12 CS Students Win Prestigious Fellowships

Graduate students from the department have been selected to receive scholarships. The diverse group is a mix of those new to Columbia and students who have received fellowships for the year. 


Google Fellowship

The Google PhD Fellowship Program was created to recognize outstanding graduate students doing exceptional and innovative research in areas relevant to computer science and related fields.

Yiru Chen
Yiru Chen is a fourth-year Ph.D. student who works with Associate Professor Eugene Wu. Her research interests are database systems, human-computer interaction, and data exploration. Her work focuses on improving database usability by automatically generating database interfaces for interactive data analysis.

Chen graduated from Peking University with a B.S. in computer science summa cum laude and a B.A. in Economics in 2018. She enjoys cycling and playing the violin whenever she has free time.


NSF Graduate Research Fellowship Program (GRFP)

The GRFP is a five-year fellowship that recognizes and supports outstanding graduate students in NSF-supported STEM disciplines who are pursuing research-based master’s and doctoral degrees.

Philippe Chlenski
Philippe Chlenski is interested in developing and applying computational techniques to biological problems, particularly machine learning for microbial dynamics. He is a second-year PhD student in the Pe’er lab. Prior to Columbia, he worked for two years at the Fellowship for Interpretation of Genomes at the Argonne National Lab.

Chlenski graduated in 2018 from Yale University with a Bachelor’s degree in mathematics and philosophy. He also holds an Associate’s degree in liberal arts from Deep Springs College.

 

Sam Fereidooni
Sam Fereidooni is interested in investigating semantic representations through the lens of both cognitive neuroscience and natural language processing. He particularly hopes that the eventual findings from his work will lead to ameliorated treatments for those who suffer from language processing and production disorders. He is a first-year PhD student in the Theory group, and he is advised by Professor Christos Papadimitriou.

Fereidooni graduated in 2021 from Yale University with a B.S. in Cognitive Science, and a B.S. in Statistics and Data Science. Sam’s undergraduate studies were supported by the Questbridge Foundation National College Match scholarship, the Richter Undergraduate Research fellowship, and the Yale Club of New York City Charles S. Guggenheimer scholarship.

 

Shashaank N
Shashaank N is a first-year PhD student who will be advised by assistant professor David Knowles. His research interests are in computational genomics and neuroscience, with a focus on auditory processing disorders in the brain.

Shashaank recently graduated with an MS in Computer Science from Columbia University in 2021. He completed a BS in Interdisciplinary Studies from Western Kentucky University (WKU) in 2019 and received the Scholar of the College academic award.

 

Meghna Pancholi
Meghna Pancholi is a second-year PhD student advised by Associate Professor Simha Sethumadhavan. She is interested in cloud computing, systems security, and microservices. Before Columbia, Meghna was an undergraduate researcher at Cornell University where she worked on improving the performance of microservices applications with machine learning techniques.

Meghna graduated from Cornell University in 2020 with a BS in Computer Science.

 

Clayton Sanford
Clayton Sanford is a third-year PhD student working with Professors Rocco Servedio and Daniel Hsu on machine learning theory. The motivating goal of his research is to understand mathematically why deep learning performs so well in practice. Clayton’s work on the approximation capabilities of neural networks has been published at the COLT 2021 conference. He is a member of the CS Theory Group.

Clayton received an ScB in Applied Math and Computer Science with honors from Brown University in 2018.

 

Sky Wang
Sky Wang is an incoming first-year PhD student set to work with Assistant Professors Zhou Yu and Smaranda Muresan. His work focuses on natural language processing and he is interested in leveraging computational methods to understand social aspects of language and to use such insights in creating more effective and more equitable language technologies. He is particularly interested in the areas of situated dialogue systems, computational social science, and cultural analytics.

Wang graduated in 2020 from the University of Michigan with a B.S.E in Computer Science. He is a 2021 recipient of the University of Michigan’s EECS Undergraduate Outstanding Research Award and also received an honorable mention for the Computing Research Association Outstanding Undergraduate Research Award in 2021. He received a Best Poster award from the University of Michigan AI Symposium in 2018 and was recognized as a finalist in the NASA Goddard Space Flight Center Intern Research Fair in 2018.

 

Joseph Zuckerman
Joseph Zuckerman is a second-year PhD student in computer science at Columbia University, where he works in the System-Level Design group, advised by Professor Luca Carloni. His research interests include architectures, runtime management, and agile design methodologies for many-accelerator systems-on-chip.

Zuckerman contributes as one of the main developers to ESP, an open-source research platform for heterogeneous system-on-chip design. In 2019, he completed his S.B in electrical engineering at Harvard University, during which he completed internships at NVIDIA and the NASA Jet Propulsion Lab.

 


SEAS Fellowships

Columbia School of Engineering and Applied Sciences established the Presidential and SEAS fellowships to recruit outstanding students from around the world to pursue graduate studies at the school.

Blavatnik Fellow

Sebastian Salazar
Sebastian Salazar’s research interests include Machine Learning and Ethical AI. At Columbia, his work will be focused on counterfactual predictions and actionability of Machine Learning models. He is a first-year PhD student who will be working under the guidance of Ansaf Salleb-Aouissi.

Sebastian graduated magna cum laude from Columbia University in 2021 with a B.S. in Applied Physics.

 

Dean’s Fellows

Huy Ha
Huy Ha is an incoming first-year PhD student interested in computer vision, natural language processing, and robot learning. His research studies how embodied intelligence could combine information from different modalities (vision, language, interaction) to understand its environment, solve tasks, and assist people. He is advised by Assistant Professor Shuran Song and is a member of the Columbia Artificial Intelligence and Robotics (CAIR) lab.

Ha graduated in 2021with a BS in Computer Science from Columbia University. He was a Dean’s Fellow and received the Theodore Bashkow Award. He did research during the summer as a Bonomi Summer Scholar. During his free time, Ha likes to take photos, rock climb, bike, and train his two border collies for frisbee.

 

Yun-Yun Tsai
A first-year PhD student, Yun-Yun Tsai works with Professor Junfeng Yang. Her research interests are in security and artificial intelligence. In particular, she is interested in improving robustness over neural networks and machine learning (ML) algorithms so that they make fewer mistakes on malicious samples. She will work on research related to making AI applications less fragile against unusual inputs.

Tsai received a B.Sc. and M.Sc. degrees in computer science at National Tsing Hua University (NTHU) Taiwan in 2014 and 2018, respectively. Previously, she was advised by Professor Tsung-Yi Ho and Dr. Pin-Yu Chen from Trusted AI group, IBM Thomas J. Watson Research Center, NY USA.

 

Mudd Fellow

Anjali Das
Anjali Das is a first-year PhD student who works with Professors Itsik Pe’er and David Knowles. Her research interest is in developing and applying machine learning methods to problems in genomics. Specifically, she is interested in the genetics of neurological diseases.

Das graduated from the University of Chicago in June of 2020 with a BS in statistics and a minor in computer science. After graduating, she worked as a data scientist at UChicago’s Research Computing Center before joining Columbia.

 

Q&A: Jihye Kwon on PhD Research Projects

Jihye Kwon, a computer engineering PhD student, talks about her research projects and what it took to win a Best Paper award.

Jihye Kwon

What drew you to computer engineering, specifically the application of machine learning to computer-aided design? What questions or issues do you hope to answer?

I was attracted to the concept of a computer: a machine that performs calculations. I found it very interesting how modern computers evolved from executing one instruction at a time to executing many instructions simultaneously by exploiting multiple levels of parallelism. Still, various challenges remained, or newly arose, so I dreamed about designing a brand-new computer system. That is what I had in mind when coming to Columbia.

At the beginning of my PhD, I experimented and learned how to design the core parts of special-purpose computers, using computer-aided design tools. I also explored machine learning from both theoretical and practical perspectives. These activities led me to work on my current research problems.

In advanced computer-aided design of computer systems, computers solve many complex optimization problems in steps to generate a final design. They do so as guided by the designers via means of the configurable ‘knobs’. My focus is on the designers’ work.

For a target system, designers run the computer-aided design tools repeatedly with the many different knob configurations until the tools output final designs with optimal or desired properties, e.g., in timing, area, and power. I wondered if machines can learn, from designers’ previous work, how to configure the knobs to optimize a new target system. Can designers virtually collaborate across time and tasks through the machine learning models? These are the main questions that I hope to answer.

Could you talk about your research and how you collaborated with other groups? Was this something you considered when applying to Columbia – that there are opportunities to do multi-disciplinary work?

When I was applying to Columbia, I wished I could have collaboration opportunities to study and work in the interdisciplinary research communities at the center of New York City. I wanted to explore applications of computer science in different areas to eventually gain insight and inspiration for my own research, which is centered at computer engineering.

Fortunately, these were realized as I worked with my advisor, Professor Luca Carloni. I was invited to join the project “Energy Efficient Computing with Chip-Based Photonics”, which is a part of a large initiative supported by the government and industry. In this project, I worked closely with Lightwave Research Laboratory in Electrical Engineering on a new optical computing system. We proposed the concept of a next-generation computing system that is co-designed with silicon photonics and electronic circuitry, in order to overcome the fundamental and physical limitations of today’s computers.

Another project on optical communication was initiated from a student project that I mentored in my advisor’s class, Embedded Scalable Platforms. This project investigated the use of photonic switches in optically-connected memory systems for deep learning applications.

Outside Columbia, I have also collaborated with researchers at IBM TJ Watson Research Center via my summer internships on the project of auto-tuning computer-aided design flows for commercial supercomputers. All these collaborations opened new horizons for me.

 

You won the MLCAD 2020 Best Paper award for your research, can you talk about your process – how did the research come about? How long did it take you to complete the work? What were the things you had to overcome?

In this work, I proposed a novel machine learning approach for computer-aided design optimization of hardware accelerators. I wanted to address this problem because it is computationally very expensive to explore the entire optimization space. It took me about one year to complete the work. One of the biggest difficulties I faced was the limited availability of the data for applying machine learning to the problem.

Then, I found out that transfer learning has been recently successfully applied in other areas with limited data. In transfer learning, a model trained for a related problem (e.g., natural image recognition) is transferred to aid the machine learning for the target problem (e.g., face recognition). Hence, I tried to apply transfer learning to my research problem. I trained a neural network model for a different accelerator design, and transferred the model to predict the design properties of a target accelerator.

However, the transferred model did not perform well in this case. I realized that due to the diverse characteristics of the accelerators, I needed to distinguish which piece of the source information should be transferred. Based on this intuition, I constructed a series of new models, and eventually, proposed one with promising performance. While it was a long process of building new models without knowing the answers, my advisor greatly encouraged me in our discussions to keep moving forward, and it was very rewarding in the end.

The Machine Learning for Systems session from the 2nd ACM/IEEE Workshop on Machine Learning for CAD (MLCAD) can be viewed here and the Best Paper announcement here

 

Looking back, how have you grown as a researcher and a person?

Besides expanding my problem-solving capabilities and technical skills, I have grown to be a better presenter and communicator. One of the tasks of a researcher is to explain one’s work to various groups and different types of audiences. I had a number of opportunities to present my work at academic conferences, seminars at companies, lightning talks, and annual project reviews. Initially, I struggled to meet the audience’s interests whose expertise spans a diverse range of areas and levels. Through those opportunities, I have received very helpful feedback, I have tried to ask myself questions from other people’s perspectives and progressively learned to keep a good balance between abstraction and elaboration.

Also, by interacting with a lot of students with heterogeneous backgrounds in the classes I TA’ed, I have learned to understand what their questions mean and where they come from. Based on that, I tried to adjust my answers to have more relatable conversations. From those conversations, sometimes the students found the topics very interesting, and sometimes I learned something new from them. It was such a great pleasure to inspire others and to be inspired. I think those experiences have made me a better researcher and person.

 

There are many organizations on campus, why did you choose to join Womxn in Computer Science (WiCS)?

In Fall 2017, I received an invitation from WiCS’ president, Julia Di, and was impressed by the passionate and caring board members working on the common goal of supporting the advancement of womxn in computer science. In my second year I launched the WiCS Lightning Talks for students with research experience to share their work and stories. The goal was for young students to get to know more about research and demystify the process.

I am one of the few women at Columbia in my research area of computer engineering and would like to contribute to inspiring the next generation to join us.

 

What was the highlight of your time at Columbia?

Every moment was special for me. Some of the highlights were during happy hour with members of the fishbowl. The fishbowl is a large office occupied by the majority of PhD students in computer engineering. We call it the fishbowl, because it is surrounded by large windows and students inside look like small fishes. Once, my colleagues talked about their memories of old computers that I had never seen. I enjoyed imagining the machines from their descriptions, and thinking about different types and generations of computers.

 

What is your advice to students on how to navigate their time at Columbia?

Explore, experience, and exploit. There are recommended lists of classes, activities, and companies, depending on your track and interests, but no one is exactly like you. There is such a great variety of opportunities and resources at Columbia and in New York City. I hope you can spend enough time exploring them and get involved in many ways before determining your academic and career goals.

 

Is there anything else that you think people should know?

Columbia is beautiful in the snow! It gets pretty windy in the winter, so please be aware if you are coming from warmer places. There are many places where you can study but Avery Library is my favorite library on campus. If you have any questions or opinions on this Q&A story, please feel free to drop me a line!