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Abstract

We propose a message propagation scheme for numerically stable infer-
ence in Gaussian graphical models which can otherwise be susceptible to
errors caused by finite numerical precision. We adapt square root algo-
rithms, popular in Kalman filtering, to graphs with arbitrary topologies.
The method consists of maintaining potentials and generating messages
that involve the square root of precision matrices. Combining this with
the machinery of the junction tree algorithm leads to an efficient and nu-
merically stable algorithm. Experiments are presented to demonstrate
the robustness of the method to numerical errors that can arise in com-
plex learning and inference problems.

1 Introduction

The formalism of probabilistic graphical models has led to a unification of methods from
diverse fields and has allowed improvements and transfer of many inference tools. For
instance, approximate inference techniques from statistical physics such as sampling meth-
ods, and variational mean field algorithms have migrated into the learning community. The
control literature has also been a source of novel inference tools. Expectation propaga-
tion, for example, has its roots in assumed density filtering. In this article, we propose
(and generalize) another technique from the control and estimation literature, square-root
propagation, which resolves numerical issues that can emerge during inference in Gaussian
graphical models. Numerical errors in the ubiquitous Kalman filter model have been well
studied for years. The long chain of Gaussian random variables through which messages
must be propagated can give rise to numerical inaccuracies in the estimated covariance ma-
trices. The cumulative effects of round off error eventually causes estimated covariances to
drift away from symmetry and to possibly develop negative eigenvalues. One solution for
this is to propagate only half the values in the covariance in a so called square root matrix.
This technique was first proposed in [9] and was used in the Apollo manned missions to the
moon. Square root algorithms have since become a well understood tool [6] and (arguably)
the preferred method for implementing Kalman filters for real world applications. The main
contribution of this paper is to generalize the square root algorithm of Kalman filtering to
arbitrary Gaussian graphical models through the use of the junction tree algorithm, loopy
belief propagation, as well as variational approximations. Of particular interest is the appli-
cation of square root propagation to the long chains that arise in variational approximation
methods applied to hybrid dynamic Bayes nets [8, 4] and variational Bayesian inference



for linear dynamical systems [1]. We present the first square root filter and smoother for
these complicated hybrid models and additionally a much simplified square root smoother
in comparison to previous algorithms reported in [6].

The paper is organized as follows. Section 2 reviews inference and approximate inference
in general graphical models. Section 3 describes various ways to parameterize a multi-
variate Gaussian and introduces the notation for square root form. Section 4 reviews local
message passing computations in Gaussian models. This is the basis for square root prop-
agation which is introduced in section 5. In section 6 experiments demonstrate that square
root propagation behaves better than previous message propagation schemes. We conclude
in section 7 with a discussion and future work.

2 Inferencein Graphical Models

In this section we briefly review exact inference in graphical models using the junction tree
algorithm. We also discuss approximate inference methods such as loopy belief propaga-
tion and variational structured mean field algorithms. These all employ local operations to
perform inference in a model. These local operations (also known as message passing or
belief propagation) essentially involve sum-product steps because they perform marginal-
ization and multiplication of local probabilities or potential functions. We summarize these
operations here and then describe them in the special case of Gaussian graphical models
and finally go on to develop square root propagation to improve their numerical accuracy.

2.1 Junction Tree Algorithm

The junction tree algorithm (JTA) is a key inference tool in the graphical modeling com-
munity and essentially involves sum-product operations. In the graphical modeling frame-
work, we are given a joint distribution over a set of random variables z. This joint distribu-
tion can be written in terms of a product of non-negative potential functions over all cliques
C of random variables in z as follows:
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If such cliques are connected in a tree topology which satisfies the so-called running inter-
section property, the JTA can be called upon to efficiently compute marginal distributions
over all the cliques starting from their potential functions (x.) in two steps. The JTA
computes local marginal distributions by passing messages between clique potential func-
tions ¢ (x.) via separator potential functions ¢(z;). These separator potential functions are
maintained between pairs of connected cliques and have a domain x; which is the set of
random variables the pair of cliques have in common. The first step of the junction tree
algorithm (the collect step) propagates messages from a downstream clique ¢ (starting at
the leaves of a tree) to upstream cliques ¢’ as it progress toward a chosen root. The various
clique and separator potential functions are updated along the way as follows:
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Here we integrate (sum) over all variables in a downstream clique ¢ except for z; to get
updated separator potentials and then multiply (product) the separator potential with the
potential function of an upstream clique ¢’. Subsequently (during the distribute step of
JTA) a return set of messages are sent downstream from the root to the leaves to finish
updating the potentials as follows
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When the junction tree algorithm terminates, the cliques become proportional to true
marginals of the variables, in other words, ¢.(z.) x P(z.) and ¢(z;) x P(z;). The
computational efficiency of the JTA crucially depends on the complexity of the sum and
product operations above which grow exponentially in the clique size (the dimensionality
of the random variables in each clique).

2.2 Loopy Belief Propagation and Variational I nference

In the case where a inference using a full junction is too costly, an iterative message pass-
ing scheme can be used to approximate exact inference. Loopy belief propagation, send
messages ¢* (x;) iteratively. It uses the same sum and product rules as exact inference but
only yields approximate marginals.

A competitor approach to loopy belief propagation is variational inference. This method
approximates the true posterior by a more factored distribution @Q. It procedes my itera-
tively optimizing ) to minimize its Kullback-Leibler (KL) divergence to the true poste-
rior distribution K L(Q||P) = [ Q(z)InQ(z)/P(x). At each iteration, computing exact
marginals of ) using the JTA becomes a sub step of each iteration.

3 Gaussian Graphical Models

We now focus on the sum-product message passing scheme in the particular case of Gaus-
sian random variables where each Z; is a continuous multivariate random variable with a
multivariate Gaussian distribution and the overall distribution over all variables P(Z) is a
multivariate Gaussian. Message passing (be it for tree, loopy or variational distributions)
applies as before in the Gaussian graphical modeling case. However, we note that there
are many ways to implement message passing in practice. The actual message passing
schemes we will implement depend on the way the Gaussian models are parametrized and
we will show that they can have very different numerical properties and numerical perfor-
mance, particularly in the case where the various Gaussian messages and covariances start
to exhibit poor condition numbers.

We assume we have a Gaussian graphical model describing a multivariate random vari-
able Z that is jointly Gaussian. We will discuss three possible ways of parameterizing the
Gaussian (although more are possible). In this article, we consider multivariate Gaussians
P(&F) parameterized in the moment parametrization N (£|u, ), the canonical parametriza-

tion C(Z|K, h) or the root parametrization R(Z| K, h). These are theoretically equivalent
but will have different numerical behavior. Each is detail below with its parameterization
(a vector and a matrix that determine the quadratic form to be exponentiated):
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It is straightforward to convert between these different parameterizations as follows:
h=2"y K=37 K=K h=K"h

We will assume that these joint distributions obey a Gaussian graphical model and factor-
ize according to a graph G taking on the form of a product of cliques. Message passing
takes advantage of this factorization to allow efficient computations of quantities of interest
such as marginal and posterior distributions with the overall Gaussian model P(Z). Each
message being passed is proportional to a Gaussian model. For each of the above possible
Gaussian parameterizations, we can use the message passing scheme of the previous section



as long as we can succinctly enumerate the possible sum-product rules for each message
passing. Intheory, only one sum-product algorithm for Gaussians is necessary since we can
convert back to the desired parametrization once message passing converges or interleave
conversions within the message passing. However, such additional conversions in practice
incur numerical errors that can accumulate and can even cause divergence. In fact, not all
sum-product algorithmic steps are equivalent and we shall demonstrate that the root pa-
rameterization and its sum-product procedures for the root parametrization has much better
numerical properties.

The conditional probabilities defined by a directed graph in moment form are called
linear Gaussians and can be written in moment form as P(Z|pa(Z)) = N(Z| b +
Zie;va(i’) B:%;, ¥) where each Z is a vector and each § is a matrix. For propagating mes-
sages around the Gaussian graphical model, however, the canonical parameterization which
we detail is more elegant. Subsequently we derive square root propagation which maintains
this elegance but also exhibits much better numerical properties.

4 Canonical Propagation

The canonical form of a Gaussian was defined earlier and is more specifically C'(Z| K, h) =
exp (—1#T K& + h"& + g) where g is the normalizer. The canonical form can represent
more than just a Gaussian density. In fact, it represents a valid Gaussian density if and
only if K is non-singular. We will use canonical potentials as our basic building block for
the sum-product procedures in, for example, a junction tree algorithm. When propagating
messages in a junction tree made up of canonical potentials only A and K need to be
computed because all potentials will be valid Gaussians when the algorithm terminates.
The following local computations on potentials are needed to perform inference and are
quite easy using the canonical form.

4.1 Canonical Product (and Division)

Multiplication of potentials is necessary when updating a potential with a message from its
neighbor. With canonical Gaussians, it is simply addition of the canonical parameters.
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Division similarly involves a subtraction.

4.2 Canonical Sum (Marginalization)

To form a message, it is necessary to marginalize a canonical potential as follows:
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giving us the parameters of a canonical Gaussian over only the 'y random variable.

4.3 Canonical Entering of Evidence (Conditioning)

In a Gaussian graphical model, evidence from an observed variable must be entered into
every potential in which it appears. Given the joint canonical Gaussian C(%;, Z2) above,
the conditional potential C'(# |Z2) becomes:
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Thus, we have straightforward manipulations for the canonical parameters for the various

building blocks (sum and product and evidence) for message passing in Gaussian graphical
models. We next mirror these derivations for the square root Gaussian parametrization.



5 Square Root Propagation

This section details square root algorithms to address the numerical problems that can ac-
crue and propagate in large Gaussian graphical networks, namely errors in the propagated
covariance matrix i.e. asymmetry and non positive definiteness. Square root algorithms
were originally proposed for a special case of Gaussian graphical models, the Kalman fil-
ter or state space model. The idea is to only propagate half of the covariance matrix as a
so-called square root matrix. The form that these types of algorithms take is to create a
matrix of known quantities and apply a unitary transformation. The resulting matrix will
then contain the answer. The transformations that are used induce zeros in the solution
matrix and can be found by using an extended QR decomposition or, to leverage already
existing zero patterns, Givens rotations. A square root Gaussian potential , R(Z|K'/?, ﬁ),
will be defined as in section 3. The sum-product sub algorithms will mirror those of the
previous sections except that the local computations will be computed differently and will
maintain better numerical behavior.

5.1 Root Product (and Division)

We wish to update a single root Gaussian potential via the product of two known root
Gaussian potentials as follows:

R(#K1, ) R(#| K2, hy) o< R(FK, h)

Thus, K is computed (without conversion) via a numerically reliable linear algebra pro-
cedure. This is done by creating a matrix of known values and inducing zero patterns to
create the target solution matrix. The answer can then be found in the new matrix.
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To perform addition we zero out the appropriate entries on the left hand equation to find
the matrix on the right by either explicitly or implicitly finding a unitary transformation
0. To perform subtraction (division), instead of a standard unitary transformation, we find
a J-unitary transformation where 6;6% = J and J is an identity matrix with some of the
entries on the diagonal are —1. A hyperbolic QR decomposition or Cholesky downdate
algorithm can be used. See [7] for a thorough treatment.

5.2 Root Sum (Marginalization)

To form a message, it is necessary to marginalize a root potential as follows:
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where the parameters of the marginal root Gaussian over only the #; random variable K

and h are computed as follows. First we solve a triangular system of equations for the term
G= K12K2_21 which is necessary for future computations.

5 K G Km 0
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5.3 Root Entering of Evidence (Conditioning)

In the square root parameterization, entering evidence simply requires solving a triangular
system of equations.
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Figure 1: a) The training log likelihood when the Kalman filtering is one step from diver-
gence b) Results for EM training
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6 Experiments

We now demonstrate the robustness of square root propagation in the context of learning
and inference compared with other Gaussian propagation methods. Experiments for learn-
ing parameters of dynamical systems as well as approximate inference using structured
mean field are shown and provide evidence for the usefulness of square root propagation.

6.1 Learningwith EM

In this experiment we demonstrate the effect numerical errors can have on the inference step
of an Expectation-Maximization (EM) algorithm and on the overall maximum likelihood
parameter estimation problem. We will learn a linear dynamical system using EM from
simulated data. The linear dynamical system model is defined as follows

Ty = Ay 1 + Wy ¥ = CZy + U

We choose a very simple model to learn with #; and ¢; two dimensional, A and C' identity
transformations, and w; ~ N(0,Q) and @; ~ N (0, R) with @ and R as identity. The
model was simulated for 1000 times steps with an initial state, #; ~ N (0, I). To create a
situation in which we would expect to find an ill conditioned covariance matrix, we pro-
pose to learn the linear dynamical system model [2] with a state space of 8 dimensions.
The experiments were run 100 times with a different set of samples. We tried 3 different
algorithms for the inference problem, the standard Kalman filter and RTS smoother using
a moment parameterization, a potential based information filter based on the junction tree
algorithm using canonical parameterization, and square root propagation using the root
Gaussian parameterization. Square root propagation is the square root form of the infor-
mation filter used in the experiment allowing for direct comparison of the effects of the
square root form. The Kalman filter implementation was from Kevin Murphy’s Kalman
filter toolbox allowing for comparison to a widely used implementation. In the experiment
we run EM for 100 steps or until convergence.

Figure 1b) summarizes our results. Column one shows the number of tests that an algorithm
diverged (NaN errors caused by numerics). Figure 1a) shows the training log likelihood of
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Figure 2: Divergence in SLDS inference as condition number increases

the Kalman filter one step before divergence. Column two of figure 1b) lists the percentage
of eigenvalues that are negative in the the inferred covariance matrices, P;, at the com-
pletion of EM for the cases that do converge. Furthermore, in column three we report a
measure in the divergence from symmetry in all P;, the average of ||P, — PT||%, where
|| - |3 is the squared Frobenius norm. Theoretically, the log likelihood should converge
monotonically, P; should never have negative eigenvalues and || P; — PT||2. = 0. However,
in our experiments these were violated by the algorithms. The information filter performed
worst, diverging in all cases. This poor performance was due to having to switch between
moment parameters to update the M-step and canonical parameters to perform inference.
The Kalman filter which computed all steps in moment form diverged 38 times, and had
negative eigenvalues and errors in symmetry when it did perform properly. Square root
propagation converged in all tests. However, in 10 cases, it did not converge monotonically.
The other algorithms though, diverged in all those cases. The eigenvalues and symmetry
were correctly preserved in the square root case.

6.2 Variational inferencein hybrid dynamic Bayes nets

In this experiment we demonstrate square root propagation in a complex inference task. A
popular method for performing approximate inference in hybrid[8, 4] and fully Bayesian[1]
dynamic Bayes nets is variational structured mean field [5]. In typical setups, part of the
approximate variational distribution will be chosen to be a Gaussian chain. It can be seen
that this distribution forms canonical potentials that factor over a chain.

We will be working with a switching linear dynamical system defined as follows:

Ty =ATi 1 +W G =CE + U

Where a discrete variable s; has been introduced to switch the dynamics and noise model of
the state space. s; evolves according to a Markov chain with parameters 7 (i) = p(s; = 1)
andIL(i, j) = P(sy = i|sy—1 = j). ¥ ~ N(0, R) as before and @y ~ N (0, Q;) depending
on the state of s;.

Variational inference in this model alternates between performing inference in the discrete
chain and the Gaussian chain until convergence. For our experiment, we randomly gener-
ated SLDS models with 2 dimensional Z; and #; and 2 switching states. The state space
covariance @) was created as a full covariance that was ill conditioned. In the experiment
we varied the condition number, N = X0 /Amin, Of @ from 1076 to 10~ by setting
the smallest eigenvalue, Aj,in, = 1/N and Apq, = 1. Three algorithms were tested for
computing marginals in the Gaussian chain, a moment based algorithm proposed in [4] as
an improvement over the algorithm in [8], a canonical form junction tree algorithm similar
to the algorithm proposed in [1], and a square root version of the canonical algorithm. The
variational inference was iterated 25 times in the experiment.

Figure 2 show the results for the various algorithms at increasing condition numbers. An
algorithm is considered to have diverged if it reaches 25 iterations with imaginary or non
monoatonic likelihood. The canonical based algorithm again suffers from having to switch
between parameterization. The updates to the discrete chain require a conversion to mo-
ment parameters. The moment based algorithm holds up better but starts to break down



as the condition number increases. The square root algorithm does diverge as condition
number increases, but not nearly as much as the other two algorithms.

7 Discussion

We have proposed square root propagation as a numerically robust message passing scheme
for inference in arbitrary Gaussian graphical models. In the experiments we demonstrated
improved numerical stability in complicated problems. Another area that we will be ap-
plying square root propagation is for loopy belief propagation in Gaussian Markov random
fields (GMRFs). Loopy belief propagation has been provably shown to converge under
some cases yielding exact means in a GMRF [11]. Square root propagation would be use-
ful to guarantee that a lack of convergence is not caused by numerical errors.

We briefly discuss the numerical properties of square root propagation, the running time
and numerical stability. The running time of square root propagation is asymptotically
equivalent to canonical propagation. For each algorithm a message takes O(n?) flops in
total. However, the product of potentials substep of message passing is more expensive
in square root propagation at O(n?) as opposed to O(n?) for matrix addition in canonical
propagation. Each of the numerical linear algebra algorithms used in square root propa-
gation have numerical stability results. QR decomposition, Givens rotations, and solving
linear equations with back substitution are backward stable [3]. Hyperbolic QR is known
to have algorithms that are mixed forward-backward stable, and in some cases backward
stable [7]. It has also been shown that a sequence of Cholesky updates and downdates
are mixed forward-backward stable [10]. This result, if generalized to interleaving a solu-
tion of a system of triangular equations in the sequence could be used to show the mixed
forward-backward stability of our algorithm. This will be the subject of future work.
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