Multi-Task Feature and Kernel Selection for SVMs

Tony Jebara

JEBARAQCS.COLUMBIA.EDU

Computer Science Department, Columbia University, New York, NY 10027

Abstract

We compute a common feature selection
or kernel selection configuration for multi-
ple support vector machines (SVMs) trained
on different yet inter-related datasets. The
method is advantageous when multiple classi-
fication tasks and differently labeled datasets
exist over a common input space. Differ-
ent datasets can mutually reinforce a com-
mon choice of representation or relevant fea-
tures for their various classifiers. We de-
rive a multi-task representation learning ap-
proach using the maximum entropy discrim-
ination formalism. The resulting convex al-
gorithms maintain the global solution prop-
erties of support vector machines. How-
ever, in addition to multiple SVM classifica-
tion/regression parameters they also jointly
estimate an optimal subset of features or op-
timal combination of kernels. Experiments
are shown on standardized datasets.

1. Introduction

In applied settings, many supervised datasets are avail-
able over a common input data-type (be it text, im-
ages, or sequence data) and represent different prob-
lem tasks (i.e. various classification or regression sce-
narios). Multi-task learning or meta-learning leverages
these many datasets synergistically, aggregating them
and augmenting the effective size of the total train-
ing data (Baxter, 1995; Thrun & Pratt, 1997; Caru-
ana, 1997). This can lead to improvement in overall
classification and regression performance compared to
learning the tasks in isolation. We elaborate meta-
learning in a support vector machine setting and fo-
cus on the case where many small datasets over dif-
ferent tasks select one common underlying represen-
tation. More specifically, we discuss optimizing the

Appearing in Proceedings of the 21°" International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

representation either as a feature selection configura-
tion (Jebara & Jaakkola, 2000; Weston et al., 2000)
or as a convex kernel combination (Lanckriet et al.,
2002; Cristianini et al., 2001). This is done jointly
while estimating a support vector classification or re-
gression machine by using the maximum entropy dis-
crimination (MED) framework. While previous efforts
suggest finding these representations for a single task,
recent theoretical results (Baxter, 2000; Ben-David &
Schuller, 2003) suggest that improvements are possi-
ble with multi-task learning. This article combines the
above motivations into a joint multi-task feature and
kernel selection SVM framework.

This paper is organized as follows. Section 2 sum-
marizes maximum entropy discrimination and how it
generates the support vector machine. We then dis-
cuss augmenting the SVM with feature selection in
Section 3 and kernel selection in Section 4 yet only in
isolated learning settings. In Section 5 we upgrade fea-
ture selection to a meta-learning scenario where many
classifiers share one common feature selection config-
uration. Section 6 similarly upgrades kernel selection.
Experiments are interleaved within each section when
appropriate. Section 7 ends with a discussion.

2. Support Vector Machines as a
Maximum Entropy Problem

The maximum entropy discrimination MED formalism
introduced in (Jaakkola et al., 1999) is a flexible gener-
alization of support vector machines. MED produces
a solution that is a distribution of parameter models
P(©) rather than finding a single parameter setting
©*. It is this characteristic that makes it straight-
forward to augment MED solution distributions to be
joint densities over not only parameters of a single clas-
sifier, but several classifiers, representations, feature
selection and kernel selection configurations. In other
words, one may consider M support vector machines
sharing a common feature selection configuration s and
readily solve for P(6y,...,0,s) in the maximum en-
tropy formalism. The implementation of these MED
extensions still produces a large margin support vector

while also estimating additional parameters all within
a globally optimizable convex program.

We now summarize the maximum entropy discrimi-
nation formalism in its simplest form. Assume we
are given training examples X; € R? with their cor-
responding labels y; € {£1} for ¢t = 1...T. We
want to find a linear discriminant function L(X;0) =
97X + b whose sign agrees with this labeled train-
ing set. The discriminant is specified by © = {6, b}
containing both a linear parameter vector 6 as well
as a scalar bias value b. An SVM finds a specific
O™ setting of these two deterministic quantities that
agrees with the labeling, in other words y: L(Xy; ©*) >
~v¢ YVt where 7, are scalars typically set to unity, i.e.
~v¢ = 1. This is done while ensuring that the magni-
tude 1]/6]|? is kept small for regularization. In MED,
however, we solve for a distribution over solutions
P(©) such that the expected value of the discrimi-
nant under this distribution agrees with the labeling.
In addition to finding a P(©) that satisfies classifi-
cation constraints in the expectation, MED regular-
izes the solution distribution P(©) by either maximiz-
ing its entropy or minimizing its relative entropy to-
wards some prior target distribution Py(©). We use
the relative Shannon entropy given by D(P|P,) =
Jo P(©)In P(©)/Py(©)dO. Note that minimizing rel-
ative entropy is more general since choosing Py(©) uni-
form gives maximum entropy. Thus, MED solves the
constrained optimization problem

min D(P|) st. [PO)L(Xii©) 7] =0 ¥
P(©) o

The solution for the posterior P(O) is straightforward
(Jaakkola et al., 1999) and is given by the usual max-
imum entropy method

_ PO(G) D0 Aty L(X450) =]
PO) = 70 e .
Here Z(\) is obtained by normalizing P(©) and the
optimal setting of the A Lagrange multipliers (A
for t = 1...7) is found by maximizing the con-
cave objective function J(A) = —InZ(\). Given A,
the solution distribution P(©) is fully specified. It
is then straightforward to use this distribution for
predicting the label of a new exemplar X via y =
sign([o P(©)L(X;©)d®). Furthermore, often the ef-
fect of the distribution P(©) can be mimicked by a
deterministic parameter setting on our discriminant
function since we can solve the integrals analytically
without computational effort.

Interestingly, the above framework ezxactly reproduces
support vector machines. We simply assume the prior

distribution factorizes into a prior over the vector
parameters and a prior over scalar bias, Py(0) =
Py(8)Po(b). The first is a white zero-mean Gaussian
of the form Py(6) = N(0|0,I) which encourages lin-
ear models of low magnitude (a traditional regular-
ization principle in the literature). The second is a
non-informative (i.e. flat) prior Py(b) = N(b|0,c0) in-
dicating that any scalar bias is equally probable a pri-
ori. The resulting objective function J(A) is identical
to the SVM dual optimization problem

1
J(/\) = Z /\t - 5 Z /\t)\t’ytyt/XtTXt/
t

t,t

subject to non-negativity constraints on the \; val-
ues (since the expectation constraints in the max-
imum entropy problem used greater-than inequali-
ties). Furthermore, the non-informative prior yields
the equality constraint), \;y; = 0. The above can
be readily maximized using quadratic programming
or axis-parallel methods that update only a limited
number of Lagrange multipliers at a time while oth-
ers are fixed. The final decision rule is given by
Jo P(O)L(X;0)d0 = 3=, y: M X[X + b where the ex-
pected bias b is found via the Karush-Kuhn-Tucker
conditions as usual. The above is readily kernelizable
as well simply by replacing all inner products X Xy
with kernel function evaluations k(X;, Xy).

It is now straightforward to obtain variations on sup-
port vector machines by considering other prior distri-
butions instead of the Gaussians above. We can also
augment the solution distribution P(©) such that it is
a density over other variables in addition to the linear
classifier’s 0, b parameters on their own. For instance,
we can consider a non-separable support vector ma-
chine if we make the ~; scalars variable and consider
solving for an MED distribution that is a joint func-
tion of both v and the parameters © as P(©,). As-
sume the prior distribution factorizes over margins as
follows Py(©,7) = Po(©)]], Po(:). Here, we choose
Py(y:) ox exp(—c + ¢y),7 < 1 as an exponential dis-
tribution which favors large margins yet also allows
negative margin values (i.e. miss-classifications). The
solution distribution P(©,~) is found again as in the
above general form (a product of the prior Py(©,7)
and exponentiated constraints):

Po(©,7) 5 Al L(X0:0) =]
_oNT T + At|Yt t5 t] 1

The resulting SVM-like concave maximization prob-
lem emerges from the partition function Z(A). This
new objective function J(A\) = —In Z()) equals

1
Z [At + hl(l -)\t/C)] - 5 Z AtAt’ytyt’XgXt’-

t t,t!

P(©,7)

The above effectively adds barrier functions preventing
A¢’s from growing beyond the regularization parameter
¢. The decision rule § = f@ﬁ P(©,7)L(X;0©)dOdy re-
mains identical. We now continue this line of reasoning
and the notion of augmented solution distributions to
endow support vector machines with other interesting
properties beyond non-separability. For instance, we
can now readily deal with feature and kernel selection.

3. Feature Selection

Feature selection for support vector machines was dis-
cussed in earlier work in maximum entropy discrimina-
tion (Jebara & Jaakkola, 2000) as well as in determin-
istic SVM settings (Weston et al., 2000). For feature
selection, consider modifying the discriminant with a
binary feature selection switch vector s = [s1,..., $p]
where sq € {0,1}. This vector now becomes part
of a more elaborate model © = {6,b,s}. The pa-
rameters of the model interact via the discriminant
function L(X;0) = >, 0454Xq + b which turns cer-
tain entries of the input vector X on and off de-
pending on the setting of s. Here d indexes into
the dimensionality of the D-dimensional vectors 6 or
X or s. The prior over models now also involves
switches and we assume it factorizes as Py(0,7) =
Po(0)Po(b) T1, Po(sa) 1, Po(y:). We again assume a
Gaussian prior over #, a non-informative prior over
b, and exponential priors over 7; (although other
choices are possible). The natural choice of a prior
over switches sq is a Bernoulli distribution given by
Po(s4) = p®¢(1 — p)t=%¢. Here the prior is controlled
by p which affects the likelihood of including any given
feature; p = 1 preserves all features and would simply
give us an SVM. Meanwhile smaller p values in the
prior encourage the SVM linear model solution to have
many zeros and use fewer features. The solution dis-
tribution is found using Equation 1 yet computing the
partition function now involves normalizing over the
switch settings as well as over the parameters 6 and b.
This yields an alternative J(A) objective function

S e — /o)~ S n 1 - pt ped i
t d

which is maximized subject to >, \;yy = 0. The
J(A) above can be maximized iteratively via Newton-
Raphson or axis-parallel methods (i.e. iteratively lock-
ing all Lagrange multipliers except for 1 or 2 and
searching for their optimal setting). Clearly, if p is held
at unity in the above, we once again obtain exactly the
support vector machine optimization problem. How-
ever, smaller settings of p affect the optimization of
Lagrange multipliers values and ultimately provides
a sparsified linear model to use in the dot product

with each input datum vector. Note that this J(\)
remains a concave objective with convex constraints
and hence can be solved without local minima prob-
lems. It yields the largest margin linear support vector
machine while also sparsifying features. Given the fi-
nal setting of the (non-negative) Lagrange multipliers
and b (the expected value of b via the Karush-Kuhn
Tucker conditions), we compute our discriminant func-
tion output ¢ as the sign of fé),b,s P(0,b,s)L(X;0,b,s)
which simplifies to:

Z (P)\t?ftXt,d > X, 4 b
— \p+ (1 —p)exp(—5>, My Xe.al?)

In the above, X, refers to the d’th dimension of
the vector representing the ¢’th datum in our training
dataset. Note how we have terms that are attenuated
nonlinearly with smaller p settings in their interaction
with the query datum X. We use Wy to denote the
terms multiplying each X4 in the parentheses. These
behave as attenuated weights which are driven close
to zero when p is small. While the model is still a
linear classifier § = sign(}_, XqWy + b), most of the
dimensions of X4 get multiplied with vanishingly small
scalar Wy weights and will be ignored (selected out).

0.9r

-~ p=1(SVM)
0.965F p=le-5 |

p=1e-3

H p=le-1
— p=le-2

r p=le-4

o
o 9
g ©
o o

o
©
a

Classification accuracy
o 3 -
©o B
S (4]

10 10 10
Regularization Constant ¢

Figure 1. Feature selection for sequence classification. The
dashed line is the SVM classification accuracy; solid lines
show accuracy at various levels of feature selection.

To evaluate feature selection with SVMs in an iso-
lated learning setting, the UCI splice-site dataset was
used to classify gene sequences as intron-exon or exon-
intron sites. Each datum in the dataset is a sequence
of 60 nucleotides (A, G, C, T) which are represented as
4-tuple codes according to A = (0001), C = (0100),
G = (0010) and T' = (0001). Codes were mixed with
weights to represent uncertain symbols such as “G or
T”. Therefore, our final input space’s dimensionality is
D = 240. Of a total of 1535 sequences, 200 were used
for training an SVM and the remaining were used for
testing. Figure 1 depicts the classification accuracy
on test data of the feature selection SVM at various

settings of the regularization parameter c as well as
the sparsification parameter p. Note that at p = 1
we have a traditional support vector machine with no
feature selection. Clearly, some feature selection is
advantageous and improves generalization increasing
overall accuracy from 92% up to approximately 96%.
In Figure 2 we plot the 240 weights W of the result-
ing linear model for both a traditional support vector
machine when p = 1 and a feature selection SVM with
p = le —4. Feature selection can be clearly seen in the
latter where many weights W, are effectively O.

0. 0.
0.2 0.2
0.1 0.1
3 2 | || |
ER 3 ol
£ E 1] ”||
g-0.1] g-0.1]
= =
-0.2 -0.2]
-0.3] -0.3]
-0.4 -0.4
0 50 100 150 200 250 0 50 200 250

100 150
Linear Parameter # Linear Parameter #

Figure 2. Sparsification of the linear model. On the left,
values of the linear weights of the SVM are highly variable.
On the right, the feature selection SVM (with p = le — 4)
prunes the linear model which has many zeros.

The above feature selection technique is straightfor-
ward to derive for support vector machine regression
and is not limited to classification (Jebara & Jaakkola,
2000). This is actually the case for all subsequent
derivations and SVM extensions in this article. We
next go beyond linear feature selection and consider
the kernel selection problem.

4. Kernel Selection

Another crucial issue for support vector machines is
choosing the kernel function. Kernels introduce dif-
ferent nonlinearities into the SVM problem by map-
ping input data X implicitly into Hilbert space via a
function ¢(X) where it may then be linearly separa-
ble. While the explicit computation of the features
or the mapping to Hilbert space may be unwieldly, a
support vector machine only requires inner products
of these ¢(X) features. A kernel is an efficient way
to compute such an inner product and provides the
same scalar output k(X;, Xy) = &(X)Td(Xy). Tt
is straightforward to kernelize the SVM and related
learning machines to accommodate nonlinear classifi-
cation and to potentially handle non-vectorial inputs
by swapping all inner products X; X in the formula-
tion with kernel function evaluations k(X;, Xy/) (sub-
ject to some caveats, i.e. Mercer’s condition). In
fact, in implementing a support vector machine and
optimizing for the Lagrange multipliers (for instance,
via quadratic programming), it is natural to build a

T x T Gram matrix K whose entries are given by the
kernel function evaluated over all pairs of data-points
K = k(Xy, Xy). Different kernels will accommodate
different nonlinear mappings and the performance of
the resulting SVM will often hinge on the appropriate
choice of the kernel.

However, searching for different kernels either via trial-
and-error or other exhaustive means can be a computa-
tionally daunting problem (Chapelle & Vapnik, 1999).
This search is particularly difficult if we also want to
consider combining kernels in convex combinations (a
continuous optimization problem) to mix various non-
linear mappings in search of the optimal Hilbert space.
More efficient kernel selection approaches involve ei-
ther directly manipulating entries of the Gram ma-
trix or, alternatively, searching over a convex combina-
tion of user-specified kernel functions (Lanckriet et al.,
2002; Cristianini et al., 2001). In this article, we will
approach the problem of kernel selection by estimating
the optimal weighted combination of several prototype
or base kernels provided by the user. It is well known
that a legitimate kernel can be created by convex com-
bination of kernels as long as they individually satisfy
Mercer’s condition. We will derive this additional es-
timation problem in a straightforward manner using
the maximum entropy discrimination framework.

We cast the kernel selection problem by estimating a
positive linear combination of a set of D kernel func-
tions kq4(.,.) where d = 1...D. Excuse the abuse of
notation as we recycle variables and use d to index
into the set of kernel or Hilbert space mappings under
consideration (as opposed to indexing into the dimen-
sionality of the input space). We wish to estimate the
best combination of these base kernels while jointly
finding the optimal support vector machine classifier.
In other words, we will find a resulting final kernel of
the form: k(.,.) = >, Waka(.,.) where Wy are non-
negative weights. In fact, we would also like to have
many of these W; weights drop close to zero to fully
reject the contribution of some kernels that are not
useful for the given classification task.

We approach the problem by noting that different com-
binations of kernels correspond to different weightings
of their corresponding mappings ¢q4(.) for d =1...D.
We are uncertain which mapping to use and consider
using them all by concatenating all mappings into an
augmented Hilbert space. Consider the resulting dis-
criminant function:

L(X;0) = > sabj¢a(X)+D.
d

This model contains several parameter vectors 6, for
each mapping ¢q4(.). The resulting full model ® =

{01,...,0p,b} only interacts linearly with our ag-
gregated mapping in this augmented Hilbert space,
in other words, we could have written the follow-
ing general form for the discriminant L(X;0) =
OT®(X). As with feature selection, we will assume
that the switch vector s constitutes D binary switches
sq and consider a factorized Bernoulli prior distri-
bution over them. The prior is thus Py(0,7) =
Po(b) 11, P(8a)P(sa) 1, P(v:). Here, each P(6q) is
individually a zero-mean white Gaussian distribution
over its vector 6, (each 64 vector can potentially be
of a different dimensionality). For simplicity, we will
also use an informative prior for the bias given by
Py(b) = N(b|0,0?). This removes the equality con-
straint), \syr = 0 and replaces it with a quadratic
penalty (to be derived shortly). The priors on mar-
gins ; are as before. Given the prior, we recover the
posterior distribution P(0©,) via Equation 1.

We next turn to the computation of the partition func-
tion which normalizes this P(0,~). We will simplify it
by considering the contribution of each of the variables
0, s,b,v to the partition individually as follows

Z(\) = /@po(@)ezt/\tytL(Xn;G)/po(w)e—EMt%

Y

Zo(N)Zy(A)
We can then further simplify the Zg()) term as

P (0, 5)e S Mt o 5005 6u(X2) /po(b)ezt -y

6,s b

The left integral evaluates Zy s(A\) while the right in-
tegral evaluates Z(\). The computation of the bias
contribution is straightforward producing Z,(\) =
e39° (T wA)® | Note that if we let o — 00, the par-
tition function diverges unless we have the constraint
>~ y+A = 0 as in the non-informative prior case.

The remaining term involves the contribution of all
the d = 1...D models and the binary switches, and is
given by

S d

Zgs(A) = /9

— H E PO(Sd)esd% Zt,t’ AtAt/ytyt/kd(Xt,Xt/).
d Sd:O

[T Po(sa) Po(Ba)e>e Xv sa0g da(X1)

The resulting overall MED objective function is then
the negated logarithm of the product of all the parti-
tion function terms:

0’2 ?
J) = A +In(1 - N\fe) — 5 (Z yt/\t>

_Zln (1 — o4 ped Tew)\tkt/ytyt/kd(Xt,Xt/))
d

which is maximized only over non-negativity con-
straints on the Lagrange multipliers. This is straight-
forward to do via Newton-Raphson or axis-parallel up-
dates on individual values of ;.

Once again, if we select p = 1, we note that the
above kernel selection problem degenerates since all
logarithms cancel with the exponential functions and
the optimization is equivalent to the case where all ker-
nels are summed equally. This means our final kernel
is just the total of the base kernels k(.,.) = >, ka(., .).
However, in the cases where p is less than unity, we
note that the objective function involves a nonlinear
combination of the quadratic terms from the different
kernels, i.e. a nonlinear mixing of multiple support
vector machine quadratic cost problems.

To compute the actual discriminant function, the
MED recipe suggests taking the expectation under
P(©,v) of the discriminant function L(X;©). This
gives the following decision rule:

sign <Z Y Z Saka(Xe, X) 4+ IS)
t d

y =

The formula involves the expected value of the bias
b and the expected value of the binary switches §g.
It also implicitly involves the expected value of the
models 6, but these are only written in terms of the
Lagrange multipliers. In the non-informative case, the
expected value of the bias is given by the mean of the
Gaussian posterior P(b) and is merely b = 0% 3, y: Ay
The expected value of each switch (or the weight of
each kernel in our SVM problem) is

p
p+ (1= p)exp(—3 2, » MAvyeye ka(Xe, Xv))

84 =

Since these are actually positive scalars, the above fi-
nal formula for the decision rule involves a positive
combination of the base kernels. We can immediately
rewrite the decision rule as a standard SVM classifier
yet using the aggregated kernel k(.,.) = >_, Sqka(., .).
Another benefit is that, as in the feature selection case,
many 4 values will be vanishingly small (particularly
as we use smaller values of p). For computationally ef-
ficiency in practice, we round off small values of §4 to
zero and avoid computing their corresponding kernel
evaluations altogether in the final classifier’s formula.
This indicates that some base kernels will be pruned
away completely from our final combination while the
remaining ones will be mixed with various weights. In
practice, we assume all base kernels are normalized
and kq(X:, X¢) = 1 since the switches combining them
are on the same scale §4 € [0,1]. One standard way

to normalize the base kernels is to replace them as
follows:

ka(X, X{)

ka(Xe, X
X \/kd(Xtht)kd(Xt/,Xt/)

Finally, the aggregated kernel is legitimate since posi-
tive combinations of Mercer base-kernels are Mercer.

We evaluated the kernel selection technique on the
UCI Isolet dataset. We used 200 training examples
and 600 testing examples. The task is to compute a
class label representing which letter of the alphabet
was spoken from a vector of auditory features. This is
a 26-class multi-class classification problem. We con-
vert this problem into 26 binary classification prob-
lems by considering the one versus rest scenario. At
this point, the standard approach is to train individual
support vector machines on these 26 binary classifica-
tion problems. To help improve accuracy, we investi-
gate finding the best combination of different kernels
on the auditory features. Each binary classifier op-
timizes the kernel selection individually by choosing
a combination of polynomial kernels and radial basis
function kernels. The polynomials used were of or-
der 1,2,3,4 and the RBF kernels used were of standard
deviation 10,1,0.1, and 0.01. Thus, a total of 8 base
kernels were combined to form a final aggregate ker-
nel for each classifier in isolation. We show the test
error of the resulting classifiers in terms of the total
binary error rate, in other words, the sum of all the
errors the individual binary classifiers made. This is
a pessimistic error estimate since other methods may
be used to reduce errors by fusing the output of the
26 binary classifiers (for example via error-correcting
codes). Figure 3 summarizes the total error rate for
the kernel selection method as we explore various set-
tings of the p and ¢ parameters. At p = 1, we have
the SVM case which assumes that our aggregated ker-
nel is the sum of all 8 base kernels with equal (unity)
weight. Lower values of p prune away poor kernels and
reduce error by selecting the subset of kernels which
are more appropriate for the task. The fact that low-
ering p keeps improves accuracy suggests that pruning
kernels improves performance and that one kernel is
consistently outperforming the others.

5. Multi-Task Feature Selection

So far, we have seen a representational aspect of the
learning process, be it a feature selection on the input
space or a kernel selection, yet it was only driven by
a single task and model. However, such types of rep-
resentations may be learned for multiple tasks more
powerfully than in isolation. We will now explicate

N
al
o

Classification Error

1 15 25
log(c)

Figure 3. Kernel selection test error rate over 8 different
base kernels (polynomials and RBF) for the Isolet dataset
under varying ¢ and p levels. The dashed line is a regular
SVM, the dotted line is kernel selection with p = le—1, the
dotted-dashed line p = 1le — 2 and the solid line p = 1le — 3.

the case where many tasks are present requiring dif-
ferent classification models yet dealing with the same
input space which is consistently corrupted by nui-
sance or irrelevant features. For instance, we may
have a dataset of face images that classifies each face
as male or female and in another dataset, face images
are classified as child or adult. These datasets can
synergistically discover that only the pixels which are
occupied by facial imagery are useful for either task
and that pixels corresponding to background imagery
should be ignored. This intuition can be formalized via
the theoretical work of (Baxter, 2000) and (Ben-David
& Schuller, 2003). The latter discusses how general-
ization can benefit from a multi-task or meta-learning
situation when several classifiers are F-related and in-
volve controlled changes from a base classifier. The
authors propose various settings where improvements
can be made depending on the VC-dimension of the
base classifier and the F-relation tying the individual
learners. We can view a feature selection configuration
s =|s1,...,8p] as a way of estimating parameters for
this base classifier while many subsequent 6,, linear
classifier models are spanning various F-related joint
distributions over (X,y) or over hypotheses.

For the multi-task feature selection SVM, we will as-
sume we are dealing with inputs X € R”. We will have
M different training datasets containing X;,, € RP
with corresponding binary labels y;, € {0,1} for
t=1...T, data-points in m = 1... M tasks. These
tasks are to be classified with M different discrimi-
nant functions all sharing a single feature selection
configuration. Each of the corresponding M models
01,...,0p is a D-dimensional vector and has its own
scalar bias by,...,by. However, all share a common
D-dimensional binary feature selection vector s. The
aggregated parameters of the model are denoted by

O = {61,...,00,b1,...,br,s}. Each of the M dis-
criminant functions can then be written as:

L(X;0m) = L(X;0m,bm,s) = Y sabm.aXa+ bm.
d

Unlike before, the MED classification constraints are
now over many datasets as follows:

P(®7'7)[ym,tL(Xm,t; emu bm7 S) - ’Ym,t] Z 0 Vm,t
O,y

There are) T, total such constraints from our
M classification problems and we therefore antici-
pate having), T, non-negative Lagrange multipliers
Am.t- Minimizing the relative entropy of P(0,7) to a
prior Py(©,~) subject to the above constraints again
produces the classical maximum entropy solution, a
product of the prior and the exponentiated constraints:

F .6
P(@,) = OZ((L):)wezm,t)‘mxt[ym,fL(XM,tvom)f’Ym,t]

We select a prior that factorizes as follows Py(0,7) =
[, Po(sa) I1,, Po(0m)Po(bm) [1; Po(¥m,e)- Due to the
lack of a priori knowledge about how tasks interact, we
start with a factorized prior over tasks yet will even-
tually find a posterior that need not remain factorized
afterwards (starting with non-factorized priors may be
possible as in related work by (Evegniou & Pontil,
2004)). We again utilize zero-mean white Gaussian
priors for models, Bernoulli priors for switches, zero-
mean Gaussian priors for biases and exponential priors
for margins. We can now readily evaluate the parti-
tion function. Focusing on the contribution from the
biases, we obtain Zy, . 1, = [, 37 (i ym,tAm,1)?
We also have the contribution from the vector models
and the single switch; this term Zp, . g,,.s(}) is

/ PO(S) Hpo(em)ezm,t)\m,tym,t >a5d0m,aXm. t,d
91,...,91\/1,5 m

1
= H Z PO(Sd)eSd% Z%ZI[ZTQE >\7n,ty7n,tXm,t,d]2'

d SdZO

Multiplying all contributions of the partition function
and taking the negative logarithm yields J(\) as

2
2
Z)\m,t + ln(l -)\m,t/c) - Z % <Z ym,t/\m,t>

m,t m t

_ Zln (1 —p+ pe% Zm[Zt)‘m,tym,tXm,t,d]2) .
d

The objective is maximized subject to non-negativity
constraints and produces the optimal Lagrange multi-
pliers. To recover the final decision rule, each of the

m = 1...M classifiers is then computed from the sign
of the expected m’th discriminant:

/P(@)L(X;ém,bm,s) = Y Sdbm.aXa+bm
© d

where we have the following expected quantities from
the solution distribution P(©):

Z ym,t/\m,tXm,t

t

2 P
p+(1—p) exp(—% Zm[Zt)‘m-,tym-,tXm-,t,d]Q)
Z;771 02 Z ym,t)\m,t-

t

Note that the meta-learning case performs no feature
selection when p = 1 and there is no notion of multi-
task learning. All models become optimized individu-
ally as separate SVMs and the switches are all unity.
Conversely, for smaller settings of p we will find a sin-
gle feature selection configuration that achieves good
classification performance for all models.

The UCI Dermatology dataset was used to evaluate
meta-learning with linear feature selection. This is a
6-class dataset which was converted to 6 binary one-
versus-rest classification problems. Typically, individ-
ual SVMs would be trained on each binary classifica-
tion. If, however, we are to estimate a feature selec-
tion configuration for this dataset, we would like all 6
SVMs to share the same one. This makes the prob-
lem a meta-learning one '. The inputs here were 33-
dimensional and we used 200 training and 166 testing
data points. Figure 4 reports the total binary classi-
fication error for the 6 tasks as we vary p and cross-
validate over ¢. The dashed line depicts performance
when each SVM for each binary classification task has
its own feature selection configuration (i.e., the inde-
pendent learning case). Meanwhile, the solid line de-
picts the performance when each SVM has to share a
common feature selection configuration (i.e., the meta-
learning case). The upper left corner of the plot is
the performance of an SVM when no feature selection
whatsoever is used (there, meta-learning equals iso-
lated learning). Feature selection improves the SVM
error while meta-learned feature selection improves re-
sults even further.

Note that this form of meta-learning is adverserial
since the input data for each binary task is redun-
dant. Meta-learning can only improve error via the inter-
dependencies between the binary tasks and not because
of the availability of additional input data samples from
different supervised problems.

N
I

—— Meta Learning
- Independent Learning

s

N
N

N
o

-
oo

16 I

Classification Error

1 2 3 4 5
Feature Selection Level —log(p)

Figure 4. Meta learning and feature selection classification
test errors. A multi-class classification problem is con-
verted to multiple binary classification problems and han-
dled with meta-learning to obtain a common feature se-
lection configuration. Varying levels of feature selection
—In(p) are shown after optimizing over the regularization
parameter c. The dashed line is the independent learning
case where feature selection is done individually for each
task. The solid line is the meta-learning case which ties a
common feature selection across all tasks.

6. Multi-Task SVM Kernel Selection

It is now immediate to derive the multi-task kernel se-
lection case since it is merely a combination of the ex-
tensions from Section 3 to Section 4 and from Section 3
to Section 5. We only write out the resulting objective
function and the decision rule. For brevity, we rewrite
indexes without any commas, i.e. Ayt = Ay . The
concave objective J(\) is then

2
Z AmtE + 111 1 - miﬁ/C Z (Z ymt)\mt> -

Z In (1 —p+ p€§ pD—)\mt)\mt/ymtymt/kd(xmtyxmt/))
d

which is maximized over non-negativity constraints.
The final decision rule for the m’th classifier is

sign <Z YmtAme Y Saka(Xme, X) + ém>
t

d

y =

where b, are given as in Section 5. The expected
switch values §4 are

1

1+ 1) p) X P(_‘ tht’ Amt Amt YmtYmer kd(Xmes Xomer))
which give us the weights on the combination of base
kernels to use for multi-tasks.

7. Discussion

A framework for feature and kernel selection in an
SVM classification (and regression) setting was put

forward. However, here, features or kernel combina-
tions are found from multiple synergistic problems.
If such problems have commonalities in terms of the
features they should be sensitive to or in terms of
the nonlinearities they require for good classification,
they can mutually benefit from multi-task or meta-
learning. Maximum entropy discrimination gener-
ated these novel extensions of support vector machines
which were implemented as convex programs. These
avoid local minima as they simultaneously estimate
classifier models and perform feature/kernel selection.
Preliminary empirical results were promising and en-
courage further empirical and theoretical work.

References

Baxter, J. (1995). Learning internal representations.
Proceedings of the 8th International ACM Workshop
on Computational Learning Theory.

Baxter, J. (2000). A model of inductive bias learning.
Journal of Artificial Intelligence Research, 12, 149—
198.

Ben-David, S., & Schuller, R. (2003). Exploiting task
relatedness for multiple task learning. Conference
on Learning Theory and Kernel Machines.

Caruana, R. (1997).
Learning, 28, 41-75.

Multitask learning. Machine

Chapelle, O., & Vapnik, V. (1999).
for support vector machines. NIPS.

Model selection

Cristianini, N., Kandola, J., Elisseeff, A., & Shawe-
Taylor, J. (2001). On kernel target alignment. NIPS.

Evegniou, T., & Pontil, M. (2004). Regularized multi—
task learning (Technical Report RN/04/04). Dept
of Computer Science, UCL.

Jaakkola, T., Meila, M., & Jebara, T. (1999). Maxi-
mum entropy discrimination. NIPS.

Jebara, T., & Jaakkola, T. (2000). Feature selection
and dualities in maximum entropy discrimination.
Uncertainty in Artifical Intelligence 16.

Lanckriet, G., Cristianini, N., Bartlett, P., El Ghaoui,
L., & Jordan, M. (2002). Learning the kernel matrix
with semi-definite programming. ICML.

Thrun, S., & Pratt, L. (1997).
Kluwer Academic.

Learning to learn.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M.,
Poggio, T., & Vapnik, V. (2000). Feature selection
for SVMs. NIPS 13.

