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Abstract

Jensen’s inequality is a powerful mathematical tool and one of the
workhorses in statistical learning. Its applications therein include the EM
algorithm, Bayesian estimation and Bayesian inference. Jensen com-
putes simple lower bounds on otherwise intractable quantities such as
products of sums and latent log-likelihoods. This simplification then per-
mits operations like integration and maximization. Quite often (i.e. in
discriminative learning) upper bounds are needed as well. We derive and
prove an efficient analytic inequality that provides such variational upper
bounds. This inequality holds for latent variable mixtures of exponential
family distributions and thus spans a wide range of contemporary statis-
tical models. We also discuss applications of the upper bounds including
maximum conditional likelihood, large margin discriminative models and
conditional Bayesian inference. Convergence, efficiency and prediction
results are shown. 1

1 Introduction

Statistical model estimation and inference often require the maximization, evaluation, and
integration of complicated mathematical expressions. One approach for simplifying the
computations is to find and manipulate variational upper and lower bounds instead of the
expressions themselves. A prominent tool for computing such bounds is Jensen’s inequality
which subsumes many information-theoretic bounds (cf. Cover and Thomas 1996). In
maximum likelihood (ML) estimation under incomplete data, Jensen is used to derive an
iterative EM algorithm [2]. For graphical models, intractable inference and estimation is
performed via variational bounds [7]. Bayesian integration also uses Jensen and EM-like
bounds to compute integrals that are otherwise intractable [9].

Recently, however, the learning community has seen the proliferation of conditional or
discriminative criteria. These include support vector machines, maximum entropy discrim-
ination distributions [4], and discriminative HMMs [3]. These criteria allocate resources
with the given task (classification or regression) in mind, yielding improved performance.
In contrast, under canonical ML each density is trained separately to describe observations
rather than optimize classification or regression. Therefore performance is compromised.

1This is the short version of the paper. Please download the long version with tighter
bounds, detailed proofs, more results, important extensions and sample matlab code from:
http:==www.media.mit.edu= �jebara=bounds



Computationally, what differentiates these criteria from ML is that they not only require
Jensen-type lower bounds but may also utilize the corresponding upper bounds. The Jensen
bounds only partially simplify their expressions and some intractabilities remain. For in-
stance, latent distributions need to be bounded above and below in a discriminative setting
[4] [3]. Metaphorically, discriminative learning requires lower bounds to cluster positive
examples and upper bounds to repel away from negative ones. We derive these comple-
mentary upper bounds 2 which are useful for discriminative classification and regression.
These bounds are structurally similar to Jensen bounds, allowing easy migration of ML
techniques to discriminative settings.

This paper is organized as follows: We introduce the probabilistic models we will use:
mixtures of the exponential family. We then describe some estimation criteria on these
models which are intractable. One simplification is to lower bound via Jensen’s inequality
or EM. The reverse upper bound is then derived. We show implementation and results of
the bounds in applications (i.e. conditional maximum likelihood (CML)). Finally, a strict
algebraic proof is given to validate the reverse-bound.

2 The Exponential Family

We restrict the reverse-Jensen bounds to mixtures of the exponential family (e-family). In
practice this class of densities covers a very large portionof contemporary statistical models.
Mixtures of the e-family include Gaussians Mixture Models,Multinomials, Poisson, Hidden
Markov Models, Sigmoidal Belief Networks, Discrete Bayesian Networks, etc. [1] The
e-family has the following form: P (XjΘ) = exp(A(X) +XTΘ� K(Θ)).

E-Distribution A(X) K(Θ)
Gaussian � 1

2X
TX�D

2 log(2�) 1
2 ΘTΘ

Multinomial 0 � log(1+
P

d
exp(Θd))

Here,K(Θ) is convex in Θ, a multi-dimensional parameter vector. Typically the data vector
X is constrained to live in the gradient space of K, i.e. X 2 @

@ΘK(Θ). The e-family has
special properties (i.e. conjugates, convexity, linearity, etc.) [1]. The reverse-Jensen bound
also exploits these intrinsic properties. The table above lists example A and K functions
for Gaussian and multinomial distributions. More generally, though, we will deal with
mixtures of the e-family (where m represents the incomplete data)3, i.e.:

p(XjΘ) =
X
m

p(m)p(X;Θjm) =
X
m

�m exp(Am(Xm) +XT
mΘm � Km(Θm))

These latent probability distributions need to get maximized, integrated, marginalized,
conditioned, etc. to solve various inference, prediction, and parameter estimation tasks.
However, such manipulations can be difficult or intractable.

3 Conditional and Discriminative Criteria

The combination of ML with EM and Jensen have indeed produced straightforward and
monotonically convergent estimation procedures for mixtures of the e-family [2] [1] [7].
However, ML criteria are non-discriminative modeling techniques for estimating generative
models. Consequently, they suffer when model assumptions are inaccurate.

2A weaker bound for Gaussian mixture regression appears in [6]. Other reverse-bounds are in [8].
3Note we use Θ to denote an aggregate model encompassing all individual Θm 8m.
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ML Classifier: l = �8:0; lc = �1:7 CML Classifier: l = �54:7; lc = 0:4

Figure 1: ML vs. CML (Thick Gaussians represent circles, thin ones represent x’s).

For visualization, observe the binary classification4 problem above. Here, our model
incorrectly has 2 Gaussians (identity covariances) per class but the true data is generated
from 8 Gaussians. Two solutions are shown, ML and CML. Note the values of joint log-
likelihood l and conditional log-likelihood lc. The ML solution performs as well as random
chance guessing while CML classifies the data very well. Thus, CML, in estimating a
conditional density, propagates the classification task into the estimation criterion.

In such examples, we are given training examples Xi and corresponding binary labels ci to
classify with a latent variable e-family model (mixture of Gaussians). We usem to represent
the latent missing variables. The corresponding objective functions log-likelihood l and
conditional log-likelihood lc are:

l =
P

i
log
P

m
p(m;ci;XijΘ)

lc =
P

i
log
P

m
p(m;cijXi;Θ) =

P
i

log
P

m
p(m;ci;XijΘ)�log

P
m

P
c
p(m;c;XijΘ)

The classification and regression task can be even more powerfully exploited in the case of
discriminative (or large-margin) estimation [4] [5]. Here, hard constraints are posed on a
discriminant functionL(XjΘ), the ratio of each class’ latent likelihood. Prediction of class
labels is done via the sign of the function, ĉ = signL(XjΘ).

L(XjΘ) = log
p(XjΘ+)

p(XjΘ�) = log
P

m
p(m;XjΘ+)�log

P
m
p(m;XjΘ�) (1)

In the above log-likelihoods and discriminant functions we note logarithms of sums (latent
likelihood is basically a product of sums) which cause intractabilities. For instance, it is
difficult to maximize or integrate the above log-sum quantities. Thus, we need to invoke
simplifying bounds.

4 Jensen and EM Bounds

Recall the definition of Jensen’s inequality: f(EfXg) � Eff(X )g for concave f . The
log-summations in l, lc, and L(XjΘ) all involve a concave f = log around an expectation,
i.e. a log-sum or probabilistic mixture over latent variables. We apply Jensen as follows:

log
P

m
p(m;XjΘ) �

P
m

�
p(m;XjΘ̃)P
n
p(n;XjΘ̃)

�
log p(m;XjΘ)

p(m;XjΘ̃)
+log

P
m
p(m;XjΘ̃)

log
P

m
�m exp(Am(Xm)+XT

mΘm�Km(Θm)) �
P

m
[hm ] (XT

mΘm�Km(Θm)) +C

Above, we have also expanded the bound in the e-family notation. This forms a variational
lower bound on the log-sum which makes tangential contact with it at Θ̃ and is much easier

4These derivations extend to multi-class classification and regression as well.



to manipulate. Basically, the log-sum becomes a sum of log-exponential family members.
There is an additive constant term C and the positive scalar hm terms (the responsibilities)
are given by the terms in the square brackets (here, brackets are for grouping terms and are
not operators). These quantities are relatively straightforward to compute. We only require
local evaluations of log-sum values at the current Θ̃ to compute a global lower bound.

If we bound all log-sums in the log-likelihood, we have a lower bound on the objective l
which we can maximize easily. Iterating maximization and lower bound computation at the
new Θ produces a local maximum of log-likelihood as in EM. However, applying Jensen
on log-sums in lc and L(XjΘ) is not as straightforward. Some terms in these expressions
involve negative log-sums and so Jensen is actually solving for an upper bound on those
terms. If we want overall lower and upper bounds on lc and L(XjΘ), we need to compute
reverse-Jensen bounds.

5 Reverse-Jensen Bounds

It seems strange we can reverse Jensen (i.e. f(EfXg) � Eff(X )g) but it is possible.
We need to exploit the convexity of the K functions in the e-family instead of exploiting
the concavity of f = log. However, not only does the reverse-bound have to upper-bound
the log-sum, it should also have the same form as the Jensen-bound above, i.e. a sum
of log-exponential family terms. That way, upper and lower bounds can be combined
homogeneously and ML tools can be quickly adapted to the new bounds. We thus need:

log
P

m
�m exp(Am(Xm)+XT

mΘm�Km(Θm)) �
P

m
�[wm ] (Y TmΘm�Km(Θm)) +k (2)

Here, we give the parameters of the bound directly, refer to the proof at the end of the paper
for their algebraic derivation. This bound again makes tangential contact at Θ̃ yet is an
upper bound on the log-sum 5.

k = logp(XjΘ̃)+
P

m
wm(Y T

m Θ̃m�Km(Θ̃m))

Ym = hm
wm

�
@K(Θm)
@Θm

��
Θ̃m

�Xm

�
+ @K(Θm)

@Θm

��
Θ̃m

w0m = minw0m such that hm
w0m

�
@K(Θm)
@Θm

��
Θ̃m

�Xm

�
+ @K(Θm)

@Θm

��
Θ̃m

2
@K(Θm)
@Θm

wm = [Xm�K
0(Θ̃m)]TK00(Θ̃m)�1[Xm�K

0(Θ̃m)] + w0m

This bound effectively reweights (wm) and translates (Ym) incomplete data to obtain com-
plete data. Tighter bounds are possible (i.e. smaller wm) which also depend on the hm
terms (see web page). The first condition requires that the w0m generate a valid Ym that
lives in the gradient space of the K functions (a typical e-family constraint). Thus, from
local computations of the log-sum’s values, gradients and Hessians at the current Θ̃, we can
compute global upper bounds.

6 Applications and Results

In Fig. 2 we plot the bounds for a two-component unidimensional Gaussian mixture model
case and a two component binomial (unidimensional multinomial) mixture model. The
Jensen-type bounds as well as the reverse-Jensen boundsare shown at various configurations
of Θ̃ and X. Jensen bounds are usually tighter but this is inevitable due to the intrinsic
shape of the log-sum. In addition to viewing many such 2D visualizations, we computed
higher dimensional bounds and sampled them extensively, empirically verifying that the
reverse-Jensen bound remained above the log-sum. Below we describe practical uses of
this new reverse-bound.

5We can also find multinomial bounds on �-priors jointly with the Θ parameters.



(a) Gaussian Case (b) Multinomial Case

Figure 2: Jensen (black) and reverse-Jensen (white) bounds on the log-sum (gray).

6.1 Conditional Maximum Likelihood

(A) 0 5 10 15
−3

−2

−1

0

1

(B) 0 10 20 30
200

220

240

260

The inequalities above were use to fully lower bound lc and max-
imizing the bound iteratively. This is like the CEM algorithm [6]
except the new bounds handle the whole e-family (i.e. generalized
CEM). The synthetic Gaussian mixture model problem problem por-
trayed in Fig. 1 was implemented. Both ML and CML estimators
(with reverse-bounds) were initialized in the same random configu-
ration and maximized. The Gaussians converged as in Fig. 1. CML
classification accuracy was 93% while ML obtained 59%. Figure
(A) depicts the convergence of lc per iteration under CML (top line)
and ML (bottom-line). Similarly, we computed multinomial models
for 3-class data as 60 base-pair protein chains in Figure (B).

Computationally, utilizing both Jensen and reverse-Jensen bounds
for optimizing CML needs double the processing as ML using EM. For example, we
estimated 2 classes of mixtures of multinomials (5-way mixture) from 40 10-dimensional
data points. In non-optimized Matlab code, ML took 0.57 seconds per epoch while CML
took 1.27 seconds due to extra bound computations. Thus, efficiency is close to EM
for practical problems. Complexity per epoch roughly scales linearly with sample size,
dimensions and number of latent variables.

6.2 Conditional Variational Bayesian Inference

In [9], Bayesian integration methods were demonstrated on latent-variable models by
invoking Jensen type lower bounds on the integrals of interest. A similar technique can
be used to approximate conditional Bayesian integration. Traditionally, we compute the
joint Bayesian integral from (X ;Y) data as p(X;Y ) =

R
p(X;Y jΘ)p(ΘjX ;Y)dΘ and

condition it to obtain p(Y jX)j (the superscript indicates we initially estimated a joint
density) . Alternatively, we can compute the conditional Bayesian integral directly. The



corresponding dependency graphs (Fig. 3(b) and (c)) depict the differences between joint and
conditional estimation. The conditional Bayesian integral exploits the graph’s factorization,
to solve p(Y jX)c.

p(Y jX)c=
R
p(Y jX;Θc)[p(ΘcjX ;Y)]dΘc=

R
p(Y jX;Θc)

�
p(YjX;Θc)p(Θc)

p(YjX)

�
dΘc

Jensen and reverse-Jensen bound the terms to permit analytic integration. Iterating this
process efficiently converges to an approximation of the true integral. We also exhaustively
solved both Bayesian integrals exactly for a 2 Gaussian mixture model on 4 data points.
Fig. 3 shows the data and densities. In Fig. 3(d) joint and conditional estimates are
inconsistent under Bayesian integration (i.e. P (Y jX)c 6= P (Y jX)j).

θ
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Z

Y
θ X

Y {X,Y} {Y|X}

p(y|x)
p(x,y)

Condition

Integrate Integrate

p(y|x)

j

c=/

(a) Data (b) Conditioned Joint (c) Direct Conditional (d) Inconsistency

Figure 3: Conditioned Joint and Conditional Bayesian Estimates

6.3 Maximum Entropy Discrimination

Recently, Maximum Entropy Discrimination (MED) was proposed as an alternative criterion
for estimating discriminative exponential densities [4] [5] and was shown to subsume SVMs.
The technique integrates over discriminant functions like Eq. 1 but this is intractable under
latent variable situations. However, if Jensen and reverse-Jensen bounds are used, the
required computations can be done. This permits iterative MED solutions to obtain large
margin mixture models and mixtures of SVMs (see web page).

7 Discussion

We derived and proved an upper bound on the log-sum of e-family distributions that acts
as the reverse of the Jensen lower bound. This tool has applications in conditional and
discriminative learning for latent variable models. For further results, extensions, etc. see:
http:==www.media.mit.edu= �jebara=bounds.

8 Proof

Starting from Eq. 2, we directly compute k and Ym by ensuring the variational bound
makes tangential contact with the log-sum at Θ̃ (i.e. making their value and gradients
equal). Substitutingk and Ym into Eq. 2, we get constraints onwm via Bregman distances:
P

m
wm(K(Θm)�K(Θ̃m)�(Θm�Θ̃m)TK0(Θ̃m)) � log p(XjΘ)

p(XjΘ̃)
+
P

m
hm(Θm�Θ̃m)T (K0(Θ̃m)�Xm)

Define Fm(Θm)=K(Θm)�K(Θ̃m)�(Θm�Θ̃m)TK0(Θ̃m). The F functions are convex and have a
minimum (which is zero) at Θ̃m. Replace the K functions with F:

P
m
wmF(Θm) � log

P
m

expfDm+ΘTmZm�F(Θm )gP
m

expfDm+Θ̃TmZm�F(Θ̃m )g
�
P

m
hm(Θm�Θ̃m)TZm



Here, Dm are constants and Zm:=Xm�K
0(Θ̃m). Next, define a mapping from these bowl-

shaped functions to quadratics:
Fm(Θm) = Gm(Φm) = 1

2 (Φm�Θ̃m)T (Φm�Θ̃m)

This permits us to rewrite Eq. 2 in terms of Φ:
P

m
wmG(Φm) � log

P
m

expfDm+Θm(Φm)T Zm�G(Φm)gP
m

expfDm+Θ̃TmZm�G(Θ̃m )g
�
P

m
hm(Θm(Φm)�Θ̃m)TZm (3)

Let us find properties of the mapping F=G. Take 2nd derivatives over Φm:
K00(Θm) @Θm

@Φm
@Θm
@Φm

T
+(K0(Θm)�K0(Θ̃m))@

2Θm
@Φ2
m

= I

Setting Θm=Θ̃m above, we get the following for a family of such mappings: @Θm
@Φm jΘ̃m =

[K00(Θ̃m)]�1=2 . In an e-family, we can always find a Θ�m such that Xm=K0(Θ�m). By convexity
of F we create a linear lower bound at Θ�m:

F(Θ�m)+(Θm�Θ�m)
@F(Θm)
@Θm

��
Θ�m

� F(Θm) = G(Φm)

Take 2nd derivatives over Φm: F 0(Θ�m) @
2Θm
@Φ2
m

� I which is rewritten as: Zm
@2Θm
@Φ2
m

� I

In Eq. 3, Dm+Θm(Φm)TZm�G(Φm) is always concave since its Hessian is: Zm @2Θm
@Φ2
m
�I which

is negative. So, we upper bound these terms by a variational linear bound at Θ̃m:
P

m
wmG(Φm) � log

P
m

expfD0m+ΦTm [K00(Θ̃m)]�1=2ZmgP
m

expfDm+Θ̃TmZm�G(Θ̃m )g
�
P

m
hm(Θm(Φm)�Θ̃m)TZm

Take 2nd derivatives of both sides with respect to each Φm to obtain (after simplifications):
wmI � ZmK

00(Θ̃m)�1ZTm � hmZm
@2Θm
@Φ2
m

If we invoke the constraint on w0m, we can replace �hmZm
@2Θm
@Φ2
m

� w0mI. Manipulating, we
get the constraint on wm (as a Loewner ordering here), guaranteeing a global upper bound:

wmI � [Xm�K
0(Θ̃m)]K00(Θ̃m)�1[Xm�K

0(Θ̃m)]T + w0mI 2
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