
Bethe Learning of Graphical Models via MAP Decoding

Supplementary Material

The following material is used to provide details about techniques employed in the paper. Part A presents details
of experimental setup and additional results. Then in part B we discuss the convergence properties of FW for
our problems. In part C we prove convexity of the Bethe free energy for general matchings. Part D derives an
instance of our Alg. 1 for matchings, and part E derives the same for linear CRFs.

Then, we present a full derivation of the dual objective and line search objective for doing FW learning for
graph matchings. This is presented in terms of matrix-valued terms (various weighted adjacency matrices for
the graph), which facilitates easy implementation, since MAP solvers operate on such matrices.

A Details on Experiments

In this appendix, we explain further details of experiments.

A.1 Grid CRFs

A.1.1 Binary Denoising

We used code by Schwing3 which implements the algorithm in Hazan & Urtasun (2010), and we configured it
to solve the same objective as (7). Tuning parameters, such as number of inner loop iterations, message passing
schedule, etc. were left at their default values. We set λ = 100 for both experiments and for all experiments. Test
error was measured by Hamming error of the maximum posterior marginal (MPM) estimate, the same metric
used in the horses experiments. We did not use linesearch for our algorithm.

Fig. 6 shows the objective value plots for all eight problems. The FW curves are for our algorithm, while the
HU curves are the results for the algorithm of Hazan & Urtasun (2010).

Timings were performed on a dedicated 12 core (24 hyper threads) 2.00GHz Intel Xeon E5-2620 machine with
68 GB of physical RAM running Ubuntu 12.04.5 LTS and Matlab R2012b. Processes were restricted to a single
thread, and we timed 8 problems simultaneously. Our algorithms were implemented in Matlab, interfacing with
combinatorial solvers written in C or C++. Schwing’s code was written in C++.

A.1.2 Image Segmentation

We set λ = 3420 in our parameterization which matches the setting for the published result of Domke (2013).
We did not use linesearch.

Timings were performed a dedicated 8 core (16 hyper threads), 2.67GHz Intel Xeon X5550 machine with 24 GB
of physical RAM running Ubuntu 12.04.5 LTS and Matlab R2012b. Computations were restricted to a single
core, and at most two experiments were run at a time. Our algorithms were implemented in Matlab, interfacing
with combinatorial solvers written in C or C++. We downloaded the code for Domke (2013) and Caetano (2009)
from the authors’ websites, which were implemented in C++ and Matlab with C extensions, respectively. We
obtained the original experiment scripts for Domke (2013) through correspondence with the author.

Our denoising model had 4,096 nodes and 40,448 parameters and our horses model had 10,000–40,000 nodes and
368 parameters. Both had about twice as many edges as nodes. Because the horses had many features (between
1.5 to 11.9 million per image), we were unable to train Hazan & Urtasun (2010) on more than 18 images (out of
200) before running out of memory on our 64G machine.

In early iterations our algorithm achieves the lowest objective value and test error. We attain low test error
even when the objective value is relatively poor. This phenomenon is a result of the dual formulation: we
iteratively move τ to minimize the objective, but for each value of τ , we compute the optimal θ as a linear
function of τ . While τ may initially be very inaccurate, contributing to a large objective value, θ is much lower
dimensional, so some of the errors may cancel in computing θ, resulting in good predictions nevertheless. In
contrast, Domke (2013) iteratively moves θ, and for each value of θ, computes the optimal value of τ using TRW.
Prior to convergence, this may enable better fit to the training data at the expense of accurate estimation of θ.

3http://alexander-schwing.de/projectsGeneralStructuredPredictionLatentVariables.php
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Figure 6: Objective value vs. time for all binary denoising problems.
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A.2 Permanents and Matchings

A.2.1 Synthetic Bipartite Matchings

We begin with a synthetic experiment using the flexibility of MLE-Struct to analyzes the accuracy of various
entropy approximations for matchings. We sample 10 × 10 bipartite matchings from the distribution (14). We
explore two choices of the weight matrix W : one in the high SNR regime with −2 on the off-diagonals and 0 on
the diagonals, and one in the low SNR regime −0.5 off-diagonal and 0 on-diagonal.

Our problems are small enough that we can compute exact partition functions and their gradients with Ryser’s
algorithm (Ryser, 1963). Hence, we can perform exact MLE with gradient descent. We can also evaluate the true
(regularized) likelihood of our estimates. We ran Alg. 1 with ρ = 1 and called this result the Bethe estimator.
In addition, setting ρ = 0.5 for this problem guarantees a concave entropy approximation and an upper bound
on the partition function (Meltzer, 2009). We also ran Alg. 1 at this setting and denote the result as the RW
estimator.

Fig. 7(a) displays the average regularized log-likelihood of each estimator, higher being better and the Exact
curve being an upper bound. In both low and high SNR regimes, the Bethe estimator is superior to the RW
estimator. Reweighted entropies such as the one chosen here are known to perform poorly as estimators of the
true partition function as compared to belief propagation. Interestingly, although the objective values of the
estimates are different in each case, in the low SNR regime, all estimation methods produce about the same
likelihood.

In this experiment, the problems were small enough that we could compare against the true log-likelihood. For
larger problem, our framework can be used to bound the value of the true log-likelihood from both above and
below, allowing us to assess approximation quality for all problems. We defer the details and experiments to
Appendix A.2.1.

Our framework can also be used to bound the value of the true likelihood. First, since ZRW provides an upper
bound on Z (Wainwright & Jordan, 2008), we have ZRW(W ) = Z0.5(W ) ≥ Z(W ) for any W . Second, for
matchings, we have ZB(W ) = Z1(W ) ≤ Z(W ) (Gurvits). Therefore, we have

log `RW(W ) ≤ log `(W ) ≤ log `B(W ) (15)

for all W . Moreover, `RW and `B are global bounds on the maximum likelihood, so the inequalities also hold at
their respective optima. That is,

log `RW(W ∗RW) ≤ log `(W ∗) ≤ log `B(W ∗B) (16)

where W ∗RW is the RW estimator, W ∗ is the regularized MLE, and W ∗B is the Bethe estimator. We plot the
quantities of (16) in Fig. 7(b). We can also use (15) to obtain upper and lower bounds of `(W ∗B) and `(W ∗RW)
by using FW for inference to compute `B(W ∗RW) and `RW(W ∗B), since `B(W ∗B) and `RW(W ∗RW) will already be
available upon convergence of Alg. 1. Fig. 8 shows these results.

A.2.2 Bipartite Matchings (Stereo Vision)

The data consist of 111 frames of a toy house and 101 separate frames of a toy hotel, each rotated a fixed angle
from its predecessor. Each frame was hand-labeled with the same 30 landmark points. We consider pairs of
images at a fixed number of frames apart (the gap), which we divide into training, validation, and testing sets
following the same splits as Caetano (2009). We measure the average Hamming error between the predicted
matching (MAP estimate using our learned parameters) and the ground truth.

The results of the experiments with reweighting parameters ρ = ~1 are described in Fig. 3b. For each subsequence,
we chose the regularization via cross-validation. We also compared the performance of our algorithm with
different reweighting parameters ρ. Fig. 9 shows the results for the house data when the gap is 50 for various
choices of ρ. We observed little difference in test error as ρ varies: this was confirmed over synthetic as well as
real data. As a result, we did not tune ρ for different data/problem setups.
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(a) High SNR problem: Av-
erage (divided by sample
size) true regularized log-
likelihood evaluated at the
exact MLE as well as at
the parameters that max-
imize the RW and Bethe
approximate log-likelihoods.
Higher is better, with the Ex-
act curve being the upper
bound. The data are nearly
as probable under the Bethe
estimator as they are under
the exact MLE.
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(b) Low SNR problem: Same
plot as (a). All methods per-
form comparably in this set-
ting.
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(c) High SNR problem: Op-
timal values of regularized
true, and approximate log-
likelihoods under the RW
and Bethe approximations.
The true likelihood is always
bounded by the approxima-
tions.
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(d) Low SNR problem: Same
as (c)

Figure 7: Exact likelihoods of the Bethe and RW estimates, and sandwich bounds on the likelihood.
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(a) Exact and approximate likelihoods evaluated at the pa-
rameters that maximize the Bethe log-likelihood.
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(b) Exact and approximate likelihoods evaluated at the pa-
rameters that maximize the RW log-likelihood.

Figure 8: Sandwich bounds on the likelihood at the Bethe and TRW estimators. Top is the high SNR problem,
bottom is the low SNR problem.

ρ .5 .6 .7 .8 .9 1
Test Loss 0.013 0.013 0.017 0.017 0.020 0.017

Figure 9: Test loss for approximate MLE using FW on the house data set with a gap of 50 and different choices
of uniform ρ vectors.
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Profile Item Description Weight Rank
I generally go to bed at... -0.0296 3
I generally wake up at... -0.0218 4
Rising Sophomore 0 10
Cleanliness -0.0056 7
Smoking -0.0484 1
Sleeping Habits -0.0025 8
Overnight Guests -0.0097 6
Personality -0.037 2
Usual Study Hours 0.0131 12
Study Location -0.0006 9
Study with audio/visual -0.0133 5
Single-sex floor (1) 0.2277 14
Single-sex floor (2) 0.0518 13
Allow in Brownstone 0 10

Figure 10: Distance features for the roommates experiments, their learned weights, and their relative importance
ranking with regularization λ = 100.

A.2.3 General Matchings (Roommate Assignments)

We obtained an anonymized dataset from a major US university over a three year period from 2010-2012. The
data consists of roommate assignments for pairs of students in each of the three years. In addition, each of the
students was required to complete a brief housing survey that asked for their preferences in terms of cleanliness,
sleeping schedule and habits, personality, study preferences, etc. Our questionnaire data consists of 2 binary
features and 12 ordinal features of 5 levels each. For each pair of students and each questionnaire question,
we created one feature of absolute differences and several interaction indicator features, one for each possible
pair of answers to the questionnaire questions. For simplicity, we assumed symmetric interactions. For each
student pair, the weighted score for their matching is a linear combination of features. The learned weights for
each distance features and their relative rankings are described in Fig. 10. As we are using a log-linear model,
the weights should be interpreted as log-odds ratio for a unit increase in absolute distance (assuming ordinal
features).

A few qualitative observations about these results. First, single-sex floor, rising sophomore, and allow in Brown-
stone all received relatively low weights, indicating perhaps that the data was too noisy with respect to these
survey responses. Second, personality, smoking, and bedtime were among the strongest predictors of a successful
match while cleanliness, study hours, study location were among the least important.

The constant baseline sets θ = −1 for distance features and θ = 0 for interactions.

When comparing to the BCFW algorithm for a structured SVM, we employed the publicly-available code from
the authors. We tried regularization parameter lambda values in the range [10e-4, 10e2]. Our best-performing
configuration achieved an AUC of .504 and a hamming error of .9992, which outperforms random guessing, but
significantly underperforms a model trained with MLE.

B Convergence of our Frank-Wolfe Learning Algorithm

Recall the following approximate max-entropy objective function introduced in (10):

Lηρ(τ (1:m)) =
1

2λ
‖θ∗(τ (1:M))‖2 −

∑
m

Hη
ρ (τ (m)),

In this appendix, we discuss the convergence rate of the FW algorithm for the minimization of the convex
function Lηρ over the local polytope.

Jaggi (2013) has shown that the error of the FW iterates, for objective L, is bounded by

L(τt)− L(τ∗) ≤ 2CL
t+ 2

(1 + δ), (17)
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where δ is the multiplicative error to which each of the linear subproblems (i.e., the optimization problem
performed at each iteration) is solved and CL is the curvature of the function L.

Curvature is a stronger notion of the function’s geometry than its Lipschitz parameter, since it is affine-invariant,
like the entire Frank-Wolfe algorithm (Jaggi, 2013). The curvature of a differentiable function F : X → R is
given by

CF = sup
x,x′∈X, γ∈[0,1]
y=x+γ(x′−x)

2

γ2
(F (y)− F (x)− 〈y − x,∇F (x)〉) . (18)

The curvature, CF , quantifies how much F can differ from its linearization. For twice differentiable functions,
the curvature can be upper bounded as follows.

CF ≤ sup
x,x′∈X, γ∈[0,1]
y=x+γ(x′−x)

1

2
(x′ − x)T∇2F (y)(x′ − x) (19)

For our objective function, the curvature is most heavily influenced by the entropy term as the curvature of the
quadratic piece is simply a constant that depends on the features φ.

Unfortunately, the curvature of the entropy terms is unbounded as we approach the boundary of the polytope,
and therefore the curvature of the Bethe-MLE objective, i.e., when η = 0, is unbounded. We instead analyze
the case η ∈ (0, 12 ), which corresponds to forming a quadratic approximation to the entropy terms near the
boundary. Then we discuss a heuristic for setting η which guarantees O(1/t) convergence in all cases and
incurs no approximation error if all variables are independent. As in Krishnan et al. (2015), who obtain O(1/t)
convergence at the expense of introducing approximation error, using η > 0 also yields an approximation error
in general. We expect this error to be very mild compared to that of the Bethe entropy approximation itself.

The modification necessary to make our algorithm have this behavior is trivial and does not change the perfor-
mance in practice. Most importantly, we can still use the same black-box MAP oracle in the inner loop. All we
do is return different gradients for the entropy outside of [η, 1 − η], which are easy to compute as the function
gη(x) is a quadratic on [0, η] and [1− η, 1]. Furthermore, in practice the modification is unnecessary as our FW
iterations never travel outside of [η, 1− η].

These techniques can be applied naturally to the test-time inference algorithm described in Section 3.2. In
fact, we can obtain tighter bounds because ||θ|| is directly available and does not need to be bounded when
constructing η.

B.1 Obtaining O( 1
t ) Convergence

We show that the Frank-Wolfe method applied to our (ρ, η)-parameterized objective (10) enjoys O( 1
t ), so long

as η ∈ (0, 12 ). Recall that this objective is not exactly the ρ-weighted free energy: it instead becomes a quadratic
approximation for any coordinate within η of the polytope boundary. Our proof begins by bounding the curvature
of quadratic, data-dependent, terms. We then bound the curvature of the gη terms, which are singleton entropy
terms that become quadratic approximations near the boundary. We then show that if ρ is chosen to make
L0
ρ convex, then the approximate objective Lηρ is still convex. Putting these pieces together yields a proof of

convergence.

Definition B.1. Let R be the maximum possible `2 norm of all node features φi(X,Yi) and clique features
φα(X,Yα). Let K be the maximum cardinality of any clique. Let M be the number of training examples. Let N
be the maximum of the sum of the number of nodes and cliques in the training examples.

Lemma B.2. For the convex approximate MLE dual problem (10), consider the dual-to-primal mappings from
feasible iterates τ to corresponding parameters θV and θA of the graphical model given in (8) and (9). Then, for
all feasible τ , we have that both θV and θA have `2 norm no greater than 2

λNMR.

Proof. In both (8) and (9), θ is 1
λ times a sum of NM terms, each of which has norm at most 2R, since each

term is a difference of vectors of norm at most R. Therefore, the lemma follows from the triangle inequality.
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Definition B.3 (Restatement of Definition 2.1). For η in [0, 1/2), define

gη(x) =

{
x log(x), for x ∈ [η, 1],

η log(η) + (log(η) + 1)(x− η) + (x−η)2
2η , for x ∈ [0, η)

gη approximates x log x outside of [η, 1] by its quadratic extension. Note that gη is convex, twice continuously
differentiable, and gη(x) ≤ x log(x) for all x ∈ [0, 1].

Lemma B.4. For x such that
∑
i xi = 1, xi ≥ 0, the curvature of g(x) ,

∑
i gη(xi) is less than 2/η.

Proof. Fix x, x′ ∈ [0, 1]n such that
∑
i xi =

∑
i x
′
i = 1. ∇2g(y) is a diagonal matrix whose diagonal elements are

each smaller than 1/η for any y ∈ [0, 1]n. As a result, by (23),

Cg ≤
||x′ − x||2

2η
.

By the triangle inequality,
||x′ − x||2 ≤ (||x′||+ ||x||)2 ≤ 4.

As a result, Cg ≤ 2
η .

Recall (4), the reweighted entropy parameterized by ρ and η:

Hη
ρ (τ) = −

∑
i∈V

∑
yi

(
1−

∑
α⊃i ρα

)
gη(τi(yi))−

∑
α∈A

∑
yα
ραgη(τα(yα)).

For η = 0, we can choose ρ to make this function concave (Heskes, 2006; Ruozzi & Tatikonda, 2013). We now
show that for η ∈ (0, 12 ), the entropy approximation is still concave:

Lemma B.5. For any α ∈ A and i ∈ α with η ∈ (0, 12 ), the difference between the clique and node entropies

∆αi =
∑
yα

gη(τα(yα))−
∑
yi

gη(τi(yi))

is convex under the marginalization constraints.

Proof. The case for η = 0 is proven in Heskes (2006) Lemma A.1. We extend the argument to consider cases
when we use the quadratic approximation instead of x log x.

The local marginalization constraints allow us to identify

τi(yi) =
∑
yα\i

τα(yα)

where α\i denotes the variables in clique α excluding i. Thus we can write

∆αi =
∑
yα

gη (τα(yα))−
∑
yα

gη1

∑
yα\i

τα(yα)

 (20)

We interpret the beliefs τα as a vector and the labels yα as indices. Observe that (20) is separable in each
coordinate τα(yα), so its Hessian is diagonal. Specifically, the diagonal entry for yα on the Hessian is given by

(
∇2∆αi

)
yαyα

=

{
(τα(yα))

−1
for τα(yα) ∈ [η, 1]

η−1 for τα(yα) ∈ [0, η]
−


(∑

yα\i
τα(yα)

)−1
for

∑
yα\i

τα(yα) ∈ [η, 1]

η−1 for
∑
yα\i

τα(yα) ∈ [0, η]

We show that ∆αi is positive semi-definite by showing that the former expression is nonnegative for each of four
cases:

(1) If τα(yα) ∈ [η, 1] and
∑
yα\i

τα(yα) ∈ [η, 1], then the gη(x) = x log x and Lemma A.1 of Heskes (2006) applies.
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(2) If τα(yα) ∈ [0, η] and
∑
yα\i

τα(yα) ∈ [0, η], then
(
∇2∆αi

)
yαyα

= 0.

(3) If
∑
yα\i

τα(yα) ∈ [0, η], then due to the marginalization constraint, we must have τα(yα) ∈ [0, η] as well, so

this case reduces to case 2.

(4) If τα(yα) ∈ [0, η] and
∑
yα\i

τα(yα) ∈ [η, 1], then we need that η−1 ≥
(∑

yα\i
τα(yα)

)
, or equivalently,

η ≤
∑
yα\i

τα(yα) which is true by assumption.

Lemma B.6. The approximate entropy (4) is concave over the local polytope if η ∈ (0, 12 ) and the counting
numbers ρ satisfy the conditions of Theorem 3.1 in Heskes (2006).

Proof. The proof for Theorem 3.1 in Heskes (2006) decomposes the entropy (4) at η = 0 into three terms, each of
which is shown to be convex. Two of the terms depend solely on ρ, so these terms in (4) are convex because we
satisfy the same conditions. The third term requires ∆αi to be convex for all α ∈ A and i ∈ α, which Lemma B.5
provides.

Lemma B.7. There exists a constant Cρ, which depends only on ρ and the graph structure of the problem, such
that the curvature of the term −Hη

ρ (τ) in learning objective (10) is at most

Cρ(|V |+ |A|)M
η

.

Proof. We can consider each of the approximate entropy terms gη separately, corresponding to the entropy for a
variable or a factor in a single sample. In the Bethe approximation, each variable or factor entropy is preceded
by a coefficient that depends only on ρ and the graph structure; let Cρ be twice the largest absolute value of
the coefficients. The curvature of each entropy term is thus bounded by Cρ/η by Lemma B.4, and there are
(|V |+ |A|)M such terms, hence the result.

Lemma B.8. In objective function (10), the first term

λ

2
‖θ∗(τ (1:M))‖2 (21)

has curvature constant less than
1

λ
(|V |+ |A|)MR2. (22)

Proof. First, recall that (21) decomposes into terms for the node and clique parameters:

λ

2
‖θ∗V (τ (1:M))‖2 +

λ

2
‖θ∗A(τ (1:M))‖2.

We first analyze λ
2 ‖θ
∗
V (τ (1:M))‖2, given in (8), and the curvature of the second term follows by analogy. Since

this is a quadratic function of τ , its Hessian H is constant in τ . Define Φ to be a wide matrix where each column
contains the the features of for each node in the training set for each possible value that the node can take on.
Then, (8) implies

H =
1

2λ
Φ>Φ.

Invoking the upper bound on the curvature given in (23), we have that the curvature is bounded above by

sup
τ1,τ2∈M

1

2
(τ1 − τ2)TH(τ1 − τ2). (23)

= sup
τ1,τ2∈M

1

4λ
(τ1 − τ2)TΦ>Φ(τ1 − τ2) (24)

= sup
τ1,τ2∈M

1

4λ
(Φ(τ1 − τ2))>Φ(τ1 − τ2) (25)
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≤ M |V |
4λ

(2R)(2R) (26)

=
1

λ
M |V |R2. (27)

Above, (26) follows from the line above because each τ term is a concatenation of marginals for M |V | nodes and
the maximum norm of each column of Φ is R by assumption, so the maximum norm of Φ(τ1 − τ2) is 2R. Note
that in the lines above, terms such as Φ(τ1 − τ2) do not denote feature function evaluation, but matrix-vector
multiplication.

The proof follows by also applying the above analysis to λ
2 ‖θ
∗
A(τ (1:M))‖2 and adding the curvatures of the two

terms.

Theorem B.9 (Restatement of Theorem 3.1). Let |V | be the number of nodes in the model, |A| the number of
factors, M the number of samples, R the maximum norm of any feature function φ. Alg. 1 converges as O(C/t)
to the optimum of (10), with curvature

C < (|V |+ |A|)M(
Cρ
η

+
R2

λ
).

Proof. This follows from summing the bounds in Lemmas B.7 and B.8.

Observation B.10. At first glance, these bounds appear quite loose, since they scale with M and N . However,
note that we set up our overall learning problem as total training loss plus a regularizer, rather than average
training loss plus a regularizer. Therefore, in practice the choice of λ scales with M and N , though it won’t scale
linearly with these, since for smaller training sets one needs to regularize more heavily. This reduces the effect
of these constants in the bounds.

B.2 Choosing η

We present a technique for choosing a value of η > 0 by considering a relaxed version of (10). We show that
in this relaxed problem, we can find a value of η∗ such that no coordinate of the optimal belief vector will be
η∗-close to the boundary, and therefore we suffer no approximation error.

Proposition B.11. Consider a simplification of (10) where we remove the consistency constraints between
beliefs for nodes and edges, yielding a collection of independent logistic regression problems that can be analyzed
in closed form. Let τ∗ be the optimum of this problem. Then for η−1 = 1 + (K − 1) exp( 4

λNMR2), we can
guarantee that each coordinates τ∗ is contained in [η, 1− η]. In this case, the optimum of Lηρ and L0

ρ coincide.

Proof. Consider a node-wise logistic regression for variable Y with cardinality n. Let P (Y = j|X) =
exp(aj)∑
k exp(ak)

,

where a1, . . . , an are functions of X. Since this is a simple multinomial distribution, its vector of marginals is
simply the vector P = [P (Y = 1|X), P (Y = 2|X), ...P (Y = n|X)]. We seek η such that every coordinate of P is
in [η, 1− η], and thus it is sufficient to set η to a known lower bound on the minimum entry of P , since if every
element of P is greater than η, we have that every element of P must also be less than 1− η, since they sum to
one.

Therefore, we construct such a lower bound for the elements of P . Let A = [a1, . . . , an] and define a− to be the
minimum entry of A and a+ to be the maximum entry of A. With these, we have that each of the coordinates
of P is lower bounded by

η =
exp(a−)

exp(a−) + (n− 1) exp(a+)
. (28)

Namely, the value Y = j receives the smallest possible probability mass if j has un-normalized mass exp(a−)
and all of the other values have un-normalized mass exp(a+).

Therefore, we require bounds on a− and a+. Each coordinate of A is obtained by the inner product of θ and φ
(either θV and φi or θA and φα). By the Cauchy-Schwartz inequality and Lemma B.2, we have the bound on
every element of A: |ai| < 2

λDMR2. In other words, a− > − 2
λNMR2 and a+ < 2

λNMR2. Next we substitute
these into (28) and simplify terms. Finally we replace n in (28) with the maximum cardinality of any of these
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local logistic regression problems, which is the maximum cardinality of a clique, which we established to be K
in Definition B.1. This yields the desired bound.

C Convexity of the Bethe Free Energy for General Matchings

In this appendix, we argue that the Bethe free energy for the (not necessarily perfect) matching problem is
convex over general graphs. The convexity of the Bethe approximation for the bipartite matching problem was
investigated experimentally by Huang & Jebara (2009) and proven by Vontobel (2013). The same argument holds
for any choice of reweighting parameters such that ρi ∈ [0, 1] for all i. The entropy and polytope approximations
are formulated as follows.

H ′ρ(τ) ,
∑

(i,j)∈E

[
(ρi + ρj − 1)(1− τij) log(1− τij)− τij log τij

]
−
∑
i∈V

ρi(1−
∑
j∈∂i

τij) log(1−
∑
j∈∂i

τij)

where τ is restricted to T ′ = {τ ≥ 0 : for all i ∈ V,
∑

+j ∈ ∂iτij ≤ 1}.
Theorem C.1. For any ρ ∈ [0, 1]|V |, any graph (bipartite or general), and any matching (perfect or imperfect),
the reweighted free energy (3) is convex over the local polytope.

Proof. For simplicity we only argue the case ρi = 1 for all i. Proving the general case simply requires keeping
track of additional ρi coefficients, as in Theorem 60 of Vontobel (2013).

For the case of the perfect matching problem on a graph G, and for ρ = 1, the entropy term of the Bethe free
energy can be written as

H ′~1(τ) =
[ ∑
(i,j)∈E

(1− τij) log(1− τij)− τij log τij

]
−
∑
i∈V

(1−
∑
j∈∂i

τij) log(1−
∑
j∈∂i

τij)

=
∑
i∈V

[
− (1−

∑
j∈∂i

τij) log(1−
∑
j∈∂i

τij) +
1

2

∑
j∈∂i

(
(1− τij) log(1− τij)− τij log τij

)]
=
∑
i∈V

[1

2
S(τi,∂i, 1−

∑
j∈∂i

τij) +
1

2
h(1−

∑
j∈∂i

τij)
]
.

Here, h(x) = −x log x− (1− x) log(1− x) is the entropy function. As proven in Vontobel (2013), the function

Sn(x1, . . . , xn) =

n∑
i=1

(1− xi) log(1− xi)− xi log xi

is concave when restricted to the n-dimensional probability simplex for each n ≥ 1 (above, we employ n = 2).
Therefore as both S and h are concave functions, the entropy function is concave which implies that the free
energy approximation is convex.

D Frank-Wolfe and Matchings

In this appendix, we describe a conditional random field over perfect matchings, formulate the approximate
learning problem in this context, and describe the linesearch procedure used as part of the FW algorithm.

Assume we have M observations, consisting of N items matched to N other items. We represent the m’th
observation by

(
W (m), X(m), Y (m)

)
where the W and X are N ×DW and N ×DX data matrices and Y (m) is

an N ×N column permutation matrix 4. Note that W and X contain the data for the two separate parts of the
graph.

4That is, if i maps to j, then Yji = 0 and Yki = 0 for k 6= j.
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In general, conditional random field features can be arbitrary functions of (W,X, Y ). To produce a model whose
MAP solution is a maximum-weight perfect matching, we require the features to be linear in Y . Since Yji
denotes the presence or absence of edge (i, j), its coefficient ought to depend only on the data for items i and
j. Therefore, we use the feature map Fk(W,X, Y ) = 〈Gk(W,X), Y 〉 where (Gk(W,X))ij = gk (wi, xj). That is,

the k’th feature is a linear function of Y with coefficients given by applying a single function gk : RDX × RDW
to every pair of rows in W and X. We will have K features in total. We now write G

(m)
k = Gk

(
W (m), X(m)

)
and dispense with W and X. The probability of one observation is thus

p(Y |G1:K ; θ) =
1

Z(θ)
exp

(∑
k

θk 〈Gk, Y 〉

)
So the log-likelihood for M i.i.d. observations is

`
(
θ;Y (1:M), G

(1:M)
1:K

)
=
∑
m

∑
k

θk

〈
G

(m)
k , Y (m)

〉
− logZ

(
θ,G

(m)
1:K

)
(29)

We focus on the case K ≤MN2.

D.1 Minimax Formulation

We now replace logZ with logZB,ρ and add an L2 regularizer. Note that ρ is an N -vector reweighting parameter
with entries between 0.5 and 1. Using the variational formulation of the (Bethe) free energy, we write the
maximum Bethe likelihood problem as a minimax problem, which we further analytically reduce to a convex
program with linear constraints. Begin with

− logZB

(
θ,G

(m)
1:K

)
= min
T∈M

−
∑
k

θk

〈
G

(m)
k , T

〉
−Hρ(T ). (30)

To simplify subsequent derivations, let y(m) = vec
(
Y (m)

)
, τ (m) = vec

(
T (m)

)
, and G(m) be an N2 ×K matrix

whose k’th column is given by vec
(
G

(m)
k

)
. In the sequel, we will use the reweighting parameters in the form

of pairwise sums ρi + ρj . Thus, let R be N × N matrix where Rij = ρi + ρj and let r = vec(R). Addition-
ally, define y, τ, and G by vertically stacking all M members of y(m), τ (m), and G(m). Thus we can rewrite∑
m θk

〈
G

(m)
k , Y (m)

〉
= θ>

(
G>y

)
. Plugging (30) into (29) and adding a quadratic penalty gives the problem

max
θ
θ>
(
G>y

)
− λ

2
‖θ‖22 +

∑
m

min
τ(m)∈M

−θ>
(
G(m)>τ (m)

)
−Hρ

(
τ (m)

)
= max

θ
θ>
(
G>y

)
− λ

2
‖θ‖22 + min

τ∈MM
−θ>

(
G>τ

)
−
∑
m

Hρ

(
τ (m)

)
= min

τ∈MM
max
θ
θ>
(
G>(y − τ)

)
− λ

2
‖θ‖22 −

∑
m

Hρ

(
τ (m)

)
(31)

=: min
τ∈MM

max
θ
f (τ, θ)

The second line is justified because the minimizations in τ (m) are separable, so the min and sum operators
commute. The cost is that we must now minimize over a larger product space MM , but we will see later why
this is not a problem. The last line follows from Sion’s minimax theorem: the minimization domain MM is
compact convex, and the objective is convex in the minimization variable τ and concave in the maximization
variable θ (Sion, 1958). The theorem requires only one compact domain, so θ can remain unconstrained. Thus,
for any τ , the concave function f (τ, ·) attains its maximum at the stationary point 0 = ∇θf = G>(y − τ)− λθ,
e.g. θ = λ−1G>(y − τ). Moreover, f (τ, ·) is strictly concave for λ > 0, so the maximum is unique. Plugging in
to (31) and simplifying, we get

min
τ∈MM

1

2λ

∥∥G>(y − τ)
∥∥2
2
−
∑
m

Hρ

(
τ (m)

)
(32)

=: min
τ∈MM

h (τ)
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D.2 Line search

To compute the next iterate of FW, τt+1, we use linesearch. Write τt+1 = (1− τ)τt + ητ∗t+1. Plugging in to (32),
we get

ht(η) :=
1

2λ

∥∥G> (y − (1− η)τt − ητ∗t+1

)∥∥2 −∑
m

HRW

(
(1− η)τ

(m)
t + ητ

∗(m)
t+1 ; ρ

)
=

1

2λ

{∥∥G> (y − τt)
∥∥2 + 2η (y − τt)>GG>

(
τt − τ∗t+1

)
+ η2

∥∥G> (τt − τ∗t+1

)∥∥2}
−
∑
m

HRW

(
(1− η)τ

(m)
t + ητ

∗(m)
t+1 ; ρ

)
(33)

Thus we can precompute the expensive matrix products in the quadratic term.

D.3 General Matchings

The above FW procedure only requires a few changes when switching from complete bipartite graphs to general
graphs. The same equations and steps hold when we replace biadjacency feature matrices with adjacency features,
and permutation matrices with matrices representing perfect matchings. There are only a few technical caveats.
First, for general graphs we need to be able to allow some τij to be zero. This can occur because either there
is no edge between i and j, or i and j are neighbors, but there is no possible perfect matching in which they
are linked. For both of these cases, we simply clamp τij at zero. Similarly, some edges occur in every perfect
matching, so we need to discover these a-priori and clamp τij at one. Second, unlike for bipartite matching,
initialization of τ is non-trivial, since the set of neighbors Nb(i) is different for every i. We cannot choose an
integral τ from the local marginal polytope as an initial point, since the curvature is infinite there. Instead, for
every edge in the graph, we can find one matching that contains that edge and one matching does not by solving
a series of matching problems. We average all of these matchings to obtain an initial feasible point.

E Frank Wolfe and Linear CRFs

E.1 Notation

We work with a conditional random field of L labels over the graph G = (N,E) in the standard overcomplete
parameterization. That is, yn is an L× 1 indicator vector for the state of node v, and ye is an L× L indicator
matrix for the state of edge e. We will also treat ye as a vector when convenient. We denote an element of a
matrix or vector by parentheses. For node n, let un be its C× 1 feature vector and for edge e, let ve be its D× 1
feature vector. Implicitly, these feature vectors are derived from applying some function to an input vector x.
We refer to elements of a vector We will learn a linear map for the node and edge parameters:

θn = Fun ∀n ∈ N
θe = Gve ∀e ∈ E

Now suppose we have M exchangeable samples, and let the superscript ·m denote the observation belonging to
the mth sample. Our joint log-likelihood is thus

` (F,G; y, u, v) =
∑
m

(∑
n

ym>n Fun +
∑
e

ym>e Gve

)
− logZ (F,G, u, v)

E.2 Minimax Formulation

We replace logZ with a parameterized surrogate likelihood logZρ which interpolates between the TRW and
Bethe approximations. We use the variational formulation of logZρ, over the local polytope T . Note that the
Bethe approximation is not convex in this setting, but TRW is. For grid MRFs, each edge has probability 0.5 of
appearing in a spanning tree, so we set ρ = 0.5 for each edge.
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Since we are estimating matrix parameters, we add a Frobenius penalty. The minimax formulation is thus

max
F,G

∑
m

(∑
n

ym>n Fumn +
∑
e

ym>e Gvme

)
− λ

2
‖F‖2F −

λ

2
‖G‖2F

+
∑
m

min
µm∈T

−

(∑
n

µm>n Fumn +
∑
e

µm>e Gvme

)
−Hρ(µ)

= min
µ∈TM

max
F,G

∑
m

(∑
n

(ymn − µmn )
>
Fumn +

∑
e

(yme − µme )
>
Gvme

)
(34)

−λ
2
‖F‖2F −

λ

2
‖G‖2F −

∑
m

Hρ

(
µ(m)

)
where the reweighted approximate entropy is given by

Hρ(µ) :=
∑
n∈N

H(µn)−
∑
nn′∈E

ρnn′I(µnn′)

=
∑
n∈N

H(µn)−
∑
n∈N

∑
n′∈Ne(n)

ρnn′ [H(µn) +H(µn′)] +
∑
nn′∈E

ρnn′H(µnn′)

=
∑
n∈N

1−
∑

n′∈Ne(n)

ρnn′

H(µn) +
∑

nn′∈N
ρnn′H(µnn′) (35)

where I(µnn′) =
∑
ynyn′ µnn′(yn, yn′) log [µnn′(yn, yn′)/µn(yn)µn′(yn′)] is the mutual information between vari-

ables n and n′ and H(µn) = −
∑
yn
µn(yn) logµn(yn) and H(µnn′) = −

∑
ynyn′ µnn′(yn, yn′) logµnn′(yn, yn′) are

singleton and pairwise entropies. We have used the identity I(µnn′) = H(µn) + H(µn′) − H(µnn′). We have
implicitly used the pairwise marginalization constraints when using the mutual information identity, so these
gradients are valid only on the local polytope—a fact that is important to remember when optimizing.

The stationary point of the objective in (34) is thus

0 =
∑
mn

(ymn − µmn )um>n − λF

⇒ F = λ−1
∑
mn

(ymn − µmn )um>v (36)

Similarly, G = λ−1
∑
me (yme − µme ) v>e . Recalling the definition of the Frobenius norm and rearranging some

summations, we get

λ

2
‖F‖2F =

λ

2λ2

∥∥∥∥∥∑
mn

(ymn − µmn )um>n

∥∥∥∥∥
2

F

=
1

2λ

∑
mn

∑
m′n′

(ymn − µmn )
>
(
ym

′

n′ − µm
′

n′

)
um

′>
n′ umn (37)

On the other hand, the quadratic terms are

1

λ

∑
mn

(ymn − µmn )
>∑
m′n′

(
ym

′

n′ − µm
′

n′

)
um

′>
n′ umn =

1

λ

∑
mn

∑
m′n′

(ymn − µmn )
>
(
ym

′

n′ − µm
′

n′

)
um

′>
n′ umn

= 2λ ‖F‖2F (38)

e.g. the same Frobenius norm of outer products, by comparison with (37).

We have eliminated the matrix F (and similarly, G), which reveals that our objective is a quadratic form in the
Gram matrices UU> and V V >, where U is obtained by vertically stacking the umn and V obtained by vertically
stacking the vme , so that the entry

(
UU>

)
nm,n′m′ = um>n um

′

n′ and
(
V V >

)
em,e′m′ = vm

′>
e vm

′

e′ . Let YN , TN be the

matrices obtained whose (mn, `)’th entry is given by umn (`), µmn (`) and VE , TE be the matrices whose (me, ``′)’th
entries are given by vmn (`, `′), µmn (`, `′). The objective is quadratic in (YE − TE) and (YN − TN ), so we can flip
them to simplify some signs later. Write W = T − Y . Then the objective is

min
TN ,TE∈TM

=
1

2λ

〈
WNW

>
N , UU

>〉+
1

2λ

〈
WEW

>
E , V V

>〉−Hρ (TN , TE)
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1

2λ
tr
(
W>NUU

>WN

)
+

1

2λ
tr
(
W>E V V

>WE

)
−Hρ (TN , TE)

=
1

2λ

∥∥U>WN

∥∥2
F

+
1

2λ

∥∥V >WE

∥∥2
F
−Hρ (TN , TE) (39)

with a matricized form of the entropy as

Hρ(TN , TE) = −〈1−RN , TN ◦ log TN 〉 − 〈RE , TE ◦ log TE〉

where ◦ denotes elementwise multiplication, and RN , RE are matrices of reweighting parameters conforming to
TN , TE . That is, (RN )nm,: =

∑
n′∈Ne(n) ρnn′ while (RE)ne,: = ρnn′ . From this form, the gradients are evidently

∂Hρ

∂TN
= − (1−RN ) ◦ (1 + log TN )

∂Hρ

∂TN
= −RE ◦ (1 + log TE)

So the gradients of our objective are

∂h

∂TN
= λ−1UU> (TN − YN ) + (1−RN ) ◦ (1 + log TN ) (40)

∂h

∂TE
= λ−1V V > (TE − YE) +RE ◦ (1 + log TE) (41)

E.2.1 Linesearch

The quadratic terms of h(µ+ ηd), as a function of η, are

1

2λ

(∥∥U> (WN + ηDN )
∥∥2
F

+
∥∥V > (WE + ηDE)

∥∥2
F

)
=

1

2λ

(∥∥U>WN + ηU>DN

∥∥2
F

+
∥∥V >WE + ηV >DE

∥∥2
F

)
=

1

2λ

(∥∥U>WN

∥∥2
F

+
∥∥V >WE

∥∥2
F

+ η
(〈
U>WN , U

>DN

〉
+
〈
V >WE , V

>DE

〉)
+ η2

(∥∥U>DN

∥∥2
F

+
∥∥V >DE

∥∥2
F

))
The inner products 〈·, ·〉 are matrix inner products of C ×L and D×L2 matrices. For the Bethe/TRW entropy,
we will just have to treat it as a black box.

E.2.2 Block-Coordinate Updates

For block-coordinate Frank-Wolfe, we can update the gradient and perform linesearch without computing the
full inner products U>WN and V >WE . Let η denote a step size, Dm = (Dm

N , D
m
E ) denote the step direction

for sample m, and Um, V m be the submatrices containing only those rows for sample m. More precisely,
Dm = (Dm

N , D
m
E ) where Dm

N has the same number of rows as U and Dm
E has the same number of rows as V , but

only those rows for sample m are nonzero. Suppose we move to the point T + ηDm = (TN + ηDm
N , TE + ηDm

E ).
Then our new inner products are

U>
(
TN + ηD

[m]
N − YN

)
= U>WN + ηUm>Dm

V >
(
µE + ηd[m] − yE

)
= V >WE + ηV m>dm

Thus we need only add the update terms ηUm>Dm
N and ηV m>Dm

E . The algorithm depends on the value of T
only through these inner products.

F Experiments for FW-based Inference

In Fig. 11, we compare Frank-Wolfe (FW) for bipartite perfect matching to the perturb-and-MAP algorithm
of Li (2013), using code obtained from the authors. In (a) and (b) we plot the `∞ distance of the approximate
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l∞ error .05 .01 0.005 0.001
rand-20 3.37 1.56 1.12 0 .25
rand-50 18.0 11.76 5.18 0.91
rand-75 23.87 23.87 9.8 1.5
rand-100 19.24 19.24 10.6 1.75

lda-20 1.6 .61 .34 .10

Table 1: Frank-Wolfe speedup over BP for various error tolerances.

marginals from exact marginals computed with brute force v.s. the number of calls to the maximum-matching
solver. We use a bipartite graph with 10 nodes on each side, i.i.d. edge weights distributed unif[0, 1], and inverse
temperatures of 10 (a) and 0.25 (b). In (c), we run each algorithm for a very large number of MAP calls for a
range of temperatures in order to identify the affect of temperature on the algorithms’ errors, and results are
aggregated over 10 random n = 10 graphs. Overall, we find that the Bethe approximation provided by FW is
substantially more accurate than perturb-and-MAP and that FW converges more quickly. However, (c) suggests
that changes in temperature affect the algorithms’ approximation accuracies differently.
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Figure 11: Frank-Wolfe v.s. Perturb-and-MAP

Our proposed FW algorithm for bipartite perfect matching and the belief propagation algorithm of Huang &
Jebara (2009) minimize the same objective over the same polytope, so we focus on the speed-accuracy trade-offs
of the algorithms. In Table 1, ’rand-n‘ refers to random complete bipartite graphs with n nodes on each side and
i.i.d. edge weights from unif[0, 1]. The ‘lda-20’ experiment aligns topics from different runs of a Gibbs sampler for
an LDA topic model with 20 topics. All results are averages over 10 graphs. We run the algorithms with a range
of termination tolerances in order to obtain various speed-accuracy points. Then, for a range of l∞ distances to
the true Bethe marginals, we compute the time necessary to achieve the specified error. The table presents the
ratio of computation time for BP to FW (ratio > 1 means FW is faster). As expected from an algorithm that
is no faster than O( 1

t ), we find that it gives good accuracy quickly, but is slow to converge to within very tight
error tolerances. Such a speed-accuracy trade off affects other first order methods such as SGD, but can still be
advantageous in many cases, including large-scale applications or when optimizing beyond the statistical error
of the problem is pointless.
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