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Abstract

Structure Preserving Embedding (SPE) is a method for embedding graphs in low-
dimensional Euclidean space such that the embedding preserves the graph’s global
topological properties. Specifically, topology is preserved if a connectivity algo-
rithm can recover the original graph from only the coordinates of its nodes after
embedding. Given an input graph and an algorithm for linking embedded nodes,
SPE learns a low-rank kernel matrix by means of a semidefinite program with
linear constraints that captures the connectivity structure of the input graph. The
SPE cost function ensures that the learned kernel is low-rank and thus the result-
ing embedding uses low-dimensional coordinates for each node that reproduce
the original graph when processed by a connectivity algorithm (such as k-nearest
neighbors, or b-matching). SPE provides significant improvements in terms of
visualization and lossless compression of graphs, outperforming popular meth-
ods such as spectral embedding and spring embedding. Furthermore, we find that
many classical graphs and networks can be properly embedded using only a few
dimensions.

1 Introduction

SPE accepts as input an unweighted graph consisting of N nodes and |E| edges represented as a
symmetric adjacency matrix A ∈ {0, 1}N2

specifying which pairs of nodes are connected, and finds
a low-dimensional structure preserving embedding of the input graph in Euclidean space. The em-
bedding can be represented as a positive semi-definite kernel matrix K ∈ RN2

that specifies all
pairwise affinities between nodes, and by singular value decomposition (SVD) or principal compo-
nent analysis (PCA) of the matrix K, specifies a unique set of coordinates for each node ~yi ∈ Rd
for i = 1, . . . , N . Given a connectivity algorithm G (such as k-nearest neighbors, b-matching, or
maximum weight spanning tree) that accepts as input an embedding and returns an adjacency ma-
trix, an embedding is structure preserving if when the embedding is processed by the connectivity
algorithm G, the result is exactly the input graph: G(K) = A. This article proposes SPE, an efficient
optimization based on semidefinite programming for finding an embedding K such that K is both
low-rank and structure preserving.

Traditional graph embedding algorithms such as Spectral Embedding and Spring Embedding do not
explicitly preserve structure according to our definition and thus in practice produce poor visualiza-
tions of many simple classical graphs. In Figure 1 we see the classical Mobius ladder graph and
the resulting visualizations from the two methods. The spectral embedding looks degenerate, not
resembling a Mobius band in any regard. Also, the eigenspectrum indicates that the embedding is
6-dimensional when we expect to be able to embed this graph using fewer dimensions. Two spring
embeddings are shown. The left spring embedding is a good diagram of what the graph should look
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Figure 1: Embedding the classical Mobius Ladder Graph. Given the adjacency matrix (left), the
visualizations produced by spectral embedding and spring embedding (middle) do not accurately
capture the graph topology.

like; however, we see that the famous twist of the Mobius strip is not accurately captured. Given
the coordinates in Euclidean space produced by this method, any simple neighbor-finding algorithm
G would connect nodes along the red dotted lines, not the blue ones specified by the connectivity
matrix, and thus the inherent connectivity of the embedding disagrees with the actual connectivity of
the graph. The spring embedding on the right shows a common poor random initialization, resulting
in a local minima that is no longer visually recognizable or accurate. We are motivated to find a
simple tool for properly visualizing graphs such as the Mobius ladder.

2 Preserving Graph Structure

For a variety of different connectivity algorithms G we can define a set of linear constraints on an
embeddingK to enforce that G(K) = A. We consider k-nearest-neighbors, epsilon balls, maximum
weight matchings (b-matchings), and maximum weight spanning trees.

Definition 1. We define the distance between any pair of points (i, j), with respect to a given positive
semidefinite kernel matrix K as Dij = Kii +Kjj − 2Kij .

When G is k-nearest neighbors algorithm, each node is connected to the k other nodes with the
smallest distance. This is enforced via Dij > (1 − Aij) maxm(AimDim). When G is the epsilon-
ball algorithm, each node is connected to all other nodes with distance less then ε, we enforce that
Dij(Aij − 1

2 ) ≤ ε(Aij − 1
2 ).

Definition 2. Given a kernel matrix K, we can define the weight between two points (i, j) as the
negated pairwise distance between them: Wij = −Dij = −Kii −Kjj + 2Kij .

Note that the W matrix is simply a linear function of K. Given W , a maximum weight sub-
graph or b-matching algorithm G finds the connectivity matrix G(K) that has maximum weight
while enforcing a set of degree constraints bi for i = 1...N : G(K) = arg maxA

∑
ijWijAij s.t.∑

j Aij = bi, Aij = Aji, Aii = 0, Aij ∈ {0, 1}. Similarly, a maximum weight spanning tree algo-
rithm G returns the maximum weight subgraph G(K) such that G(K) ∈ T , where T is the set of all
tree graphs: G(K) = arg maxA

∑
ijWijAij s.t A ∈ T . Unfortunately, for both these algorithms,

the constraints on K to make it structure preserving cannot be enumerated with a small set of lin-
ear inequalities, as is the case with k-nearest neighbors and other greedy algorithms; in fact, there
can be an exponential number of constraints of the form:

∑
ijWijAij ≥

∑
ijWijÂij . However,

in Section 4 we show a cutting plane approach such that the exponential enumeration is avoided
and the most violated inequalities are introduced sequentially. It has been shown that cutting-plane
optimizations such as this converge in a finite number of steps [5] and perform well in practice.

3 Reducing Dimensionality

We propose an objective function that favors low-dimensional embeddings. Spectral embedding is
known to reduce the dimensionality of the embedding since it uses the most dominant eigenvectors
of A = V ΛV T corresponding to the largest k eigenvalues as the embedding coordinates first. We
are interested in recovering an embedding, or equivalently, a positive semidefinite kernel matrix
K � 0 that is low-rank. Consider the following objective function maxK�0 tr(KA) and limit the

2



trace norm of K to avoid the objective function from growing unboundedly. We claim that this
objective function attempts to recover a low-rank version of spectral embedding.
Theorem 1. The objective function maxK�0 tr(KA) subject to tr(K) ≤ 1 recovers a matrix K
that up to a scaling factor is the rank-r matrix approximation ofA, where r is at most the multiplicity
of the largest eigenvalue of A.

Proof. Rewrite the matrices in terms of the eigendecomposition of the positive semidefinite matrix
K = UΛUT and the symmetric matrix A = V Λ̃V T , and insert into the objective function:

max
K�0

tr(KA) = max
Λ∈L,U∈O

tr(UΛUTV Λ̃V T )

whereL is the set of positive semidefinite diagonal matrices andO is the set of orthonormal matrices
also known as the Stiefel manifold. Since tr(MN) = tr(NM), we can rewrite the above as

max
K�0

tr(KA) = max
Λ∈L,U∈O

tr((V TU)Λ(V TU)T Λ̃)

= max
Λ∈L,R∈O

tr(RΛRT Λ̃)

where we have defined the orthonormal matrix R = V TU . Consider the optimization over R for
a given Λ. This problem is known as a homogenous quadratically constrained quadratic program
(QQP) [1] and has the solution R∗ as the product of the diagonalizers of Λ and Λ̃. Since both Λ and
Λ̃ are already diagonal matrices, R∗ must be a permutation matrix. Similarly, if the diagonal entries
of Λ and Λ̃ are arranged in decreasing order, then R∗ = I and the optimal eigenvectors of K must
satisfy U = V . At this setting, we obtain the following maximum

max
R∈O

tr(RΛRT Λ̃) = λT λ̃.

Here λ is a vector containing the diagonal entries of Λ in decreasing order λ1 ≥ λ2 ≥ . . . ≥ λn
and λ̃ is a vector containing the diagonal entries of Λ̃ in decreasing order, i.e. λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n.
Therefore, the full optimization problem can be rewritten in terms of an optimization over non-
negative eigenvalues

max
K�0,tr(K)≤1

tr(KA) = max
λ≥0,λT 1≤1

λT λ̃

where we also have to satisfy λT1 ≤ 1 since tr(K) ≤ 1. If A has a unique largest eigenvalue (with
multiplicity 1), to maximize the objective function λT λ̃ we simply set λ1 = 1 and the remaining
λi = 0 for i = 2, . . . , n which produces the maximum λ̃1, the top eigenvalue of A

max
K�0,tr(K)≤1

tr(KA) = λ̃1.

Thus, if A has a unique largest eigenvalue, the maximization problem produces K as a rank-1
approximation (up to scaling) of A. The rank-1 solution must be K = vvT where v is the leading
eigenvector of A. If there are ties in A for its top eigenvalues, K is a conic combination of the outer
products of the top r eigenvectors of A, in other words, the rank r approximation where r is at most
the multiplicity of the top eigenvalue of A.

Given this objective function and its preference for low-rank embeddings, we next combine it with
constraints that ensure the connectivity algorithm will reconstruct the desired graph.

4 Algorithm

Combining the constraints from Section 2, the convex objective function from Section 3, and some
additional common constraints K = {K � 0, tr(K) ≤ 1,

∑
ij Kij = 0, ξ ≥ 0} to limit the trace

norm of K, center K, and slacken all constraints, we have Structure Preserving Embedding. If G is
a greedy algorithm such as k-nearest neighbors, the steps of SPE are shown in Table 1.

If G is a maximum weight subgraph method, there exist an exponential number of constraints of the
form: tr(WA)−tr(WÃ) ≥ 4(Ã,A)−ξ ∀Ã ∈ G where4(Ã, A) = 1

N2

∑
ij |Ãij−Aij |, and Ã ∈ G
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Figure 2: Embeddings of a variety of classical graphs with spectral embedding (above), and SPE
(below). Eigenspectrums are shown to the right. Note that SPE is able to find a small number of
dimensions that highlight many of the symmetries of these graphs.

states that Ã is in the family of graphs formed by a connectivity algorithm G, such as b-matchings
or trees. To avoid enumerating the exponential number of constraints, we start by running the
optimization without any structure preserving constraints and then add a constraint at each iteration
corresponding to the biggest violator. Given a learned kernel K̂ from the last iteration, we find
the biggest violator by computing the connectivity Ã that maximizes tr(ŴÃ) s.t. Ã ∈ G using
a maximum weight subgraph method. We then add the constraint to our optimization as follows
(tr(WA) − tr(WÃ)) ≥ 4(ÃA) − ξ. The first iteration yields a rank 1 solution, which typically
violates many constraints, but after several iterations, the algorithm converges when |tr(WAi) −
tr(WA)| ≤ ε, where ε is an input parameter. Table 2 summarizes the cutting-plane formulation of
SPE.

SPE is implemented in MATLAB as a Semidefinite Program using Yalmip and CSDP and has com-
plexity similar to other dimensionality reduction SDPs such as Semidefinite Embedding. The com-
plexity isO(N3 +C3) [7] where C denotes the number of constraints and (for the k-nearest neighbor
connectivity algorithm) we typically have C ∝ |E|. However, in practice many constraints are in-
active and working set methods (now common practice for SDPs) do much better. Running SPE on
graphs of a 1000 edges takes only a few minutes on a standard workstation. For the cutting plane
formulation, we add constraints iteratively, and it can be shown that the algorithm will converge in
polynomial time [5] for quadratic programs with linear constraints. Since we have a semidefinite
program, these guarantees do not carry over immediately, although in practice the cutting plane al-

Input A ∈ {0, 1}N2
, connectivity algorithm G,

and parameters C.
Step 1 Solve SDP K̃ = arg maxK∈K tr(KA)− Cξ

s.t. Dij > (1−Aij) maxm(AimDim)− ξ
where Dij = Kii +Kjj − 2Kij

Step 2 Apply KPCA to K̃ and use the top
eigenvectors as embedding coordinates

Table 1: Structure Preserving Embedding algorithm for k-nearest neighbor constraints.
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Input A ∈ {0, 1}N2
, connectivity algorithm G,

and parameters C, ε.
Step 1 Solve SDP K̃ = arg maxK∈K tr(KA)− Cξ.

and compute W̃ij = −Kii −Kjj + 2Kij

Step 2 Use G, K̃ to find biggest violator
Ã = arg maxA tr(W̃A).

Step 3 If |tr(W̃Ã)− tr(W̃A)| > ε, add constraint
tr(WA)− tr(WÃ) ≥ 4(Ã,A)− ξ
and go to Step 1

Step 4 Apply KPCA to K̃ and use the top
eigenvectors as embedding coordinates

Table 2: Structure Preserving Embedding algorithm with cutting-plane constraints.

gorithm works well and has also been successfully deployed in settings beyond structured prediction
and quadratic programming [6].

5 Experiments

We present visualization results on a variety of synthetic and real-world datasets with SPE, high-
lighting the improvements over purely spectral methods. Figure 2 shows a variety of classical
graphs visualized by Spectral Embedding and SPE. Note that Spectral Embedding typically finds
many eigenvectors with dominant eigenvalues, and thus needs many more coordinates for accurate
visualization, as compared to SPE which finds compact and accurate embeddings.
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Figure 3: Two comparisons of molecule embeddings (top row and bottom). The SPE embedding
(right) more closely resembles the true physical embedding of the molecule (left), despite being
given only connectivity information.

Figure 3 shows an embedding of two organic compounds. The true physical embedding in 3D
space is shown on the left. Given only connectivity information SPE is able to produce coordinates
for each atom that better resemble the true physical coordinates. Figure 4 shows a visualization
of a social network by SPE, as well as two variants of Spectral Embedding. The eigensepctrum
shown next to each embedding reveals that both spectral embeddings are very high-dimensional,
where SPE requires far fewer dimensions to accurately capture the structure of the data. Also, note
that the embedding that uses the graph Laplacian is dominated by the degree distribution of the
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network. Nodes with high degree require neighbors to be very far away. The SPE embedding was
created using b-matching constraints, since we expect friendship to be better described as a mutual
process than a greedy one, although the k-nearest neighbor constraints yield a similar solution. SPE
represents the network quite compactly, only requiring 6-dimensions to describe its topology.

Structure Preserving 
Embedding

Spectral Embedding
(Laplacian)

Spectral Embedding
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48.2%

12.7%

30.6%

Figure 4: Visualizing a Facebook social network. The eigenspectrum is presented next to each
embedding, as well as the percentage of eigenenergy contained in the top 2 dimensions. We see that
in 2D, SPE is able to capture a higher percentage of the modes of variation in the data compared to
purely spectral methods.

6 Conclusion

SPE offers significant improvements over current graph embedding algorithms in terms of both the
quality of the resulting visualizations as well as the amount of information compression. SPE allows
us to accurately visualize many interesting network structures ranging from classical graphs to social
network data using relatively few dimensions.
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