12 Research Papers Accepted to EMNLP 2022

Papers from CS researchers were accepted to the Empirical Methods in Natural Language Processing (EMNLP) 2022. EMNLP is a leading conference in artificial intelligence and natural language processing. Aside from presenting their research papers, several researchers also organized workshops to gather conference attendees for discussions about current issues confronting NLP and computer science.   

Workshops

Massively Multilingual Natural Language Understanding
Jack FitzGerald Amazon Alexa, Kay Rottmann Amazon Alexa, Julia Hirschberg Columbia University, Mohit Bansal University of North Carolina, Anna Rumshisky University of Massachusetts Lowell, and Charith Peris Amazon Alexa

3rd Workshop on Figurative Language Processing
Debanjan Ghosh Educational Testing Service, Beata Beigman Klebanov Educational Testing Service, Smaranda Muresan Columbia University, Anna Feldman Montclair State University, Soujanya Poria Singapore University of Technology and Design, and Tuhin Chakrabarty Columbia University

Sharing Stories and Lessons Learned
Diyi Yang Stanford University, Pradeep Dasigi Allen Institute for AI, Sherry Tongshuang Wu Carnegie Mellon University, Tuhin Chakrabarty Columbia University, Yuval Pinter Ben-Gurion University of the Negev, and Mike Zheng Shou National University of Singapore


Accepted Papers

Help me write a Poem – Instruction Tuning as a Vehicle for Collaborative Poetry Writing
Tuhin Chakrabarty Columbia University, Vishakh Padmakumar New York University, He He New York University

Abstract
Recent work in training large language models (LLMs) to follow natural language instructions has opened up exciting opportunities for natural language interface design. Building on the prior success of large language models in the realm of computer assisted creativity, in this work, we present CoPoet, a collaborative poetry writing system, with the goal of to study if LLM’s actually improve the quality of the generated content. In contrast to auto-completing a user’s text, CoPoet is controlled by user instructions that specify the attributes of the desired text, such as Write a sentence about ‘love’ or Write a sentence ending in ‘fly’. The core component of our system is a language model fine-tuned on a diverse collection of instructions for poetry writing. Our model is not only competitive to publicly available LLMs trained on instructions (InstructGPT), but also capable of satisfying unseen compositional instructions. A study with 15 qualified crowdworkers shows that users successfully write poems with CoPoet on diverse topics ranging from Monarchy to Climate change, which are preferred by third-party evaluators over poems written without the system.


FLUTE: Figurative Language Understanding through Textual Explanations
Tuhin Chakrabarty Columbia University, Arkadiy Saakyan Columbia University, Debanjan Ghosh Educational Testing Service, and Smaranda Muresan Columbia University

Abstract
Figurative language understanding has been recently framed as a recognizing textual entailment (RTE) task (a.k.a. natural language inference (NLI)). However, similar to classical RTE/NLI datasets they suffer from spurious correlations and annotation artifacts. To tackle this problem, work on NLI has built explanation-based datasets such as eSNLI, allowing us to probe whether language models are right for the right reasons. Yet no such data exists for figurative language, making it harder to assess genuine understanding of such expressions. To address this issue, we release FLUTE, a dataset of 9,000 figurative NLI instances with explanations, spanning four categories: Sarcasm, Simile, Metaphor, and Idioms. We collect the data through a Human-AI collaboration framework based on GPT-3, crowd workers, and expert annotators. We show how utilizing GPT-3 in conjunction with human annotators (novices and experts) can aid in scaling up the creation of datasets even for such complex linguistic phenomena as figurative language. The baseline performance of the T5 model fine-tuned on FLUTE shows that our dataset can bring us a step closer to developing models that understand figurative language through textual explanations.


Fine-tuned Language Models are Continual Learners
Thomas Scialom Columbia University, Tuhin Chakrabarty Columbia University, and Smaranda Muresan Columbia University

Abstract
Recent work on large language models relies on the intuition that most natural language processing tasks can be described via natural language instructions and that models trained on these instructions show strong zero-shot performance on several standard datasets. However, these models even though impressive still perform poorly on a wide range of tasks outside of their respective training and evaluation sets.To address this limitation, we argue that a model should be able to keep extending its knowledge and abilities, without forgetting previous skills. In spite of the limited success of Continual Learning, we show that Fine-tuned Language Models can be continual learners.We empirically investigate the reason for this success and conclude that Continual Learning emerges from self-supervision pre-training. Our resulting model Continual-T0 (CT0) is able to learn 8 new diverse language generation tasks, while still maintaining good performance on previous tasks, spanning in total of 70 datasets. Finally, we show that CT0 is able to combine instructions in ways it was never trained for, demonstrating some level of instruction compositionality.


Multitask Instruction-based Prompting for Fallacy Recognition
Tariq Alhindi Columbia University, Tuhin Chakrabarty Columbia University, Elena Musi University of Liverpool, and Smaranda Muresan Columbia University

Abstract
Fallacies are used as seemingly valid arguments to support a position and persuade the audience about its validity. Recognizing fallacies is an intrinsically difficult task both for humans and machines. Moreover, a big challenge for computational models lies in the fact that fallacies are formulated differently across the datasets with differences in the input format (e.g., question-answer pair, sentence with fallacy fragment), genre (e.g., social media, dialogue, news), as well as types and number of fallacies (from 5 to 18 types per dataset). To move towards solving the fallacy recognition task, we approach these differences across datasets as multiple tasks and show how instruction-based prompting in a multitask setup based on the T5 model improves the results against approaches built for a specific dataset such as T5, BERT or GPT-3. We show the ability of this multitask prompting approach to recognize 28 unique fallacies across domains and genres and study the effect of model size and prompt choice by analyzing the per-class (i.e., fallacy type) results. Finally, we analyze the effect of annotation quality on model performance, and the feasibility of complementing this approach with external knowledge.


CONSISTENT: Open-Ended Question Generation From News Articles
Tuhin Chakrabarty Columbia University, Justin Lewis The New York Times R&D, and Smaranda Muresan Columbia University

Abstract
Recent work on question generation has largely focused on factoid questions such as who, what, where, when about basic facts. Generating open-ended why, how, what, etc. questions that require long-form answers have proven more difficult. To facilitate the generation of open-ended questions, we propose CONSISTENT, a new end-to-end system for generating open-ended questions that are answerable from and faithful to the input text. Using news articles as a trustworthy foundation for experimentation, we demonstrate our model’s strength over several baselines using both automatic and human=based evaluations. We contribute an evaluation dataset of expert-generated open-ended questions.We discuss potential downstream applications for news media organizations.


SafeText: A Benchmark for Exploring Physical Safety in Language Models
Sharon Levy University of California, Santa Barbara, Emily Allaway Columbia University, Melanie Subbiah Columbia University, Lydia Chilton Columbia University, Desmond Patton Columbia University, Kathleen McKeown Columbia University, and William Yang Wang University of California, Santa Barbara

Abstract
Understanding what constitutes safe text is an important issue in natural language processing and can often prevent the deployment of models deemed harmful and unsafe. One such type of safety that has been scarcely studied is commonsense physical safety, i.e. text that is not explicitly violent and requires additional commonsense knowledge to comprehend that it leads to physical harm. We create the first benchmark dataset, SafeText, comprising real-life scenarios with paired safe and physically unsafe pieces of advice. We utilize SafeText to empirically study commonsense physical safety across various models designed for text generation and commonsense reasoning tasks. We find that state-of-the-art large language models are susceptible to the generation of unsafe text and have difficulty rejecting unsafe advice. As a result, we argue for further studies of safety and the assessment of commonsense physical safety in models before release.


Learning to Revise References for Faithful Summarization
Griffin Adams Columbia University, Han-Chin Shing Amazon AWS AI, Qing Sun Amazon AWS AI, Christopher Winestock Amazon AWS AI, Kathleen McKeown Columbia University, and Noémie Elhadad Columbia University

Abstract
In real-world scenarios with naturally occurring datasets, reference summaries are noisy and may contain information that cannot be inferred from the source text. On large news corpora, removing low quality samples has been shown to reduce model hallucinations. Yet, for smaller, and/or noisier corpora, filtering is detrimental to performance. To improve reference quality while retaining all data, we propose a new approach: to selectively re-write unsupported reference sentences to better reflect source data. We automatically generate a synthetic dataset of positive and negative revisions by corrupting supported sentences and learn to revise reference sentences with contrastive learning. The intensity of revisions is treated as a controllable attribute so that, at inference, diverse candidates can be over-generated-then-rescored to balance faithfulness and abstraction. To test our methods, we extract noisy references from publicly available MIMIC-III discharge summaries for the task of hospital-course summarization, and vary the data on which models are trained. According to metrics and human evaluation, models trained on revised clinical references are much more faithful, informative, and fluent than models trained on original or filtered data.


Mitigating Covertly Unsafe Text within Natural Language Systems
Alex Mei University of California, Santa Barbara, Anisha Kabir University of California, Santa Barbara, Sharon Levy University of California, Santa Barbara, Melanie Subbiah Columbia University, Emily Allaway Columbia University, John N. Judge University of California, Santa Barbara, Desmond Patton University of Pennsylvania, Bruce Bimber University of California, Santa Barbara, Kathleen McKeown Columbia University, and William Yang Wang University of California, Santa Barbara

Abstract
An increasingly prevalent problem for intelligent technologies is text safety, as uncontrolled systems may generate recommendations to their users that lead to injury or life-threatening consequences. However, the degree of explicitness of a generated statement that can cause physical harm varies. In this paper, we distinguish types of text that can lead to physical harm and establish one particularly underexplored category: covertly unsafe text. Then, we further break down this category with respect to the system’s information and discuss solutions to mitigate the generation of text in each of these subcategories. Ultimately, our work defines the problem of covertly unsafe language that causes physical harm and argues that this subtle yet dangerous issue needs to be prioritized by stakeholders and regulators. We highlight mitigation strategies to inspire future researchers to tackle this challenging problem and help improve safety within smart systems.


Affective Idiosyncratic Responses to Music
Sky CH-Wang Columbia University, Evan Li Columbia University, Oliver Li Columbia University, Smaranda Muresan Columbia University, and Zhou Yu Columbia University

Abstract
Affective responses to music are highly personal. Despite consensus that idiosyncratic factors play a key role in regulating how listeners emotionally respond to music, precisely measuring the marginal effects of these variables has proved challenging. To address this gap, we develop computational methods to measure affective responses to music from over 403M listener comments on a Chinese social music platform. Building on studies from music psychology in systematic and quasi-causal analyses, we test for musical, lyrical, contextual, demographic, and mental health effects that drive listener affective responses. Finally, motivated by the social phenomenon known as 网抑云 (wǎng-yì-yún), we identify influencing factors of platform user self-disclosures, the social support they receive, and notable differences in discloser user activity.


Robots-Dont-Cry: Understanding Falsely Anthropomorphic Utterances in Dialog Systems
David Gros University of California, Davis, Yu Li Columbia University, and Zhou Yu Columbia University

Abstract
Dialog systems are often designed or trained to output human-like responses. However, some responses may be impossible for a machine to truthfully say (e.g. “that movie made me cry”). Highly anthropomorphic responses might make users uncomfortable or implicitly deceive them into thinking they are interacting with a human. We collect human ratings on the feasibility of approximately 900 two-turn dialogs sampled from 9 diverse data sources. Ratings are for two hypothetical machine embodiments: a futuristic humanoid robot and a digital assistant. We find that for some data-sources commonly used to train dialog systems, 20-30% of utterances are not viewed as possible for a machine. Rating is marginally affected by machine embodiment. We explore qualitative and quantitative reasons for these ratings. Finally, we build classifiers and explore how modeling configuration might affect output permissibly, and discuss implications for building less falsely anthropomorphic dialog systems.


Just Fine-tune Twice: Selective Differential Privacy for Large Language Models
Weiyan Shi Columbia University, Ryan Patrick Shea Columbia University, Si Chen Columbia University, Chiyuan Zhang Google Research, Ruoxi Jia Virginia Tech, and Zhou Yu Columbia University

Abstract
Protecting large language models from privacy leakage is becoming increasingly crucial with their wide adoption in real-world products. Yet applying *differential privacy* (DP), a canonical notion with provable privacy guarantees for machine learning models, to those models remains challenging due to the trade-off between model utility and privacy loss. Utilizing the fact that sensitive information in language data tends to be sparse, Shi et al. (2021) formalized a DP notion extension called *Selective Differential Privacy* (SDP) to protect only the sensitive tokens defined by a policy function. However, their algorithm only works for RNN-based models. In this paper, we develop a novel framework, *Just Fine-tune Twice* (JFT), that achieves SDP for state-of-the-art large transformer-based models. Our method is easy to implement: it first fine-tunes the model with *redacted* in-domain data, and then fine-tunes it again with the *original* in-domain data using a private training mechanism. Furthermore, we study the scenario of imperfect implementation of policy functions that misses sensitive tokens and develop systematic methods to handle it. Experiments show that our method achieves strong utility compared to previous baselines. We also analyze the SDP privacy guarantee empirically with the canary insertion attack.


Focus! Relevant and Sufficient Context Selection for News Image Captioning
Mingyang Zhou University of California, Davis, Grace Luo University of California, Berkeley, Anna Rohrbach University of California, Berkeley, and Zhou Yu Columbia University

Abstract
News Image Captioning requires describing an image by leveraging additional context from a news article. Previous works only coarsely leverage the article to extract the necessary context, which makes it challenging for models to identify relevant events and named entities. In our paper, we first demonstrate that by combining more fine-grained context that captures the key named entities (obtained via an oracle) and the global context that summarizes the news, we can dramatically improve the model’s ability to generate accurate news captions. This begs the question, how to automatically extract such key entities from an image? We propose to use the pre-trained vision and language retrieval model CLIP to localize the visually grounded entities in the news article and then capture the non-visual entities via an open relation extraction model. Our experiments demonstrate that by simply selecting a better context from the article, we can significantly improve the performance of existing models and achieve new state-of-the-art performance on multiple benchmarks.

11 Papers Accepted to NeurIPS 2022

Researchers from the department presented machine learning and artificial intelligence research at the thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2022).

 

Finding and Listing Front-door Adjustment Sets
Hyunchai Jeong Purdue University, Jin Tian Iowa State University, Elias Bareinboim Columbia University

Abstract:
Identifying the effects of new interventions from data is a significant challenge found across a wide range of the empirical sciences. A well-known strategy for identifying such effects is Pearl’s front-door (FD) criterion. The definition of the FD criterion is declarative, only allowing one to decide whether a specific set satisfies the criterion. In this paper, we present algorithms for finding and enumerating possible sets satisfying the FD criterion in a given causal diagram. These results are useful in facilitating the practical applications of the FD criterion for causal effects estimation and helping scientists to select estimands with desired properties, e.g., based on cost, feasibility of measurement, or statistical power.

 

Causal Identification under Markov equivalence: Calculus, Algorithm, and Completeness
Amin Jaber Purdue University, Adele Ribeiro Columbia University, Jiji Zhang Hong Kong Baptist University, Elias Bareinboim Columbia University

Abstract:
One common task in many data sciences applications is to answer questions about the effect of new interventions, like: `what would happen to Y if we make X equal to x while observing covariates Z=z?’. Formally, this is known as conditional effect identification, where the goal is to determine whether a post-interventional distribution is computable from the combination of an observational distribution and assumptions about the underlying domain represented by a causal diagram. A plethora of methods was developed for solving this problem, including the celebrated do-calculus [Pearl, 1995]. In practice, these results are not always applicable since they require a fully specified causal diagram as input, which is usually not available. In this paper, we assume as the input of the task a less informative structure known as a partial ancestral graph (PAG), which represents a Markov equivalence class of causal diagrams, learnable from observational data. We make the following contributions under this relaxed setting. First, we introduce a new causal calculus, which subsumes the current state-of-the-art, PAG-calculus. Second, we develop an algorithm for conditional effect identification given a PAG and prove it to be both sound and complete. In words, failure of the algorithm to identify a certain effect implies that this effect is not identifiable by any method. Third, we prove the proposed calculus to be complete for the same task.

 

Online Reinforcement Learning for Mixed Policy Scopes
Junzhe Zhang Columbia University, Elias Bareinboim Columbia University

Abstract:
Combination therapy refers to the use of multiple treatments — such as surgery, medication, and behavioral therapy – to cure a single disease, and has become a cornerstone for treating various conditions including cancer, HIV, and depression. All possible combinations of treatments lead to a collection of treatment regimens (i.e., policies) with mixed scopes, or what physicians could observe and which actions they should take depending on the context. In this paper, we investigate the online reinforcement learning setting for optimizing the policy space with mixed scopes. In particular, we develop novel online algorithms that achieve sublinear regret compared to an optimal agent deployed in the environment. The regret bound has a dependency on the maximal cardinality of the induced state-action space associated with mixed scopes. We further introduce a canonical representation for an arbitrary subset of interventional distributions given a causal diagram, which leads to a non-trivial, minimal representation of the model parameters.

 

Masked Prediction: A Parameter Identifiability View
Bingbin Liu Carnegie Mellon University, Daniel Hsu Columbia University, Pradeep Ravikumar Carnegie Mellon University, Andrej Risteski Carnegie Mellon University

Abstract:
The vast majority of work in self-supervised learning have focused on assessing recovered features by a chosen set of downstream tasks. While there are several commonly used benchmark datasets, this lens of feature learning requires assumptions on the downstream tasks which are not inherent to the data distribution itself. In this paper, we present an alternative lens, one of parameter identifiability: assuming data comes from a parametric probabilistic model, we train a self-supervised learning predictor with a suitable parametric form, and ask whether the parameters of the optimal predictor can be used to extract the parameters of the ground truth generative model.Specifically, we focus on latent-variable models capturing sequential structures, namely Hidden Markov Models with both discrete and conditionally Gaussian observations. We focus on masked prediction as the self-supervised learning task and study the optimal masked predictor. We show that parameter identifiability is governed by the task difficulty, which is determined by the choice of data model and the amount of tokens to predict. Technique-wise, we uncover close connections with the uniqueness of tensor rank decompositions, a widely used tool in studying identifiability through the lens of the method of moments.

 

Learning single-index models with shallow neural networks
Alberto Bietti Meta AI/New York University, Joan Bruna New York University, Clayton Sanford Columbia University, Min Jae Song New York University

Abstract:
Single-index models are a class of functions given by an unknown univariate link” function applied to an unknown one-dimensional projection of the input. These models are particularly relevant in high dimension, when the data might present low-dimensional structure that learning algorithms should adapt to. While several statistical aspects of this model, such as the sample complexity of recovering the relevant (one-dimensional) subspace, are well-understood, they rely on tailored algorithms that exploit the specific structure of the target function. In this work, we introduce a natural class of shallow neural networks and study its ability to learn single-index models via gradient flow. More precisely, we consider shallow networks in which biases of the neurons are frozen at random initialization. We show that the corresponding optimization landscape is benign, which in turn leads to generalization guarantees that match the near-optimal sample complexity of dedicated semi-parametric methods.


On Scrambling Phenomena for Randomly Initialized Recurrent Networks
Evangelos Chatziafratis University of California Santa Cruz, Ioannis Panageas University of California Irvine, Clayton Sanford Columbia University, Stelios Stavroulakis University of California Irvine

Abstract:
Recurrent Neural Networks (RNNs) frequently exhibit complicated dynamics, and their sensitivity to the initialization process often renders them notoriously hard to train. Recent works have shed light on such phenomena analyzing when exploding or vanishing gradients may occur, either of which is detrimental for training dynamics. In this paper, we point to a formal connection between RNNs and chaotic dynamical systems and prove a qualitatively stronger phenomenon about RNNs than what exploding gradients seem to suggest. Our main result proves that under standard initialization (e.g., He, Xavier etc.), RNNs will exhibit \textit{Li-Yorke chaos} with \textit{constant} probability \textit{independent} of the network’s width. This explains the experimentally observed phenomenon of \textit{scrambling}, under which trajectories of nearby points may appear to be arbitrarily close during some timesteps, yet will be far away in future timesteps. In stark contrast to their feedforward counterparts, we show that chaotic behavior in RNNs is preserved under small perturbations and that their expressive power remains exponential in the number of feedback iterations. Our technical arguments rely on viewing RNNs as random walks under non-linear activations, and studying the existence of certain types of higher-order fixed points called \textit{periodic points} in order to establish phase transitions from order to chaos.

 

Patching open-vocabulary models by interpolating weights
Gabriel Ilharco University of Washington, Mitchell Wortsman University of Washington, Samir Yitzhak Gadre Columbia University, Shuran Song Columbia University, Hannaneh Hajishirzi University of Washington, Simon Kornblith Google Brain, Ali Farhadi University of Washington, Ludwig Schmidt University of Washington

Abstract:
Open-vocabulary models like CLIP achieve high accuracy across many image classification tasks. However, there are still settings where their zero-shot performance is far from optimal. We study model patching, where the goal is to improve accuracy on specific tasks without degrading accuracy on tasks where performance is already adequate. Towards this goal, we introduce PAINT, a patching method that uses interpolations between the weights of a model before fine-tuning and the weights after fine-tuning on a task to be patched. On nine tasks where zero-shot CLIP performs poorly, PAINT increases accuracy by 15 to 60 percentage points while preserving accuracy on ImageNet within one percentage point of the zero-shot model. PAINT also allows a single model to be patched on multiple tasks and improves with model scale. Furthermore, we identify cases of broad transfer, where patching on one task increases accuracy on other tasks even when the tasks have disjoint classes. Finally, we investigate applications beyond common benchmarks such as counting or reducing the impact of typographic attacks on CLIP. Our findings demonstrate that it is possible to expand the set of tasks on which open-vocabulary models achieve high accuracy without re-training them from scratch.

 

ASPiRe: Adaptive Skill Priors for Reinforcement Learning
Mengda Xu Columbia University, Manuela Veloso JP Morgan/Carnegie Mellon University, Shuran Song Columbia University

Abstract:
We introduce ASPiRe (Adaptive Skill Prior for RL), a new approach that leverages prior experience to accelerate reinforcement learning. Unlike existing methods that learn a single skill prior from a large and diverse dataset, our framework learns a library of different distinction skill priors (i.e., behavior priors) from a collection of specialized datasets, and learns how to combine them to solve a new task. This formulation allows the algorithm to acquire a set of specialized skill priors that are more reusable for downstream tasks; however, it also brings up additional challenges of how to effectively combine these unstructured sets of skill priors to form a new prior for new tasks. Specifically, it requires the agent not only to identify which skill prior(s) to use but also how to combine them (either sequentially or concurrently) to form a new prior. To achieve this goal, ASPiRe includes Adaptive Weight Module (AWM) that learns to infer an adaptive weight assignment between different skill priors and uses them to guide policy learning for downstream tasks via weighted Kullback-Leibler divergences. Our experiments demonstrate that ASPiRe can significantly accelerate the learning of new downstream tasks in the presence of multiple priors and show improvement on competitive baselines.

 

Language Models with Image Descriptors are Strong Few-Shot Video-Language Learners
Zhenhailong Wang Columbia University, Manling Li Columbia University, Ruochen Xu Microsoft, Luowei Zhou Meta, Jie Lei Meta, Xudong Lin Columbia University, Shuohang Wang Microsoft, Ziyi Yang Stanford University, Chenguang Zhu Stanford University, Derek Hoiem University of Illinois, Shih-Fu Chang Columbia University, Mohit Bansal University of North Carolina Chapel Hill, Heng Ji University of Illinois

Abstract:
The goal of this work is to build flexible video-language models that can generalize to various video-to-text tasks from few examples. Existing few-shot video-language learners focus exclusively on the encoder, resulting in the absence of a video-to-text decoder to handle generative tasks. Video captioners have been pretrained on large-scale video-language datasets, but they rely heavily on finetuning and lack the ability to generate text for unseen tasks in a few-shot setting. We propose VidIL, a few-shot Video-language Learner via Image and Language models, which demonstrates strong performance on few-shot video-to-text tasks without the necessity of pretraining or finetuning on any video datasets. We use image-language models to translate the video content into frame captions, object, attribute, and event phrases, and compose them into a temporal-aware template. We then instruct a language model, with a prompt containing a few in-context examples, to generate a target output from the composed content. The flexibility of prompting allows the model to capture any form of text input, such as automatic speech recognition (ASR) transcripts. Our experiments demonstrate the power of language models in understanding videos on a wide variety of video-language tasks, including video captioning, video question answering, video caption retrieval, and video future event prediction. Especially, on video future event prediction, our few-shot model significantly outperforms state-of-the-art supervised models trained on large-scale video datasets.Code and processed data are publicly available for research purposes at https://github.com/MikeWangWZHL/VidIL.

 

Implications of Model Indeterminacy for Explanations of Automated Decisions
Marc-Etienne Brunet University of Toronto, Ashton Anderson University of Toronto, Richard Zemel Columbia University

Abstract:
There has been a significant research effort focused on explaining predictive models, for example through post-hoc explainability and recourse methods. Most of the proposed techniques operate upon a single, fixed, predictive model. However, it is well-known that given a dataset and a predictive task, there may be a multiplicity of models that solve the problem (nearly) equally well. In this work, we investigate the implications of this kind of model indeterminacy on the post-hoc explanations of predictive models. We show how it can lead to explanatory multiplicity, and we explore the underlying drivers. We show how predictive multiplicity, and the related concept of epistemic uncertainty, are not reliable indicators of explanatory multiplicity. We further illustrate how a set of models showing very similar aggregate performance on a test dataset may show large variations in their local explanations, i.e., for a specific input. We explore these effects for Shapley value based explanations on three risk assessment datasets. Our results indicate that model indeterminacy may have a substantial impact on explanations in practice, leading to inconsistent and even contradicting explanations.

 

Reconsidering Deep Ensembles
Taiga Abe Columbia University, Estefany Kelly Buchanan Columbia University, Geoff Pleiss Columbia University, Richard Zemel Columbia University, John Cunningham Columbia University

Abstract:
Ensembling neural networks is an effective way to increase accuracy, and can often match the performance of individual larger models. This observation poses a natural question: given the choice between a deep ensemble and a single neural network with similar accuracy, is one preferable over the other? Recent work suggests that deep ensembles may offer distinct benefits beyond predictive power: namely, uncertainty quantification and robustness to dataset shift. In this work, we demonstrate limitations to these purported benefits, and show that a single (but larger) neural network can replicate these qualities. First, we show that ensemble diversity, by any metric, does not meaningfully contribute to an ensemble’s ability to detect out-of-distribution (OOD) data, but is instead highly correlated with the relative improvement of a single larger model. Second, we show that the OOD performance afforded by ensembles is strongly determined by their in-distribution (InD) performance, and – in this sense – is not indicative of any “effective robustness.” While deep ensembles are a practical way to achieve improvements to predictive power, uncertainty quantification, and robustness, our results show that these improvements can be replicated by a (larger) single model

Undergraduate Computer and Data Science Research Fair

This fall, Columbia University and Barnard College will host the inaugural Undergraduate Computer and Data Science Research Fair to showcase undergraduate student work in data science and related fields. Applications will be accepted along three thematic tracks and in a variety of formats to highlight the diversity of opportunities that data science affords researchers.

6 Papers from CS Researchers Accepted to NAACL 2022

Researchers from the department presented natural language processing (NLP) papers at the 2022 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2022).

Selective Differential Privacy for Language Models
Weiyan Shi, Aiqi Cui, Evan Li, Ruoxi Jia, Zhou Yu

With the increasing applications of language models, it has become crucial to protect these models from leaking private information. Previous work has attempted to tackle this challenge by training RNN-based language models with differential privacy guarantees. However, applying classical differential privacy to language models leads to poor model performance as the underlying privacy notion is over-pessimistic and provides undifferentiated protection for all tokens in the data. Given that the private information in natural language is sparse (for example, the bulk of an email might not carry personally identifiable information), we propose a new privacy notion, selective differential privacy, to provide rigorous privacy guarantees on the sensitive portion of the data to improve model utility. To realize such a new notion, we develop a corresponding privacy mechanism, Selective-DPSGD, for RNN-based language models. Besides language modeling, we also apply the method to a more concrete application–dialog systems. Experiments on both language modeling and dialog system building show that the proposed privacy-preserving mechanism achieves better utilities while remaining safe under various privacy attacks compared to the baselines. The data and code are released at this HTTPS URL to facilitate future research.

Knowledge-Grounded Dialogue Generation with a Unified Knowledge Representation
Yu Li, Baolin Peng, Yelong Shen, Yi Mao, Lars Liden, Zhou Yu, Jianfeng Gao

Knowledge-grounded dialogue systems are challenging to build due to the lack of training data and heterogeneous knowledge sources. Existing systems perform poorly on unseen topics due to limited topics covered in the training data. In addition, heterogeneous knowledge sources make it challenging for systems to generalize to other tasks because knowledge sources in different knowledge representations require different knowledge encoders. To address these challenges, we present PLUG, a language model that homogenizes different knowledge sources to a unified knowledge representation for knowledge-grounded dialogue generation tasks. PLUG is pre-trained on a dialogue generation task conditioned on a unified essential knowledge representation. It can generalize to different downstream knowledge-grounded dialogue generation tasks with a few training examples. The empirical evaluation on two benchmarks shows that our model generalizes well across different knowledge-grounded tasks. It can achieve comparable performance with state-of-the-art methods under a fully-supervised setting and significantly outperforms other methods in zero-shot and few-shot settings.

Database Search Results Disambiguation for Task-Oriented Dialog Systems
Kun Qian, Ahmad Beirami, Satwik Kottur, Shahin Shayandeh, Paul Crook, Alborz Geramifard, Zhou Yu, Chinnadhurai Sankar

As task-oriented dialog systems are becoming increasingly popular in our lives, more realistic tasks have been proposed and explored. However, new practical challenges arise. For instance, current dialog systems cannot effectively handle multiple search results when querying a database, due to the lack of such scenarios in existing public datasets. In this paper, we propose Database Search Result (DSR) Disambiguation, a novel task that focuses on disambiguating database search results, which enhances user experience by allowing them to choose from multiple options instead of just one. To study this task, we augment the popular task-oriented dialog datasets (MultiWOZ and SGD) with turns that resolve ambiguities by (a) synthetically generating turns through a pre-defined grammar, and (b) collecting human paraphrases for a subset. We find that training on our augmented dialog data improves the model’s ability to deal with ambiguous scenarios, without sacrificing performance on unmodified turns. Furthermore, pre-fine tuning and multi-task learning help our model to improve performance on DSRdisambiguation even in the absence of indomain data, suggesting that it can be learned as a universal dialog skill. Our data and code will be made publicly available.

ErAConD: Error Annotated Conversational Dialog Dataset for Grammatical Error Correction
Xun Yuan, Sam Pham, Sam Davidson, Zhou Yu

Currently available grammatical error correction (GEC) datasets are compiled using well-formed written text, limiting the applicability of these datasets to other domains such as informal writing and dialog. In this paper, we present a novel parallel GEC dataset drawn from open-domain chatbot conversations; this dataset is, to our knowledge, the first GEC dataset targeted to a conversational setting. To demonstrate the utility of the dataset, we use our annotated data to fine-tune a state-of-the-art GEC model, resulting in a 16-point increase in model precision. This is of particular importance in a GEC model, as model precision is considered more important than recall in GEC tasks since false positives could lead to serious confusion in language learners. We also present a detailed annotation scheme which ranks errors by perceived impact on comprehensibility, making our dataset both reproducible and extensible. Experimental results show the effectiveness of our data in improving GEC model performance in conversational scenarios.

Improving Conversational Recommendation Systems’ Quality with Context-Aware Item Meta-Information
Bowen Yang, Cong Han, Yu Li, Lei Zuo, Zhou Yu

Conversational recommendation systems (CRS) engage with users by inferring user preferences from dialog history, providing accurate recommendations, and generating appropriate responses. Previous CRSs use knowledge graph (KG) based recommendation modules and integrate KG with language models for response generation. Although KG-based approaches prove effective, two issues remain to be solved. First, KG-based approaches ignore the information in the conversational context but only rely on entity relations and bag of words to recommend items. Second, it requires substantial engineering efforts to maintain KGs that model domain-specific relations, thus leading to less flexibility. In this paper, we propose a simple yet effective architecture comprising a pre-trained language model (PLM) and an item metadata encoder. The encoder learns to map item metadata to embeddings that can reflect the semantic information in the dialog context. The PLM then consumes the semantic-aligned item embeddings together with dialog context to generate high-quality recommendations and responses. Instead of modeling entity relations with KGs, our model reduces engineering complexity by directly converting each item to an embedding. Experimental results on the benchmark dataset ReDial show that our model obtains state-of-the-art results on both recommendation and response generation tasks.

Differentially private decoding in large language models
By Jimit Majmudar, Christophe Dupuy, Charith Peris, Sami Smaili, Rahul Gupta, Richard Zemel


Recent large-scale natural language processing (NLP) systems use a pre-trained Large Language Model (LLM) on massive and diverse corpora as a headstart. In practice, the pre-trained model is adapted to a wide array of tasks via fine-tuning on task-specific datasets. LLMs, while effective, have been shown to memorize instances of training data thereby potentially revealing private information processed during pre-training. The potential leakage might further propagate to the downstream tasks for which LLMs are fine-tuned. On the other hand, privacy-preserving algorithms usually involve retraining from scratch, which is prohibitively expensive for LLMs. In this work, we propose a simple, easy to interpret, and computationally lightweight perturbation mechanism to be applied to an already trained model at the decoding stage. Our perturbation mechanism is model-agnostic and can be used in conjunction with any LLM. We provide a theoretical analysis showing that the proposed mechanism is differentially private, and experimental results show a privacy-utility trade-off.

Three New Lustgarten-Whitney Fellows Named

Molecular biologist, pianist, and cognitive scientist/biologist will receive scholarship aid from a program that supports students from non-computational backgrounds applying computer science in a broad range of interdisciplinary areas.