IN THE CITY OF NEW YORK

Pannaga Shivaswamy
 Tony Jebara

IN THE CITY OF NEW YORK

Empirical Bernstein Boosting

Pannaga Shivaswamy

Tony Jebara
empirical risk minimization

empirical risk minimization

- at the core of most machine learning algorithms

empirical risk minimization

- at the core of most machine learning algorithms
- examples
- exponential loss : AdaBoost
- hinge loss : SVM
- squared loss, absolute loss: regression

empirical risk minimization

- at the core of most machine learning algorithms
- examples
- exponential loss : AdaBoost
- hinge loss : SVM
- squared loss, absolute loss: regression
- minimize mean loss on training examples

empirical risk minimization

- at the core of most machine learning algorithms
- examples
- exponential loss : AdaBoost
- hinge loss : SVM
- squared loss, absolute loss: regression
- minimize mean loss on training examples
- what about second order moment of the loss?

background

background

- Fisher linear discriminant
- interclass distance, intraclass variance

background

- Fisher linear discriminant
- interclass distance, intraclass variance
- second order perceptron (Cesa-Bianchi etal. '05)
- update rule with whitening

background

- Fisher linear discriminant
- interclass distance, intraclass variance
- second order perceptron (Cesa-Bianchi etal. '05)
- update rule with whitening
- relative margin machines (Shivaswamy, Jebara "08)
- margin with respect to spread

background

- Fisher linear discriminant
- interclass distance, intraclass variance
- second order perceptron (Cesa-Bianchi et al. '05)
- update rule with whitening
- relative margin machines (Shivaswamy, Jebara "08)
- margin with respect to spread
- Gaussian margin machines (Crammer etal. '09)
- PAC-Bayes bound minimization

background

- Fisher linear discriminant
- interclass distance, intraclass variance
- second order perceptron (Cesa-Bianchi etal. 005)
- update rule with whitening
- relative margin machines (Shivaswamy, Jebara "08)
- margin with respect to spread
- Gaussian margin machines (Crammer etal. '09)
- PAC-Bayes bound minimization
- confidence weighted learning (Crammer etal. '09)
- online learning with first \& second moments

Hoeffding's inequality

Hoeffding's inequality

- on a bounded random variable
Z_{1}, \ldots, Z_{n} i.i.d. $Z \in[0,1]$
with probability at least $1-\delta$
$\mathbf{E}[\quad Z \quad] \leq \frac{1}{n} \sum_{i=1}^{n} Z_{i} \quad+\sqrt{\frac{1}{2 n} \ln (1 / \delta)}$

Hoeffding's inequality

- on a bounded random variable
- on a bounded loss
$\left(X_{1}, y_{1}\right), \ldots,\left(X_{n}, y_{n}\right)$ i.i.d. $l(f(X), y) \in[0,1]$
$f: \mathcal{X} \rightarrow \mathbf{R}$
with probability at least $1-\delta$
$\mathbf{E}[l(f(X), y)] \leq \frac{1}{n} \sum_{i=1}^{n} l\left(f\left(X_{i}\right), y_{i}\right)+\sqrt{\frac{1}{2 n} \ln (1 / \delta)}$

Hoeffding's inequality

- on a bounded random variable
- on a bounded loss
- uniform convergence
$\left(X_{1}, y_{1}\right), \ldots,\left(X_{n}, y_{n}\right)$ i.i.d. $l(f(X), y) \in[0,1]$
$f: \mathcal{X} \rightarrow \mathbf{R}$
with probability at least $1-\delta \quad \forall f \in \mathcal{F}$
$\mathbf{E}[l(f(X), y)] \leq \frac{1}{n} \sum_{i=1}^{n} l\left(f\left(X_{i}\right), y_{i}\right)+\sqrt{\frac{1}{2 n} \ln (|\mathcal{F}| / \delta)}$

Hoeffding's inequality

- on a bounded random variable
- on a bounded loss
- uniform convergence
- suggests ERM

$$
\min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} l\left(f\left(X_{i}\right), y_{i}\right)
$$

$\left(X_{1}, y_{1}\right), \ldots,\left(X_{n}, y_{n}\right)$ i.i.d. $l(f(X), y) \in[0,1]$
$f: \mathcal{X} \rightarrow \mathbf{R}$
with probability at least $1-\delta \quad \forall f \in \mathcal{F}$
$\mathbf{E}[l(f(X), y)] \leq \frac{1}{n} \sum_{i=1}^{n}$

$$
+\sqrt{\frac{1}{2 n} \ln (|\mathcal{F}| / \delta)}
$$

incorporating variance

incorporating variance

- Hoeffding's inequality

$$
\mathbf{E}[Z] \leq \frac{1}{n} \sum_{i=1}^{n} Z_{i}+\sqrt{\frac{\ln (1 / \delta)}{2 n}}
$$

incorporating variance

- Hoeffding's inequality
- Bernstein's inequality

$$
\begin{aligned}
& \mathbf{E}[Z] \leq \frac{1}{n} \sum_{i=1}^{n} Z_{i}+\sqrt{\frac{4 \mathbf{V}[Z] \ln (1 / \delta)}{2 n}}+\frac{\ln (1 / \delta)}{3 n} \\
& \mathbf{V}[Z]=\mathbf{E}[Z-\mathbf{E}[Z]]^{2}
\end{aligned}
$$

- much tighter compared to Hoeffding's
- limitation: true variance required
empirical Bernstein bound

empirical Bernstein bound

- Bernstein's inequality

$$
\begin{aligned}
& \mathbf{E}[Z] \leq \frac{1}{n} \sum_{i=1}^{n} Z_{i}+\sqrt{\frac{2 \mathbf{V}[Z] \ln (1 / \delta)}{n}}+\frac{\ln (1 / \delta)}{3 n} \\
& \mathbf{V}[Z]=\mathbf{E}[Z-\mathbf{E}[Z]]^{2}
\end{aligned}
$$

- much tighter compared to Hoeffding's
- limitation: true variance required in equation

empirical Bernstein bound

- empirical Bernstein’s inequality (Maurer \& Pontil '09)

$$
\begin{aligned}
& \mathbf{E}[Z] \leq \frac{1}{n} \sum_{i=1}^{n} Z_{i}+\sqrt{\frac{2 \hat{\mathbf{V}}[\mathbf{Z}] \ln (2 / \delta)}{n}}+\frac{7 \ln (2 / \delta)}{3(n-1)} \\
& \hat{\mathbf{V}}[Z]=\frac{1}{n(n-1)} \sum_{1 \leq i<j \leq n}\left(Z_{i}-Z_{j}\right)^{2}
\end{aligned}
$$

- much tighter compared to Hoeffding's
- limitation: true variance required in equation-

empirical Bernstein bound

- empirical Bernstein’s inequality (Maurer \& Pontil ' 09)

$$
\begin{aligned}
& \mathbf{E}[Z] \leq \frac{1}{n} \sum_{i=1}^{n} Z_{i}+\sqrt{\frac{2 \hat{\mathbf{V}}[\mathbf{Z}] \ln (2 / \delta)}{n}}+\frac{7 \ln (2 / \delta)}{3(n-1)} \\
& \hat{\mathbf{V}}[Z]=\frac{1}{n(n-1)} \sum_{1 \leq i<j \leq n}\left(Z_{i}-Z_{j}\right)^{2}
\end{aligned}
$$

- much tighter compared to Hoeffding's
- limitation: true variance roquired in equation-
- suggests Sample Variance Penalization (SVP)

$$
\min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} l\left(f\left(X_{i}\right), y_{i}\right)+\lambda \sqrt{\hat{\mathbf{V}}[l(f(X), y)]}
$$

SVP on 0-1 loss?

SVP on 0-1 loss?

- is SVP qualitatively different?

$$
\begin{aligned}
& \hat{p}:=\frac{1}{n} \sum_{i=1}^{n} l_{1}\left(y_{i}, f\left(X_{i}\right)\right) \\
& \hat{\mathbf{V}}\left[l_{1}(f(X), y)\right]=\frac{n}{n-1} \hat{p}(1-\hat{p})
\end{aligned}
$$

SVP on 0-1 loss?

- is SVP qualitatively different?

$$
\begin{aligned}
& \hat{p}:=\frac{1}{n} \sum_{i=1}^{n} l_{1}\left(y_{i}, f\left(X_{i}\right)\right) \\
& \hat{\mathbf{V}}\left[l_{1}(f(X), y)\right]=\frac{n}{n-1} \hat{p}(1-\hat{p})
\end{aligned}
$$

- ERM $\rightarrow \hat{p}$

SVP on 0-1 loss?

- is SVP qualitatively different?

$$
\begin{aligned}
& \hat{p}:=\frac{1}{n} \sum_{i=1}^{n} l_{1}\left(y_{i}, f\left(X_{i}\right)\right) \\
& \hat{\mathbf{V}}\left[l_{1}(f(X), y)\right]=\frac{n}{n-1} \hat{p}(1-\hat{p})
\end{aligned}
$$

- ERM $\rightarrow \hat{p}$
- SVP $\rightarrow \hat{p}+\lambda \sqrt{\hat{p}(1-\hat{p})}$

SVP on 0-1 loss?

- is SVP qualitatively different?

$$
\begin{aligned}
& \hat{p}:=\frac{1}{n} \sum_{i=1}^{n} l_{1}\left(y_{i}, f\left(X_{i}\right)\right) \\
& \hat{\mathbf{V}}\left[l_{1}(f(X), y)\right]=\frac{n}{n-1} \hat{p}(1-\hat{p})
\end{aligned}
$$

- ERM $\rightarrow \hat{p}$
- SVP $\rightarrow \hat{p}+\lambda \sqrt{\hat{p}(1-\hat{p})}$
- monotonic in $\hat{p} \in[0,0.5)$

SVP on 0-1 loss?

- is SVP qualitatively different?

$$
\begin{aligned}
& \hat{p}:=\frac{1}{n} \sum_{i=1}^{n} l_{1}\left(y_{i}, f\left(X_{i}\right)\right) \\
& \hat{\mathbf{V}}\left[l_{1}(f(X), y)\right]=\frac{n}{n-1} \hat{p}(1-\hat{p})
\end{aligned}
$$

- ERM $\rightarrow \hat{p}$
- SVP $\rightarrow \hat{p}+\lambda \sqrt{\hat{p}(1-\hat{p})}$
- monotonic in $\hat{p} \in[0,0.5)$
- SVP on 0-1 loss gives back ERM for any λ !

SVP with exponential loss

SVP with exponential loss

- minimize

$$
\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}+\tau \sqrt{\sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}}
$$

SVP with exponential loss

- minimize

$$
\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}+\tau \sqrt{\sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}}
$$

- equivalently
$\begin{array}{ll}\min _{f \in \mathcal{F}} & \sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)} \\ \text { s.t. } & \sqrt{\sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}} \leq B\end{array}$

SVP with exponential loss

- minimize

$$
\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}+\tau \sqrt{\sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}}
$$

- equivalently
$\begin{array}{ll}\min _{f \in \mathcal{F}} & \left(\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}\right)^{2} \\ \text { s.t. } & \sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2} \leq B^{2}\end{array}$

SVP with exponential loss

- minimize

$$
\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}+\tau \sqrt{\sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}}
$$

- equivalently
$\min _{f \in \mathcal{F}}\left(\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}\right)^{2}+\lambda\left(\sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}-B^{2}\right)$

SVP with exponential loss

- minimize

$$
\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}+\tau \sqrt{\sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}}
$$

- equivalently

$$
\min _{f \in \mathcal{F}}\left(\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}\right)^{2}+\lambda \sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}
$$

deriving an update rule

deriving an update rule

- start with

$$
\min _{f \in \mathcal{F}}\left(\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}\right)^{2}+\lambda \sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}
$$

deriving an update rule

- start with

$$
\min _{f \in \mathcal{F}}\left(\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}\right)^{2}+\lambda \sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}
$$

- build an additive model greedily

$$
f(X)=\sum_{s=1}^{S} \alpha_{s} G^{s}(X)
$$

deriving an update rule

- start with

$$
\min _{f \in \mathcal{F}}\left(\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}\right)^{2}+\lambda \sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}
$$

- build an additive model greedily

$$
f(X)=\sum_{s=1}^{S} \alpha_{s} G^{s}(X)
$$

- choose a $G^{s}(X)$ and find α_{s} to minimize the above convex cost

40 (Freund \& Schapire '97)

- greedily minimizes

$$
\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}
$$

40 (Freund \& Schapire '97)

- greedily minimizes

$$
\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}
$$

Initialize: $w_{i} \leftarrow \frac{1}{n}$
for $s=1: S$ do
Get a weak learner $G^{s}(\cdot)$
$\alpha_{s}=\frac{1}{4} \log \left(\frac{\left(\sum_{y_{i}=G^{s}\left(X_{i}\right)} w_{i}\right)^{2}}{\left(\sum_{y_{i} \neq G^{s}\left(X_{i}\right)} w_{i}\right)^{2}}\right)$
if $\alpha_{s}<0$ then break;
$w_{i} \leftarrow w_{i} e^{-y_{i} \alpha_{s} G^{s}\left(X_{i}\right)}$, normalize w

EBBoost

- greedily minimizes

$$
\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}
$$

Initialize: $w_{i} \leftarrow \frac{1}{n}$
for $s=1: S$ do
Get a weak learner $G^{s}(\cdot)$
$\alpha_{s}=\frac{1}{4} \log \left(\frac{\left(\sum_{y_{i}=G^{s}\left(X_{i}\right)} w_{i}\right)^{2}}{\left(\sum_{y_{i} \neq G^{s}\left(X_{i}\right)} w_{i}\right)^{2}}\right)$
if $\alpha_{s}<0$ then break;
$w_{i} \leftarrow w_{i} e^{-y_{i} \alpha_{s} G^{s}\left(X_{i}\right)}$, normalize w

EBBoost

- greedily minimizes

$$
\left(\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}\right)^{2}+\lambda \sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}
$$

Initialize: $w_{i} \leftarrow \frac{1}{n}$
for $s=1: S$ do

$$
\text { Get a weak learner } G^{s}(\cdot)
$$

$\alpha_{s}=\frac{1}{4} \log \left(\frac{\left(\sum_{y_{i}=G^{s}\left(X_{i}\right)} w_{i}\right)^{2}}{\left(\sum_{y_{i} \neq G^{s}\left(X_{i}\right)} w_{i}\right)^{2}}\right)$
if $\alpha_{s}<0$ then break;
$w_{i} \leftarrow w_{i} e^{-y_{i} \alpha_{s} G^{s}\left(X_{i}\right)}$, normalize w

EBBoost

- greedily minimizes

$$
\left(\sum_{i=1}^{n} e^{-y_{i} f\left(X_{i}\right)}\right)^{2}+\lambda \sum_{i>j}\left(e^{-y_{i} f\left(X_{i}\right)}-e^{-y_{j} f\left(X_{j}\right)}\right)^{2}
$$

Initialize: $w_{i} \leftarrow \frac{1}{n}$
for $\mathrm{s}=1: \mathrm{S}$ do
Get a weak learner $G^{s}(\cdot)$

$$
\alpha_{s}=\frac{1}{4} \log \left(\frac{\left(\sum_{y_{i}=G^{s}\left(X_{i}\right.} w_{i}\right)^{2}+\lambda n \sum_{y_{i}=G^{s}\left(X_{i}\right)} w_{i}^{2} /(1-\lambda)}{\left(\sum_{y_{i} \neq G^{s}\left(X_{i}\right)} w_{i}\right)^{2}+\lambda n \sum_{y_{i} \neq G^{s}\left(X_{i}\right)} w_{i}^{2} /(1-\lambda)}\right)
$$

if $\alpha_{s}<0$ then break;
$w_{i} \leftarrow w_{i} e^{-y_{i} \alpha_{s} G^{s}\left(X_{i}\right)}$, normalize w

experiments

- several benchmark datasets
- weak learner: decision stump
- parameters via a validation set
- boosting until no drop in validation error in 50 steps
- competing methods
- AdaBoost
- RLP-Boost
- RQP-Boost
- Soft-margin : relaxed boosting
results

results

Dataset	AdaBoost	EBBoost
a5a	18.07 ± 0.6	17.82 ± 0.6
abalone	22.53 ± 0.8	22.38 ± 0.9
image	4.28 ± 0.8	4.04 ± 0.8
nist09	1.28 ± 0.2	1.17 ± 0.1
nist14	0.80 ± 0.2	0.70 ± 0.1
nist27	2.56 ± 0.3	2.41 ± 0.3
nist38	5.68 ± 0.6	5.34 ± 0.4
nist56	3.64 ± 0.5	3.38 ± 0.4
mushrooms	0.35 ± 0.3	0.28 ± 0.3
musklarge	7.80 ± 1.0	6.89 ± 0.6
ringnorm	15.05 ± 3.1	13.45 ± 2.4
spambase	7.74 ± 0.7	7.18 ± 0.8
splice	10.57 ± 1.1	10.27 ± 0.9
twonorm	4.30 ± 0.4	4.00 ± 0.2
w4a	2.80 ± 0.2	2.75 ± 0.2
waveform	12.96 ± 0.8	12.90 ± 0.8
wine	26.03 ± 1.2	25.66 ± 1.0
wisc	5.00 ± 1.5	4.00 ± 1.3

results

Dataset	AdaBoost	EBBoost	RLP-Boost	RQP-Boost	ABR
a5a	18.07 ± 0.6	17.82 ± 0.6	17.90 ± 0.8	18.06 ± 0.9	17.80 ± 0.5
abalone	22.53 ± 0.8	22.38 ± 0.9	23.68 ± 1.3	23.01 ± 1.3	22.40 ± 0.7
image	4.28 ± 0.8	4.04 ± 0.8	4.19 ± 0.8	3.79 ± 0.7	4.27 ± 0.8
nist09	1.28 ± 0.2	1.17 ± 0.1	1.43 ± 0.2	1.25 ± 0.2	1.18 ± 0.2
nist14	0.80 ± 0.2	0.70 ± 0.1	0.89 ± 0.2	0.78 ± 0.2	0.74 ± 0.1
nist27	2.56 ± 0.3	2.41 ± 0.3	2.72 ± 0.3	2.49 ± 0.3	2.32 ± 0.3
nist38	5.68 ± 0.6	5.34 ± 0.4	6.04 ± 0.4	5.48 ± 0.5	5.24 ± 0.5
nist56	3.64 ± 0.5	3.38 ± 0.4	3.97 ± 0.5	3.61 ± 0.4	3.42 ± 0.3
mushrooms	0.35 ± 0.3	0.28 ± 0.3	0.30 ± 0.3	0.30 ± 0.3	0.29 ± 0.4
musklarge	7.80 ± 1.0	6.89 ± 0.6	7.83 ± 1.0	7.29 ± 1.0	7.22 ± 0.7
ringnorm	15.05 ± 3.1	13.45 ± 2.4	15.25 ± 4.2	14.55 ± 3.0	14.35 ± 3.1
spambase	7.74 ± 0.7	7.18 ± 0.8	7.45 ± 0.6	7.25 ± 0.7	6.99 ± 0.6
splice	10.57 ± 1.1	10.27 ± 0.9	10.28 ± 0.8	10.18 ± 1.0	10.02 ± 0.9
twonorm	4.30 ± 0.4	4.00 ± 0.2	4.87 ± 0.5	4.19 ± 0.4	4.16 ± 0.4
w4a	2.80 ± 0.2	2.75 ± 0.2	2.76 ± 0.1	2.77 ± 0.2	2.75 ± 0.2
waveform	12.96 ± 0.8	12.90 ± 0.8	12.75 ± 0.9	12.22 ± 0.9	12.47 ± 0.7
wine	26.03 ± 1.2	25.66 ± 1.0	25.00 ± 1.2	25.20 ± 1.0	25.09 ± 1.2
wisc	5.00 ± 1.5	4.00 ± 1.3	4.14 ± 1.5	4.71 ± 1.5	4.46 ± 1.6

margin distribution

margin distribution

Margin statistics

Margin statistics

	AdaBoost	EBBoost	ABR
a5a	0.21 ± 0.20	0.19 ± 0.17	0.20 ± 0.19
abal	0.12 ± 0.12	0.12 ± 0.12	0.13 ± 0.13
image	0.14 ± 0.08	0.13 ± 0.06	0.14 ± 0.08
nist09	0.45 ± 0.13	0.44 ± 0.12	0.48 ± 0.13
nist14	0.47 ± 0.12	0.38 ± 0.07	0.51 ± 0.12
nist27	0.32 ± 0.12	0.29 ± 0.10	0.35 ± 0.13
nist38	0.22 ± 0.10	0.20 ± 0.08	0.24 ± 0.10
nist56	0.30 ± 0.12	0.29 ± 0.11	0.32 ± 0.13
mush	0.26 ± 0.06	0.26 ± 0.05	0.28 ± 0.07
musk	0.18 ± 0.09	0.15 ± 0.06	0.18 ± 0.09
ring	0.15 ± 0.07	0.14 ± 0.06	0.15 ± 0.07
spam	0.21 ± 0.13	0.19 ± 0.10	0.23 ± 0.13
splice	0.19 ± 0.12	0.18 ± 0.10	0.22 ± 0.14
twon	0.29 ± 0.14	0.26 ± 0.11	0.30 ± 0.14
w4a	0.27 ± 0.11	0.23 ± 0.07	0.38 ± 0.12
wave	0.25 ± 0.17	0.22 ± 0.14	0.28 ± 0.19
wine	0.13 ± 0.15	0.13 ± 0.14	0.12 ± 0.14
wisc	0.39 ± 0.15	0.35 ± 0.12	0.59 ± 0.21

conclusions

conclusions

- proposed a novel boosting algorithm
- well motivated
- easy to implement
- superior performance

conclusions

- proposed a novel boosting algorithm
- well motivated
- easy to implement
- superior performance
- SVP is viable

conclusions

- proposed a novel boosting algorithm
- well motivated
- easy to implement
- superior performance
- SVP is viable
- extending to other losses

conclusions

- proposed a novel boosting algorithm
- well motivated
- easy to implement
- superior performance
- SVP is viable
- extending to other losses
- sample variance in margin distribution bounds

conclusions

- proposed a novel boosting algorithm
- well motivated
- easy to implement
- superior performance
- SVP is viable
- extending to other losses
- sample variance in margin distribution bounds
- is it possible to estimate λ ?

