries
a number of advantages. In this paper we
formalize feature selection speci�cally from a
discriminative perspective of improving clas-
si�cation/regression accuracy. The feature
selection method is developed as an extension
to the recently proposed maximum entropy
discrimination (MED) framework. We de-
scribe MED as a 
exible (Bayesian) regular-
ization approach that subsumes, e.g., support
vector classi�cation, regression and exponen-
tial family models. For brevity, we restrict
ourselves primarily to feature selection in
the context of linear classi�cation/regression
methods and demonstrate that the proposed
approach indeed carries substantial improve-
ments in practice. Moreover, we discuss and
develop various extensions of feature selec-
tion, including the problem of dealing with
example speci�c but unobserved degrees of
freedom { alignments or invariants.

1 Introduction

Robust (discriminative) classi�cation and regression
methods have been successful in many areas rang-
ing from image and document classi�cation[7] to
problems in biosequence analysis[5] and time series
prediction[11]. Techniques such as Support vector
machines[15], Gaussian process models[16], Boosting
algorithms[1, 2], and more standard but related statis-
tical methods such as logistic regression, are all robust
against errors in structural assumptions. This prop-
erty arises from a precise match between the training
objective and the criterion by which the methods are
subsequently evaluated.

Probabilistic (generative) models such as graphical
models o�er complementary advantages in classi�ca-
tion or regression tasks such as the ability to deal e�ec-
tively with uncertain or incomplete examples. Several

approaches have been recently proposed for combining
the generative and discriminative methods, including
[4, 6, 14]. We provide an additional point of contact
in the current paper.

The focus of this paper is on feature selection. The fea-
ture selection problem may involve �nding the struc-
ture of a graphical model (as in [12]) or identifying
a set of components of the input examples that are
relevant for a classi�cation task. More generally, fea-
ture selection can be viewed as a problem of setting
discrete structural parameters associated with a spe-
ci�c classi�cation or regression method. We subscribe
here to the view that feature selection is not merely
for reducing the computational load associated with
a high dimensional classi�cation or regression problem
but can be tailored primarily to improve prediction ac-
curacy (cf. [9]). This perspective excludes a number of
otherwise useful feature selection approaches such as
any �lteringmethod that operates independently from
the classi�cation task/method at hand. Linear classi-
�ers, for example, impose strict constraints about the
type of features that are at all useful. Such constraints
should be included in the objective function governing
the feature selection process.

The form of feature selection we develop in this paper
results in a type of feature weighting. Each feature
or structural parameter is associated with a probabil-
ity value. The feature selection process translates into
estimating the most discriminative probability distri-
bution over the structural parameters. Irrelevant fea-
tures quickly receive low albeit non-zero probabilities
of being selected. We emphasize that the feature selec-
tion is carried out jointly and discriminatively together
with the estimation of the speci�c classi�cation or re-
gression method. This type of feature selection is, per-
haps surprisingly, most bene�cial when the number of
training examples is relatively small compared to their
dimensionality.

The paper is organized as follows. We begin by mo-
tivating the discriminative maximum entropy frame-
work from the point of view of regularization theory.
We then explicate how to solve classi�cation and re-
gression problems in the context of maximum entropy



formalismand, subsequently, extend these ideas to fea-
ture selection by incorporating discrete structural pa-
rameters. Finally, we expose some future directions
and problems.

2 Regularization framework and
Maximum entropy

We begin by motivating the maximum entropy frame-
work from the perspective of regularization theory.
A reader interested primarily in feature selection and
who may already be familiar with the maximum en-
tropy framework may wish to skip this section except
de�nition 1.

For simplicity, we will focus on binary classi�cation;
the extension to multi-class classi�cation and regres-
sion problems is discussed later in the paper. Given a
set of training examples fX1; : : : ; XTg and the corre-
sponding binary (�1) labels fy1; : : : ; yTg, we seek to
minimize some measure of classi�cation error or loss
within a chosen parametric family of decision bound-
aries such as linear. The decision boundaries are ex-
pressed in terms of discriminant functions, L(X; �),
the sign of which determines the predicted label.

We consider a speci�c class of loss functions, those
that depend on the parameters � only through what
is known as the classi�cation margin. The margin,
de�ned as yt L(Xt; �), is large and positive when-
ever the label yt agrees with the real valued predic-
tion L(Xt; �). We assume that the loss function,
L : R ! R, is a non-increasing and convex func-
tion of the margin. Thus a larger margin accompanies
a smaller loss. Many loss functions for classi�cation
problems are indeed of this type.

Given this class of margin loss functions L(�), we can
de�ne a regularization method for classi�cation. Given
a convex regularization penalty R(�) (typically the
squared Euclidean norm), we estimate the parameters
� by minimizing a combination of the empirical loss
and the regularization penalty

J(�) =
X
t

L ( yt L(Xt; �) ) + R(�)

The resulting �̂ can be subsequently used in the de-

cision rule y = sign
�
L(X; �̂)

�
to classify yet unseen

examples.

Any regularization approach of this form admits a sim-
ple alternative description in terms of classi�cation
constraints. Given a convex non-increasing margin loss
function L(�) as before, we can cast the minimization
problem above as follows: minimize R(�) +

P
tL(
t)

with respect to � and the margin parameters 
 =
[
1; : : : ; 
T ] subject to the classi�cation constraints
yt L(Xt; �)� 
t � 0; 8t.

The maximumentropy framework proposed in [3] gen-
eralizes and clari�es this formulation in several re-

spects. For example, we no longer �nd a �xed set-
ting of the parameters � but a distribution over them.
This generalization facilitates a number of extensions
of the basic approach including feature selection de-
scribed in this paper . The choice of the loss function
(penalties for violating the margin constraints) also
admits a more principled solution. We quote here a
slightly rewritten (MED) formulation:

De�nition 1 We �nd P (�; 
) over the parameters
� and the margin variables 
 = [
1; : : : ; 
T ] that
minimizes KL(P�kP

0
�) +

P
tKL(P
tkP

0

t
) subject toR

P (�; 
) [ytL(Xt;�)�
t]d�d
 � 0 8t. Here P 0
� and

P 0

 are the prior distributions over the parameters and

the margin variables, respectively. The resulting de-
cision rule is given by ŷ = sign(

R
P (�)L(X;�)d�).

Note that in the above de�nition, we have relaxed the
classi�cation constraints into averaged constraints that
are less restrictive in the sense that they need not
hold for any speci�c parameter/margin value. Sec-
ond, the regularization penalty (the analog of R(�))
and the margin penalties (the analogs of L(
t)) are
now measured on a common scale, i.e., in terms of
KL-divergences. The common scale puts the inherent
trade-o� between these penalties on a more sound foot-
ing. Third, after specifying a prior distribution over
the margin variables, we have fully speci�ed the mar-
gin penalties: KL(P
tkP

0

t
). This contributes a di�er-

ent perspective to the choice of the margin penalties.

Our probabilistic extension also admits an information
theoretic interpretation. The method now minimizes
the number of bits we have to extract from the training
examples so as to satisfy the classi�cation constraints.
In this interpretation, the solution P �(�; 
) is treated
as the posterior distribution given the data. Under cer-
tain conditions on the prior P 0(�)P 0(
), the expected
penalty (the quantity being minimized) reduces to the
mutual information between the data and the param-
eters. A more technical argument will be given in a
longer version of the paper.

We could transform the maximum entropy formula-
tion back into the regularization form and explicate
the resulting loss functions and regularization penal-
ties. Expressing the problem in terms of classi�cation
constraints seems, however, more 
exible in a proba-
bilistic context.

2.1 Solution

The solution to the MED classi�cation problem in Def-
inition 1 is directly solvable using a classical result
from maximum entropy:

Theorem 1 The solution to the MED problem has the
following general form (cf. Cover and Thomas 1996):

P (�; 
) =
1

Z(�)
P0(�; 
) e

P
t
�t[ ytL(Xtj�)�
t ]



where Z(�) is the normalization constant (partition
function) and � = f�1; : : : ; �Tg de�nes a set of non-
negative Lagrange multipliers, one per classi�cation
constraint. � are set by �nding the unique maximum
of the jointly concave objective function

J(�) = � logZ(�) (1)

Unfortunately, integrals are required to compute the
log-partition function which may not always be analyt-
ically solvable. Furthermore, evaluation of the decision
rule also requires an integral followed by a sign oper-
ation which may not be feasible for arbitrary choices
of the priors and discriminant functions. However, it
is generally true that if the discriminant arises from
the ratio of two generative models1 in the exponential
family and the prior over the model is from the con-
jugate of that exponential family member, then the
computations are tractable (see Appendix). In these
cases, the discriminant function is:

L(X; �) = log
P (Xj�+)

P (Xj��)
+ b (2)

Here, b is a bias term that can be considered as a
log-ratio of prior class probabilities. The variables
f�+; ��g are parameters and structures for the gener-
ative models in the exponential family for the positive
and negative class respectively. Therefore, classi�ca-
tion using linear decisions, multinomials, Gaussians,
Poisson, tree-structured graphs and other exponential
family members are all accommodated. Generative
models outside the exponential family may still be ac-
commodated although approximations such as mean-
�eld might be necessary.

Once the concave objective function is given (possi-
bly with a convex hull of constraints), optimization
towards the unique maximum can be done with a va-
riety of techniques. Typically, we utilize a randomized
axis-parallel line search (i.e. searching with Brent's
method) in each of the directions of �.

2.2 Dual priors and penalty functions

Expanding the de�nition of the objective function in
Theorem 1, we obtain the following log-partition to
minimize in � with constraints on the variables (i.e.
positivity among other possibilities):

logZ = log

�Z
P0(�)e

P
t
�tytL(Xtj�)d�

�

+
X
t

log

�Z
P0(
t)e

��t
td
t

�

= logZ�(�) +
X
t

logZ
t(�t)

1Note, here we shall use the term generative model to
mean a distribution over data whose parameters and struc-
ture are estimated without necessarily resorting to tradi-
tional Bayesian approaches.
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Figure 1: Margin prior distribution (left) and associ-
ated penalty function (right).

Note the factorization of P (�; 
) into P (�)�tP (
t)
due to the original factorization in the prior P0. This
objective function is also similar to the de�nition of
J(�) in the regularization approach. We now have a
direct way of �nding penalty terms logZ
t(�t) from
margin priors P0(
t) and vice-versa. Thus, there is a
dual relationship between de�ning an objective func-
tion and penalty terms and de�ning a prior distribu-
tion over parameters and prior distribution over mar-
gins.

For instance, consider the prior margin distribution
P (
) = �tP (
t) where

P (
t) = ce�c(1�
t); 
t � 1 (3)

Integrating, we get the penalty function (Figure 1):

logZ
t(�t) = log

Z 1


t=�1

ce�c(1�
t)e��t
td
t

= �t + log(1� �t=c)

Figure 1 shows the above prior and its associated
penalty term.

2.3 SVM Classi�cation

Using the MED formulation and assuming a linear
discriminant function with a Gaussian prior on the
weights produces support vector machines:

Theorem 2 Assuming L(X; �) = �TX + b and
P0(�; 
) = P0(�)P0(b)P0(
) where P0(�) is N (0; I),
P0(b) approaches a non-informative prior, and P0(
)
is given by P0(
t) as in Equation 3 then the Lagrange
multipliers � are obtained by maximizing J(�) subject
to 0 � �t � c and

P
t �tyt = 0, where

J(�) =
X
t

[�t + log(1 � �t=c) ]�
1

2

X
t;t0

�t�t0ytyt0 (X
T
t Xt0 )

The only di�erence between our J(�) and the (dual)
optimization problem for SVMs is the additional po-
tential term log(1��t=c) which acts as a barrier func-
tion preventing the � values from growing beyond
c. This highlights the e�ect of the di�erent miss-
classi�cation penalties. In the separable case, letting
c!1, the two methods coincide. The decision rules
are formally identical.



2.4 Probability Density Classi�cation

Other discriminant functions can be accommodated,
including likelihood ratios of probability models. This
permits the concepts of large margin and support vec-
tors to operate in a generative model setting. For in-
stance, one could consider the discriminant that arises
from the likelihood ratio of two Gaussians: L(X; �) =
logN (�1;�1)�logN (�2;�2)+b or the likelihood ratio
of two tree-structures models. This and other discrim-
inative classi�cations using non-SVM models are de-
tailed in [3]. Also, refer to the Appendix in this paper
for derivations related to general exponential family
densities.

It is straightforward to perform multi-class discrimi-
native density estimation by adding extra classi�ca-
tion constraints. The binary case merely requires T
inequalities of the form: yt L(Xt; �) � 
t � 0; 8t.
In a multi-class setting, constraints are needed for all
pairwise log-likelihood ratios. In other words, in a 3
class problem (A;B;C), with 3 models (�A; �B; �C), if
yt = A, the log-likelihood of model �A must dominate.
In other words, we have the following two classi�cation
constraints:Z

P (�; 
)[log
P (Xtj�A)

P (Xtj�B)
+ bAB � 
]d�d
 � 0Z

P (�; 
)[log
P (Xtj�A)

P (Xtj�C)
+ bAC � 
]d�d
 � 0

3 MED Regression

The MED formalism is not restricted to classi�cation.
It can also accommodate other tasks such as anomaly
detection [3]. Here, we present its extension to the
regression (or function approximation) case using the
approach and nomenclature in [13]. Dual sided con-
straints are imposed on the output such that an inter-
val called an �-tube around the function is described
2. Suppose training input examples fX1; : : : ; XTg are
given with their corresponding output values as con-
tinuous scalars fy1; : : : ; yTg. We wish to solve for a
distribution of parameters of a discriminative regres-
sion function as well as margin variables:

Theorem 3 The maximum entropy discrimination
regression problem can be cast as follows:

Find P (�; 
) that minimizes KL(PkP0) subject to the
constraints:R

P (�; 
) [yt � L(Xt; �) + 
t] d�d
 � 0; t = 1::TR
P (�; 
) [
0t � yt + L(Xt; �)] d�d
 � 0; t = 1::T

where L(Xt; �) is a discriminant function and P0 is a
prior distribution over models and margins. The de-

2An �-tube (as in the SVM literature) is a region of
insensitivity in the loss function which only penalizes ap-
proximation errors which deviate by more than � from the
data.
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Figure 2: Margin prior distribution (left) and associ-
ated penalty function (right).

cision rule is given by ŷ =
R
P (�) L(X; �)d�. The

solution is given by:

P (�; 
) =
1

Z(�)
P0(�; 
)

e
P

t
�t[ yt�L(Xtj�)+
t ]

e
P

t
�0
t
[ yt�L(Xtj�)�
0

t
]

where the objective function is again � logZ(�).

Typically, we have the following prior for 
 which dif-
fers from the classi�cation case due to the additive
role of the output yt (versus multiplicative) and the
two-sided constraints.

P (
t) /

�
1 if 0 � 
t � �

ec(��
t) if 
t > �

�
(4)

Integrating, we obtain:

logZ
t(�t) = log
R �
0 e

�t
td
t +
R1
�

ec(��
t)e�t
td
t

logZ
t(�t) = ��t � log(�t) + log
�
1� e��t� + �t

c��t

�
Figure 2 shows the above prior and its associated
penalty terms under di�erent settings of c and �. Vary-
ing � e�ectively modi�es the thickness of the �-tube
around the function. Furthermore, c varies the robust-
ness to outliers by tolerating violations of the �-tube.

3.1 SVM Regression

If we assume a linear discriminant function for L (or
linear decision after a Kernel), the MED formulation
generates the same objective function that arises in
SVM regression [13]:

Theorem 4 Assuming L(X; �) = �TX + b and
P0(�; 
) = P0(�)P0(b)P0(
) where P0(�) is N (0; I),
P0(b) approaches a non-informative prior, and P0(
)
is given by Equation 4 then the Lagrange multipliers �
are obtained by maximizing J(�) subject to 0 � �t � c,
0 � �0t � c and

P
t �t =

P
t �

0
t, where

J(�) =
X
t

yt(�
0
t � �t)� �

X
t

(�t + �0t)



−10 −5 0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−10 −5 0 5 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3: MED approximation to the sinc function:
noise-free case (left) and with Gaussian noise (right).

+
X
t

log(�t) � log

�
1� e��t� +

�t
c� �t

�

+
X
t

log(�0t) � log

�
1� e��

0
t� +

�0t
c� �0t

�

�
1

2

X
t;t0

(�t � �0t)(�t0 � �0t0)(X
T
t Xt0 )

As can be seen (and more so as c!1), the objective
becomes very similar to the one in SVM regression.
There are some additional penalty functions (all the
logarithmic terms) which can be considered as bar-
rier functions in the optimization to maintain the con-
straints.

To illustrate the regression, we approximate the sinc
function, a popular example in the SVM literature.
Here, we sampled 100 points from the sinc(x) =
jxj�1 sin jxj within the interval [-10,10]. We also con-
sidered a noisy version of the sinc function where Gaus-
sian additive noise of standard deviation 0.2 was added
to the output. Figure 3 shows the resulting function
approximation which is very similar to the SVM case.
The Kernel applied was an 8th order polynomial 3.

4 Feature selection in classi�cation

We now extend the formulations to accomodate fea-
ture selection. We begin with the classi�cation case.
For simplicity, consider only linear classi�ers and pa-
rameterize the discriminant function as follows

L(X; �) =
nX
i=1

�isiXi + �0

where � = f�0; : : : ; �n; s1; : : : ; sng now also contains
binary structural parameters si 2 f0; 1g. These either

3A Kernel implicitly transforms the input data by mod-
ifying the dot-product between data vectors k(Xt;X

0

t) =
h�(Xt);�(X 0

t)i. This can also be done by explicitly remap-
ping the data via the transformation �(Xt) and using the
conventional dot-product. This permits non-linear classi�-
cation and regression using the basic linear SVM machin-
ery. For example, an m-th order polynomial expansion
replaces a vector Xt by �(Xt) = [Xt; X

2

t ; : : :X
m

t ].
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Figure 4: The prior distribution over �isi.

select or exclude a particular component of the input
vector X. Recall that there is no inherent di�erence
between discrete and continuous variables in the MED
formalism since we are primarily dealing with only dis-
tributions over such parameters [3].

To completely specify the learning method in this con-
text, we have to de�ne a prior distribution over the pa-
rameters � as well as over the margin variables 
. For
the latter, we use the prior described in Eq. (3). The
choice of the prior P0(�) is critical as it determines the
e�ect of the discrete parameters s. For example, as-
signing a larger prior probability for si = 1; 8i simply
reduces the problem to the standard formulation dis-
cussed earlier. We provide here one reasonable choice:

P0(�) = P0;�0(�0)P0;�(�)
nY
i=1

Ps;0(si)

where P0;�0 is an uninformative prior4, P�;0(�) =
N (0; I), and

Ps;0(si) = psi0 (1� p0)
1�si

where p0 controls the overall prior probability of in-
cluding a feature. This prior should be viewed in terms
of the distribution that it de�nes over �isi. The �gure
below illustrates this for one component.

4.1 The log-partition function

Having de�ned the prior distribution over the parame-
ters in the MED formalism, it remains to evaluate the
partition function (cf. Eq. (1)). Again we �rst remove
the e�ect of the bias variable and obtain the additional
constraint5

P
t �tyt = 0 on the Lagrange multipliers

associated with the classi�cation constraints. Omit-
ting the straightforward algebra, we obtain

J(�) = � logZ(�)

4Or a zero mean Gaussian prior with a su�ciently large
variance.

5Alternatively, if a broad Gaussian prior (� � 1) is
used for the bias term, we would end up with a quadratic

penalty term ��
2

2

P
t
�tyt in the objective function J(�)

but without the additional constraint
P

t
�tyt = 0. This

soft constraint often simpli�es the optimization of J(�) and
for su�ciently large � has no e�ect on the solution.



=
X
t

[�t + log(1� �t=c)]

�
nX
i=1

log
h
1� p0 + p0e

1
2 (
P

t
�tytXt;i)

2
i

which we maximize subject to
P

t �tyt = 0.

This closed form expression for logZ(�) allows us to
study further the properties of the resulting maximum
entropy distribution over �isi. The mean of this dis-
tribution is readily found by observing that

@logZ(�t)

@�t
= EPf yt

X
i

�isiXt;i � 
t g

= yt
X
i

EP f �isi gXt;i � EPf
tg

= yt
X
i

Pi(
X
t

�t0yt0Xt0;i)Xt;i � (1 �
1

c� �t
)

where the expectations are with respect to the maxi-
mum entropy distribution. (note that the average over
the bias term is missing since we did not include it in
the de�nition of the partition function Z(�)). Here Pi
is de�ned as

Pi = Logistic

"
(
X
t0

�tyt0Xt0;i)
2 + log

p0
1� p0

#

We denoteWi =
P

t0 �tyt0Xt0;i, which is formally iden-
tical to the average EP f�ig in the absence of the se-
lection variables si (i.e., without feature selection). In
our case,

EPf�isig = Logistic

�
W 2

i + log
p0

1� p0

�
Wi

We may now understand the e�ect of the discrete se-
lection variables by comparing the functional form of
the above average with Wi as Wi is varied.

The �gure below illustrates Pi(Wi)Wi andWi for pos-
itive values of Wi. The e�ect of the feature selection
is clearly seen in terms of the rapid non-linear decay
of the e�ective coe�cient Pi(Wi)Wi with decreasing
Wi. The two graphs merge for larger values of Wi cor-
responding to the setting si = 1. The location where
the selection takes place depends on the prior proba-
bility of p0, and happens around

W �
i = �

r
log

1� p0
p0

In Figure 5, p0 = 0:01.

4.2 Experimental results

We tested our linear feature selection method on a
DNA splice site recognition problem, where the prob-
lem is to distinguish true and spurious splice sites. The
examples were �xed length DNA sequences (length
25) that we binary encoded (4 bit translation of
fA;C; T;Gg) into a vector of 100 binary components.
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Figure 5: The behavior of the linear coe�cients with
and without feature selection. In feature selection,
smaller coe�cients have greatly diminished e�ects
(solid line).
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Figure 6: ROC curves on the splice site problem with
feature selection p0 = 0:00001 (solid line) and without
p0 = 0:99999 (dashed line).

The training set consisted of 500 examples and the in-
dependent test set contained 4724 examples. Figure 6
illustrates the bene�t arising from the feature selection
approach.

In order to verify that the feature selection indeed
greatly reduces the e�ective number of components, we
computed the empirical cumulative distribution func-
tions of the magnitudes of the resulting coe�cients
P̂ (j ~W j < x) as a function of x based on the 100 com-
ponents. In the feature selection context, the linear
coe�cients are ~Wi = EPf�isig, i = 1; : : : ; 100 and
~Wi = EP f�ig when no feature selection is used. These
coe�cients appear in the decision rules in the two cases
and thus provide a meaningful comparison. Figure 7
indicates that most of the weights resulting from the
feature selection algorithm are indeed small enough to
be neglected.

Since the complexity of the feature selection algorithm
scales only linearly in the number of original features
(components), we can also use quadratic component-
wise expansions of the examples as the input vectors.
Figure 7 below shows that the bene�t from the feature
selection algorithm does not degrade as the number of
features increases (in this case � 5000).
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Figure 7: Cumulative distribution functions for the
resulting e�ective linear coe�cients with feature selec-
tion (solid line) and without (dashed line).
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Figure 8: ROC curves corresponding to a quadratic
expansion of the features with feature selection p0 =
0:00001 (solid line) and without p0 = 0:99999 (dashed
line).

5 Feature selection in regression

Feature selection can also be advantageous in the re-
gression case where a map is learned from inputs to
scalar outputs. Since some input features might be ir-
relevant (especially after a Kernel expansion), we again
employ an aggressive pruning approach by adding a
\switch" (si) on the parameters as before. The prior
is given by P0(si) = psi0 (1 � p0)

1�si where lower val-
ues of p0 encourage further sparsi�cation. This prior
is in addition to the Gaussian prior on the parameters
(�i) which does not have quite the same sparsi�cation
properties.

The previous derivation for feature selection can also
be applied in a regression context. The same priors are
used except that the prior over margins is swapped
with the one in Equation 4. Also, we shall include
the estimation of the bias in this case, where we have
a Gaussian prior: P0(b) = N (0; �). This replaces
the hard constraint that

P
t �t =

P
t �

0
t with a soft

quadratic penalty, making computations simpler. Af-
ter some straightforward algebraic manipulations, we

Linear Model Estimator �-sensitive linear loss
Least-Squares Fit 1.7584
MED p0 = 0:99999 1.7529
MED p0 = 0:1 1.6894
MED p0 = 0:001 1.5377
MED p0 = 0:00001 1.4808

Table 1: Prediction Test Results on Boston Housing
Data. Note, due to data rescaling, only the relative
quantities here are meaningful.

obtain the following form for the objective function:

J(�) =
P

t yt(�
0
t � �t) � �

P
t(�t + �0t)

�1
2�(

P
t �t � �0t)

2

+
P

t log(�t)� log
�
1� e��t� + �t
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�
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P

t log(�
0
t)� log

�
1� e��

0
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�0t
c��0t

�
�
P

i log
�
1� p0 + p0e

1
2 [
P

t
(�t��

0
t)Xt;i]

2
�

This objective function is optimized over (�t; �
0
t) and

by concavity has a unique maximum. The optimiza-
tion over Lagrange multipliers controls optimization of
the densities of the model parameter settings P (�) as
well as the switch settings P (s). Thus, there is a joint
discriminative optimization over feature selection and
parameter settings.

5.1 Experimental Results

Below, we evaluate the feature selection based re-
gression (or Support Feature Machine, in principle)
on a popular benchmark dataset, the 'Boston hous-
ing' problem from the UCI repository. A total of
13 features (all treated continuously) are given to
predict a scalar output (the median value of owner-
occupied homes in thousands of dollars). To evaluate
the dataset, we utilized both a linear regression and a
2nd order polynomial regression by applying a Kernel
expansion to the input. The dataset is split into 481
training samples and 25 testing samples (as in [14]).

Table 1 indicates that feature selection (decreasing p0)
generally improves the discriminative power of the re-
gression. Here, the �-sensitive linear loss functions
(typical in the SVM literature) shows improvements
with further feature selection. Just as sparseness in the
number of vectors helps generalization, sparseness in
the number of features is advantageous as well. Here,
there is a total of 104 input features after the 2nd order
polynomial Kernel expansion. However, not all have
the same discriminative power and pruning is bene�-
cial.

For the 3 trial settings of the sparsi�cation level prior
(p0 = 0:99999; p0 = 0:001; p0 = 0:00001), we again an-
alyze the cumulative density function of the resulting
linear coe�cients P̂ (j ~W j < x) as a function of x based
on the features from the Kernel expansion. Figure 9
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Figure 9: Cumulative distribution functions for the lin-
ear regression coe�cients under various levels of spar-
si�cation. Dashed line: p0 = 0:99999, dotted line:
p0 = 0:001 and solid line: p0 = 0:00001.

Linear Model Estimator �-sensitive linear loss
Least-Squares Fit 3.609e+03
MED p0 = 0:00001 1.6734e+03

Table 2: Prediction Test Results on Gene Expression
Level Data.

clearly indicates that the magnitudes of the coe�cients
are reduced as the sparsi�cation prior is increased.

The MED regression was also used to predict gene ex-
pression levels using data from \Systematic variation
in gene expression in human cancer cell lines", by D.
Ross et. al. Here, log-ratios (log(RAT2n)) of gene ex-
pression levels were to be predicted for a Renal Cancer
cell-line from measurements of each gene's expression
levels across di�erent cell-lines and cancer-types. In-
put data forms a 67-dimensional vector while output
is a 1-dimensional scalar gene expression level. Train-
ing set size was limited to 50 examples and testing was
over 3951 examples. The table below summarizes the
results. Here, an � = 0:2 was used along with c = 10
for the MED approach. This indicates that the fea-
ture selection is particularly helpful in sparse training
situations.

6 Discriminative feature selection in
generative models

As mentioned earlier, the MED framework is not re-
stricted to discriminant functions that are linear or
non-probabilistic. For instance, we can consider the
use of feature selection in a generative model-based
classi�er. One simple case is the discriminant formed
from the ratio of two identity-covariance Gaussians.
Parameters � are (�; �) for the means of the y = +1
and y = �1 classes respectively and the discriminant
is L(X; �) = logN (�; I) � logN (�; I) + b. As before,
we insert switches (si and ri) to turn o� certain com-
ponents of each of the Gaussians giving us:

L(X; �) =
X
i

si(Xi � �i)
2 �

X
i

ri(Xi � �i)
2 + b

This discriminant then uses the similar priors to the
ones previously introduced for feature selection in a
linear classi�er. It is straightforward to integrate (and
sum over discrete si and ri) with these priors (shown
below and in Equation 3) to get an analytic concave
objective function J(�):

P0(�) = N (0; I) P0(�) = N (0; I)
P0(si) = psi0 (1� p0)1�si P0(ri) = pri0 (1 � p0)1�ri

In short, optimizing the feature selection and means
for these generative models jointly will produce degen-
erate Gaussians which are of smaller dimensionality
than the original feature space. Such a feature selec-
tion process could be applied to many density models
in principle but computations may require mean-�eld
or other approximations to become tractable.

7 Example-speci�c features, latent

variables and transformations

Another extension of the MED framework concerns
feature selection with example-speci�c degrees of free-
dom such as invariant transformations or alignments
(the idea and the problem formulation resemble those
proposed in [10]). For example, assume for each in-
put vector in fX1; : : : ; XTg we are given not only a
binary class label in fy1; : : : ; yTg but also a hidden
transformation variable in fU1; : : : ; UTg. The trans-
formation variable modi�es the input space to gen-
erate a di�erent X̂ = T (X;U ). The transformation
Ut associated with each data point is, however, un-
known with some prior probability P0(Ut). For ex-
ample, the discriminant function could be de�ned as
L(Xt;�) = �T (Xt � Ut~1) + b, where the scalar Ut
represents a translation along ~1. More generally, the
presence of the latent transformation variables U en-
code invariants. The MED solution would then be
given by:

P (�; U; 
) =
1

Z(�)
P0(�; U; 
) e

P
t
�t[ ytL(Xt�Ut~1j�)�
t ]

In this discriminative formulation, the solution can be
obtained only in a transductive sense [15]. In other
words, bias for selecting the latent transformations
comes from the preference towards large margin clas-
si�cation. Any set of new examples to be classi�ed
possess independent transformation variables. They
must be included with the training examples as un-
labeled examples to exploit the bias. The solution is
obtained similarly to the treatment of ordinary unla-
beled examples in [3]. More speci�cally, we can make
use of a mean-�eld approximation to iteratively opti-
mize the relevant distributions. First, we hypothesize
a marginal distribution over the transformation vari-
ables (such as the prior), �x these distributions and up-
date P (�) independently. The resulting P (�) would
be in turn held constant and the P (U ) updated and so
on. The convergence of such alternating optimization
is guaranteed as in [3].



As an example, consider transformations that corre-
spond to warping of a temporal signal. If X is a
time varying multi-dimensional signal, we could align
it to a model such as a hidden Markov model. The
HMM speci�cation provides the ordinary parameters
in this context while the hidden state sequence takes
the role of the individual transformations. Further ex-
periments relating to this will be made available at:

http://www.media.mit.edu/~jebara/med

8 Discussion

We have formalized feature selection as an extension
of the maximum entropy discrimination formalism, a
Bayesian regularization approach. The selection of fea-
tures is carried out by �nding the most discriminative
probability distribution over the structural selection
parameters or transformations corresponding to the
features. Such calculations were shown to be feasible
in the context of linear classi�cation/regression meth-
ods and when the discriminant functions arise from
log-likelihood ratios of class-conditional distributions
in the exponential family. Our experimental results
support the contention that discriminative feature se-
lection indeed accompanies a substantial improvement
in prediction accuracy. Finally, the feature selection
formalism was further extended to cover unobserved
degrees of freedom associated with individual exam-
ples such as invariances or alignments.

A Exponential Family

As mentioned in the text, discriminant functions that
can be e�ciently solved within the MED approach in-
clude log-likelihood ratios of the exponential family of
distributions. This family subsumes a wide set of dis-
tributions and its members are characterized by the
following form: p(Xj�) = exp(A(X) + XT � � K(�))
for any convex K. Each family member has a conju-
gate prior distribution given by p(�j�) = exp( ~A(�) +
�T�� ~K(�)); here ~K is also convex.

Whether or not a speci�c combination of a discrimi-
nant function and an associated prior over the parame-
ters is feasible within the MED framework depends on
whether we can evaluate the partition function (the
objective function used for optimizing the Lagrange
multipliers associated with the constraints). In gen-
eral, these operations will require integrals over the
associated parameter distributions. In particular, re-
call the partition function corresponding to the binary
classi�cation case (Section 2.2). Consider the integral
over � in:

Z�(�) =

Z
P0(�)e

P
t
�tytL(Xtj�)d�

If we now separate out the parameters associated with
the class-conditional densities as well as the bias term

(i.e. �+; ��; b) and expand the discriminant function
as a log-likelihood ratio, we obtain the following:

Z� =

Z
P0(�+)P0(��)P0(b)e

P
t
�tyt[log

P (Xj�+)

P (Xj��)+b]d�

which factorizes as Z� = Z�+Z��Zb. We can now
substitute the exponential family forms for the class-
conditional distributions and associated conjugate dis-
tributions for the priors. We assume that the prior is
de�ned by specifying a value for �. It su�ces here to
show that we can obtain Z+

� in closed form. For sim-
plicity, we drop the class identi�er \+". The problem
is now reduced to evaluating

Z�(�) =

Z
e
~A(�)+�T�� ~K(�)

� e
P

t
�tyt(A(Xt)+X

T
t ��K(�))d�

We have shown earlier (see Theorem 2 or [3]) in the
paper that a non-informative prior over the bias term
b leads to the constraint

P
t �tyt = 0. Making this

assumption, we get

Z�(�) = e�
~K(�)+

P
t
�tytA(Xt) �Z

e
~A(�)+�T (�+

P
t
�tytXt)d�

= e�
~K(�)+

P
t
�tytA(Xt) � e

~K(�+
P

t
�tytXt)

where the last evaluation is a property of the exponen-
tial family. The expressions for A; ~A;K; ~K are known
for speci�c distributions in the exponential family and
can easily be used to complete the above evaluation,
or realize the objective function (which is holds for any
exponential-family distribution):

logZ�(�) = ~K(�+
X
t

�tytXt) +
X
t

�tytA(Xt)� ~K(�)

B Optimization & Bounded
Quadratic Programming

The aforementioned MED approaches all employ a
concave objective function J(�) with convex con-
straints. This is a powerful paradigm since it guaran-
tees consistence convergence to unique solutions and is
not sensitive to initialization conditions and local min-
ima. Experiments are thus repeatable for the settings
of the variables (c; �; p0; �). The main computational
requirement is an e�cient way to maximize J(�).

One approach is to perform line searches in each �t
variable in an axis-parallel way. Due to the SVM-like
structure, computations simplify if only one �t variable
is modi�ed at a time. This approach works well in
the classi�cation case where there is only a single �t
per data point. However, in the regression case, the
degrees of freedom double and a �t and �0t are available
for each data point. This slows down convergence.



Alternatively, we can map the concave objective func-
tion to a quadratic programming problem (QP) by
�nding a variational quadratic lower bound on J(�).
We can then iterate the bound computation with
QP solutions and guarantee convergence to the global
maximum. Recall, for example, the J(�) de�ned
Equation 4. There are non-quadratic terms due to the
log-potential functions as well as the last sum of loga-
rithmic terms. The log-potential functions are not crit-
ical since the convex constraints subsume them. The
only remaining dominant non-quadratic terms are thus
those inside

P
i, namely:

ji(�) = � log
�
1� p0 + p0e

1
2 [
P

t
(�t��

0
t)Xt;i]

2
�

= � log
�
1� p0 + p0e

1
2�

TM�
�

Each of these can be lower bounded by the following
expression which makes tangential contact at the cur-
rent locus of optimization (~�) as follows:

ji(�) � �T (N + hM )~��
1

2
�T (M + N )�+ const:

where

N =
1

4
(M~�)(M~�)T

h = (1� p0)=
�
1� p0 + p0e

1
2
~�TM~�

�

This approach requires a few iterations of QP to con-
verge. Since subsequent QP iterations can reuse the
previous step's solution as a seed, QP computations
after the �rst are much faster. Thus, training is com-
putationally e�cient and converges in under 4X that
of regular SVM QP solutions. The iterated bounded
QP approach is recommended as a fast bootstrap for
the axis-parallel search which can further optimize the
true objective function subsequently (i.e. it fully con-
siders the log-potential terms). On the other hand,
QP may become intractable for very large data sets
(the data matrix grows as the squared of the data set
size) and there axis-parallel techniques alone would be
preferable.
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