COMS 4995 Lecture 8:
Recurrent Neural Networks

Richard Zemel

Richard Zemel

ICOMS 4995 Lecture 8: Recurrent Neural Ne

1/34

Overview

@ We've seen how to build neural nets to make predictions from a
fixed-size input to a fixed-size ouput
@ Sometimes we're interested in predicting sequences
o Speech-to-text and text-to-speech
o Caption generation
e Machine translation
o If the input is also a sequence, this setting is known as
sequence-to-sequence prediction.
@ We already saw one way of doing this: neural language models

o But autoregressive models are memoryless, so they can't learn
long-distance dependencies.

o Recurrent neural networks (RNNs) are a kind of architecture which can
remember things over time.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 2/34

Overview

Recall that we made a Markov assumption:
p(wi|wi,...,wi—1) = p(w;| w3, w2, w_1).

This means the model is memoryless, i.e. it has no memory of anything
before the last few words. But sometimes long-distance context can be
important.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 3/34

Overview

@ Autoregressive models such as the neural language model are
memoryless, so they can only use information from their immediate
context (in this figure, context length = 1):

‘ hiddens 1 ‘ ‘ hiddens 2 ‘ ‘ hiddens 3 ‘ ‘ hiddens 4 ‘
\ 1 \ \ 1 \
‘ word 1 ‘ ‘ word 2 ‘ ‘ word 3 ‘ ‘ word 4 ‘ e

o If we add connections between the hidden units, it becomes a
recurrent neural network (RNN). Having a memory lets an RNN use
longer-term dependencies:

‘ hiddens 1 } ‘ hiddens 2 } ‘ hiddens 3 ’—b{ hiddens 4 ‘
N LN \

‘ word 1 ‘ word 2 ‘ word 3 ‘ ‘ word 4 ‘

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 4/34

Recurrent neural nets

@ We can think of an RNN as a dynamical system with one set of
hidden units which feed into themselves. The network’s graph would
then have self-loops.

@ We can unroll the RNN's graph by explicitly representing the units at
all time steps. The weights and biases are shared between all time
steps

o Except there is typically a separate set of biases for the first time step.

output units time 1 time 2 time 3
output units output units output units
4 /'y \ |
hidden units time 1 time 2 time 3
hidden units hidden units hidden units
A X X X
input units time 1 time 2 time 3
input units input units input units

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 5/34

|
RNN examples

Now let's look at some simple examples of RNNs.

This one sums its inputs:

linear
output

linear
hidden
unit

T=1 T=; T=3 T=

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 6/34

|
RNN examples

This one determines if the total values of the first or second input are larger:

logistic
output
unit

linear
hidden

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 7/34

-
Language Modeling

Back to our motivating example, here is one way to use RNNs as a language
model:

target = target = target =
llquickll Ilbrownll llfoxll
time 1 [timez [times
hidden units "1 hidden units 7| hidden units
input = input = input =
"quick" "brown"

As with our language model, each word is represented as an indicator vector, the
model predicts a distribution, and we can train it with cross-entropy loss.

This model can learn long-distance dependencies.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 8/34

Language Modeling

When we generate from the model (i.e. compute samples from its

distribution over sentences), the outputs feed back in to the network as
inputs.

time 1 o time 2 nd time 3 ol time 4
hidden units 7| hidden units "| hidden units 7| hidden units
"quick" "brown" llfox"

At training time, the inputs are the tokens from the training set (rather
than the network’s outputs). This is called teacher forcing.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne

9/34

Some remaining challenges:

@ Vocabularies can be very large once you include people, places, etc.
It's computationally difficult to predict distributions over millions of
words.

@ How do we deal with words we haven't seen before?

@ In some languages (e.g. German), it's hard to define what should be
considered a word.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne

10/34

-
Language Modeling

Another approach is to model text one character at a time!

target = target = target =
prive ng "o

time 1 time 2 time 3
hidden units hidden units hidden units

input = input = input =
" ngn

This solves the problem of what to do about previously unseen words.
Note that long-term memory is essential at the character level!

Note: modeling language well at the character level requires multiplicative interactions,
which we're not going to talk about.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 11/34

-
Language Modeling

From Geoff Hinton's Coursera course, an example of a paragraph
generated by an RNN language model one character at a time:

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters' sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

J. Martens and |. Sutskever, 2011. Learning recurrent neural networks with Hessian-free optimization.

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 12 /34

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

Neural Machine Translation

We'd like to translate, e.g., English to French sentences, and we have pairs
of translated sentences to train on.

What's wrong with the following setup?

Richard Zemel

-

French French French
word 1 word 2 word 3
hidden hidden hidden
units 1 units 2 units 3
English English English
word 1 word 2 word 3

ICOMS 4995 Lecture 8: Recurrent Neural Ne

13/34

Neural Machine Translation

We'd like to translate, e.g., English to French sentences, and we have pairs
of translated sentences to train on.

What's wrong with the following setup?

French French French
word 1 word 2 word 3
hidden hidden hidden
units 1 units 2 units 3
English English English
word 1 word 2 word 3

@ The sentences might not be the same length, and the words might
not align perfectly.

@ You might need to resolve ambiguities using information from later in
the sentence.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 13 /34

Neural Machine Translation

Sequence-to-sequence architecture: the network first reads and memorizes

the sentence. When it sees the end token, it starts outputting the
translation.

“le” “renTard” “brfm“ “rapTide” <E(T)S>
THTHTHTI—'!TH —]
“the” “quick” “brown” “fox” <EOS> “le” “renard” “brun” “rapide”

encoder decoder

The encoder and decoder are two different networks with different weights.

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, K. Cho, B. van Merrienboer,
C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. EMNLP 2014.

Sequence to Sequence Learning with Neural Networks, llya Sutskever, Oriol Vinyals and Quoc Le, NIPS 2014.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 14 /34

|
What can RNNs compute?

In 2014, Google researchers built an encoder-decoder RNN that learns to
execute simple Python programs, one character at a time!

Input:
j=8584
for x in range(8):
J+=920
b=(1500+7)
print ((b+7567))
Target: 25011. Input:
vagppkn
sgdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc
Target: hkhpg
Input:
i=8827
o= (i-5347) A training input with characters scrambled
print ((c+8704) if 2641<8500 else
5308)

Target: 1218.

Example training inputs

W. Zaremba and |. Sutskever, “Learning to Execute.” http://arxiv.org/abs/1410.4615

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 15 /34

http://arxiv.org/abs/1410.4615

|
What can RNNs compute?

Some example results:

Input:

print (6652).
Target: 6652.
”Baseline” prediction: 6652.
Naive” prediction: 6652.
”Mix” prediction: 6652.

”Combined” prediction: 6652.

Input:

d=5446

for x in range(8):d+=(2678 if 4803<2829 else 9848)
print ((d if 5935<4845 else 3043)).

Target: 3043.
“’Baseline” prediction: 3043.
”’Naive” prediction: 3043.
”Mix” prediction: 3043.

”Combined” prediction: 3043.

print ((5997-738)) .

Target: 5259.
”’Baseline” prediction: 5101.
”Naive” prediction: 5101.
”Mix” prediction: 5249.

”Combined” prediction: 5229.

Input:

print (((1090-3305)+9466)) .
Target: 7251.
”Baseline” prediction: 7111.
”Naive” prediction: 7099.
”Mix” prediction: 7595.

”Combined” prediction: 7699.

Take a look through the results (http://arxiv.org/pdf/1410.4615v2.pdf#page=10). It's fun

to try to guess from the mistakes what algorithms it’s discovered.

Richard Zemel

ICOMS 4995 Lecture 8: Recurrent Neural Ne

16 /34

http://arxiv.org/pdf/1410.4615v2.pdf#page=10

Backprop Through Time

@ As you can guess, we learn the RNN weights using backprop.

@ In particular, we do backprop on the unrolled network. This is known
as backprop through time.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 17 /34

-
Backprop Through Time

Here's the unrolled computation graph. Notice the weight sharing.

L

AN

y(7R y®3)

Jl) L> J@

(1)—->h 1)—> (2)_-»h 2)—>Z(3)—> 3)

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 18 /34

-
Backprop Through Time

Activations:
L=1
£ — = 0L
y(l U) y(B) FO W(;S’(r(t))
1 J J O = r(0) y 4+ 20
r 2 T 2) r 3) _

1>——>h 22—, 2>->Z<3>_.h :
Z (1) 5t
\)(/ zrw o

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 19 /34

-
Backprop Through Time

@ Now you know how to compute the derivatives using backprop
through time.

@ The hard part is using the derivatives in optimization. They can
explode or vanish. Addressing this issue will take all of the next

lecture.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 20/34

-
Why Gradients Explode or Vanish

Consider a univariate version of the encoder network:

With linear activations:

Backprop updates:
on" jon™ = w1

m — Z(t+1)
- Exploding:
20 = 50 ¢/(29) -
. . . w=11,T=50 = 8h7:117.4
Applying this recursively: oht)
— —_ Vanishing:
AW = wT 1/ (2. .. ¢/ (7)) h(D) &
(M
the Jacobian 8h(T) /oM w=09T=50 = DH = 0.00515

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 21/34

-
Why Gradients Explode or Vanish

@ More generally, in the multivariate case, the Jacobians multiply:

Oh(™M) oh(T) Oh(@)
oh(— an(T-1) " gh(M

@ Matrices can explode or vanish just like scalar values, though it's
slightly harder to make precise.
@ Contrast this with the forward pass:

e The forward pass has nonlinear activation functions which squash the
activations, preventing them from blowing up.

e The backward pass is linear, so it's hard to keep things stable. There's
a thin line between exploding and vanishing.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 22/34

-
Why Gradients Explode or Vanish

@ We just looked at exploding/vanishing gradients in terms of the
mechanics of backprop. Now let's think about it conceptually.

@ The Jacobian Oh(T) /oh(") means, how much does h(T) change when
you change h(1)?

@ Let’s imagine an RNN's behavior as a dynamical system, which has
various attractors:

— Geoffrey Hinton, Coursera

@ Within one of the colored regions, the gradients vanish because even
if you move a little, you still wind up at the same attractor.
@ If you're on the boundary, the gradient blows up because moving

slightly moves you from one attractor to the other.
Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 23 /34

Iterated Functions

@ Each hidden layer computes some function of the previous hiddens
and the current input. This function gets iterated:

h®) = £(£(F(h™M), x(2)), x(3)) x®),

e Consider a toy iterated function: f(x) =3.5x(1 — x)

y=f(z) y=f(f(z))

: v/
@Iarge
u= f(f(f(x)) u=fo- o f(z)

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 24 /34

-
Keeping Things Stable

@ One simple solution: gradient clipping
@ Clip the gradient g so that it has a norm of at most #:
if [lgll > »:
ng
gl
@ The gradients are biased, but at least they don't blow up.

g

Without clipping ‘With clipping

J(w,b)

— Goodfellow et al., Deep Learning

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 25/34

Long-Term Short Term Memory

o Really, we're better off redesigning the architecture, since the
exploding/vanishing problem highlights a conceptual problem with
vanilla RNNs.

@ Long-Term Short Term Memory (LSTM) is a popular architecture
that makes it easy to remember information over long time periods.
o What's with the name? The idea is that a network’s activations are its
short-term memory and its weights are its long-term memory.
e The LSTM architecture wants the short-term memory to last for a long

time period.
@ It's composed of memory cells which have controllers saying when to
store or forget information.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 26 /34

-
Long-Term Short Term Memory

@ Replace each single unit in an RNN by a memory block -

Block,output
Inputs, \

Output Gate

Ct+1 = ¢t - forget gate + new input - input gate

/ @ /=0,f =1= remember the previous
Inputs,
«outputs value

from all . .

blocks @ /=1,f =1 = add to the previous value

@ /i =0,f =0 = erase the value
Inputs,\ ’

outputs
from all

blocks /

@ j=1,f =0 = overwrite the value

Input Gate

Setting i = 0,f = 1 gives the reasonable
“default” behavior of just remembering things.

Block

inputs, outputs from all blocks

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 27 /34

Long-Term Short Term Memory

@ In each step, we have a vector of memory cells ¢, a vector of hidden
units h, and vectors of input, output, and forget gates i, o, and f.

@ There's a full set of connections from all the inputs and hiddens to
the input and all of the gates:

i o

ff — o W(yt)
o; o h_;
gt tanh

¢, =fioci1+itog;
h; = o; o tanh(c;)

@ Exercise: show that if f;11 =1, i;11 =0, and o; = 0, the gradients
for the memory cell get passed through unmodified, i.e.

Ct =Cty1-

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 28 /34

-
Long-Term Short Term Memory

@ Sound complicated? ML researchers thought so, so LSTMs were
hardly used for about a decade after they were proposed.

@ In 2013 and 2014, researchers used them to get impressive results on
challenging and important problems like speech recognition and
machine translation.

@ Since then, they've been one of the most widely used RNN
architectures.

@ There have been many attempts to simplify the architecture, but
nothing was conclusively shown to be simpler and better.

@ You never have to think about the complexity, since frameworks like
TensorFlow provide nice black box implementations.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 29/34

-
Long-Term Short Term Memory

Visualizations:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 30/34

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Detour: Deep Residual Networks

@ It turns out the intuition of using linear units to by-pass vanishing
gradient problem was a crucial idea behind the best ImageNet models

from 2015, deep residual nets.

Year
2010
2011
2012
2013
2014
2015

@ The idea is using linear skip connections to easily pass information

Model

Hand-designed descriptors + SVM
Compressed Fisher Vectors + SVM
AlexNet

a variant of AlexNet

GoogleNet

deep residual nets

directly through a network.

Richard Zemel

ICOMS 4995 Lecture 8: Recurrent Neural Ne

Top-5 error

28.2%
25.8%
16.4%
11.7%
6.6%
4.5%

Detour: Deep Residual Networks

o Recall: the Jacobian 9h(T)/0h(!) is the product of the individual

Jacobians:
oh(™) h(T) oh(

oh@M — oh(T-1 """ 9h®
e But this applies to multilayer perceptrons and conv nets as well! (Let
t index the layers rather than time.)

@ Then how come we didn't have to worry about exploding/vanishing
gradients until we talked about RNNs?
e MLPs and conv nets were at most 10s of layers deep.
e RNNs would be run over hundreds of time steps.
o This means if we want to train a really deep conv net, we need to
worry about exploding/vanishing gradients!

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 32/34

|
Detour: Deep Residual Networks

@ The core modular definition in deep residual nets is this architecture:

z=WWx 4+ b®)
h=¢(2)
y=x+W®h

@ This is called a residual block, and it's actually

pretty useful. y =x+F(x) GE

@ Each layer adds something (i.e. a residual) to
the previous value, rather than producing an F(x) h

entirely new value. 7y

@ Note: the network for F can have multiple
layers, be convolutional, etc. X

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 33/34

|
Detour: Deep Residual Networks

@ We can string together a bunch of residual
blocks.

@ What happens if we set the parameters such

that F(x()) = 0 in every layer? Iij
3
o Then it passes x(!) straight through unmodified! F(a'?) .
®3)
x

e This means it's easy for the network to
represent the identity function. E?
— —— ——OF 2@
x(0) = x(¢+1) 4 x(£+1) 2

+ ox D

— oOF 1

— x(+1) (] -7 F(z™ j
x (+ ¥) won [
2z

@ As long as the Jacobian 0F /0x is small, the
derivatives are stable.

Richard Zemel ICOMS 4995 Lecture 8: Recurrent Neural Ne 34 /34

