
COMS 4995 Lecture 8:
Recurrent Neural Networks

Richard Zemel

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 1 / 34

Overview

We’ve seen how to build neural nets to make predictions from a
fixed-size input to a fixed-size ouput

Sometimes we’re interested in predicting sequences

Speech-to-text and text-to-speech
Caption generation
Machine translation

If the input is also a sequence, this setting is known as
sequence-to-sequence prediction.

We already saw one way of doing this: neural language models

But autoregressive models are memoryless, so they can’t learn
long-distance dependencies.
Recurrent neural networks (RNNs) are a kind of architecture which can
remember things over time.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 2 / 34

Overview

Recall that we made a Markov assumption:

p(wi |w1, . . . ,wi−1) = p(wi |wi−3,wi−2,wi−1).

This means the model is memoryless, i.e. it has no memory of anything
before the last few words. But sometimes long-distance context can be
important.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 3 / 34

Overview

Autoregressive models such as the neural language model are
memoryless, so they can only use information from their immediate
context (in this figure, context length = 1):

If we add connections between the hidden units, it becomes a
recurrent neural network (RNN). Having a memory lets an RNN use
longer-term dependencies:

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 4 / 34

Recurrent neural nets

We can think of an RNN as a dynamical system with one set of
hidden units which feed into themselves. The network’s graph would
then have self-loops.
We can unroll the RNN’s graph by explicitly representing the units at
all time steps. The weights and biases are shared between all time
steps

Except there is typically a separate set of biases for the first time step.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 5 / 34

RNN examples

Now let’s look at some simple examples of RNNs.

This one sums its inputs:

2

2

2

w=1

w=1

-0.5

1.5

1.5

w=1

w=1

1

2.5

2.5

w=1

w=1

1

3.5

3.5

w=1

w=1

T=1 T=2 T=3 T=4

w=1 w=1 w=1

input
unit

linear
hidden

unit

linear
output

unit

w=1

w=1

w=1

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 6 / 34

RNN examples

This one determines if the total values of the first or second input are larger:

input
unit
1

linear
hidden

unit

logistic
output

unit

w=5

w=1

w=1

input
unit
2

w= -1

2

4

1.00

-2

T=1

0

0.5

0.92

3.5

T=2

1

-0.7

0.03

2.2

T=3

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 7 / 34

Language Modeling

Back to our motivating example, here is one way to use RNNs as a language
model:

As with our language model, each word is represented as an indicator vector, the
model predicts a distribution, and we can train it with cross-entropy loss.

This model can learn long-distance dependencies.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 8 / 34

Language Modeling

When we generate from the model (i.e. compute samples from its
distribution over sentences), the outputs feed back in to the network as
inputs.

At training time, the inputs are the tokens from the training set (rather
than the network’s outputs). This is called teacher forcing.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 9 / 34

Some remaining challenges:

Vocabularies can be very large once you include people, places, etc.
It’s computationally difficult to predict distributions over millions of
words.

How do we deal with words we haven’t seen before?

In some languages (e.g. German), it’s hard to define what should be
considered a word.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 10 / 34

Language Modeling

Another approach is to model text one character at a time!

This solves the problem of what to do about previously unseen words.
Note that long-term memory is essential at the character level!

Note: modeling language well at the character level requires multiplicative interactions,

which we’re not going to talk about.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 11 / 34

Language Modeling

From Geoff Hinton’s Coursera course, an example of a paragraph
generated by an RNN language model one character at a time:

He was elected President during the Revolutionary
War and forgave Opus Paul at Rome. The regime
of his crew of England, is now Arab women's icons
in and the demons that use something between
the characters‘ sisters in lower coil trains were
always operated on the line of the ephemerable
street, respectively, the graphic or other facility for
deformation of a given proportion of large
segments at RTUS). The B every chord was a
"strongly cold internal palette pour even the white
blade.”

J. Martens and I. Sutskever, 2011. Learning recurrent neural networks with Hessian-free optimization.

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 12 / 34

http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Martens_532.pdf

Neural Machine Translation

We’d like to translate, e.g., English to French sentences, and we have pairs
of translated sentences to train on.

What’s wrong with the following setup?

The sentences might not be the same length, and the words might
not align perfectly.

You might need to resolve ambiguities using information from later in
the sentence.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 13 / 34

Neural Machine Translation

We’d like to translate, e.g., English to French sentences, and we have pairs
of translated sentences to train on.

What’s wrong with the following setup?

The sentences might not be the same length, and the words might
not align perfectly.

You might need to resolve ambiguities using information from later in
the sentence.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 13 / 34

Neural Machine Translation

Sequence-to-sequence architecture: the network first reads and memorizes
the sentence. When it sees the end token, it starts outputting the
translation.

The encoder and decoder are two different networks with different weights.

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, K. Cho, B. van Merrienboer,
C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio. EMNLP 2014.

Sequence to Sequence Learning with Neural Networks, Ilya Sutskever, Oriol Vinyals and Quoc Le, NIPS 2014.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 14 / 34

What can RNNs compute?

In 2014, Google researchers built an encoder-decoder RNN that learns to
execute simple Python programs, one character at a time!Learning to Execute

(Maddison & Tarlow, 2014) learned a language model on
parse trees, and (Mou et al., 2014) predicted whether two
programs are equivalent or not. Both of these approaches
require parse trees, while we learn from a program charac-
ter level sequence.

Predicting program output requires that the model deals
with long term dependencies that arise from variable as-
signment. Thus we chose to use Recurrent Neural Net-
works with Long Short Term Memory units (Hochreiter &
Schmidhuber, 1997), although there are many other RNN
variants that perform well on tasks with long term depen-
dencies (Cho et al., 2014; Jaeger et al., 2007; Koutnı́k et al.,
2014; Martens, 2010; Bengio et al., 2013).

Initially, we found it difficult to train LSTMs to accurately
evaluate programs. The compositional nature of computer
programs suggests that the LSTM would learn faster if we
first taught it the individual operators separately and then
taught the LSTM how to combine them. This approach can
be implemented with curriculum learning (Bengio et al.,
2009; Kumar et al., 2010; Lee & Grauman, 2011), which
prescribes gradually increasing the “difficulty level” of the
examples presented to the LSTM, and is partially motivated
by fact that humans and animals learn much faster when
their instruction provides them with hard but manageable
exercises. Unfortunately, we found the naive curriculum
learning strategy of Bengio et al. (2009) to be generally
ineffective and occasionally harmful. One of our key con-
tributions is the formulation of a new curriculum learning
strategy that substantially improves the speed and the qual-
ity of training in every experimental setting that we consid-
ered.

3. Subclass of programs
We train RNNs on class of simple programs that can be
evaluated in O (n) time and constant memory. This re-
striction is dictated by the computational structure of the
RNN itself, at it can only do a single pass over the pro-
gram using a very limited memory. Our programs use the
Python syntax and are based on a small number of oper-
ations and their composition (nesting). We consider the
following operations: addition, subtraction, multiplication,
variable assignment, if-statement, and for-loops, although
we forbid double loops. Every program ends with a single
“print” statement that outputs a number. Several example
programs are shown in Figure 1.

We select our programs from a family of distributions pa-
rameterized by length and nesting. The length parameter is
the number of digits in numbers that appear in the programs
(so the numbers are chosen uniformly from [1, 10length]).
For example, the programs are generated with length = 4
(and nesting = 3) in Figure 1.

Input:
j=8584
for x in range(8):

j+=920
b=(1500+j)
print((b+7567))

Target: 25011.

Input:
i=8827
c=(i-5347)
print((c+8704) if 2641<8500 else

5308)

Target: 1218.

Figure 1. Example programs on which we train the LSTM. The
output of each program is a single number. A “dot” symbol indi-
cates the end of a number and has to be predicted as well.

We are more restrictive with multiplication and the ranges
of for-loop, as these are much more difficult to handle.
We constrain one of the operands of multiplication and the
range of for-loops to be chosen uniformly from the much
smaller range [1, 4 · length]. This choice is dictated by the
limitations of our architecture. Our models are able to per-
form linear-time computation while generic integer mul-
tiplication requires superlinear time. Similar restrictions
apply to for-loops, since nested for-loops can implement
integer multiplication.

The nesting parameter is the number of times we are al-
lowed to combine the operations with each other. Higher
value of nesting results in programs with a deeper parse
tree. Nesting makes the task much harder for our LSTMs,
because they do not have a natural way of dealing with
compositionality, in contrast to Tree Neural Networks. It
is surprising that they are able to deal with nested expres-
sions at all.

It is important to emphasize that the LSTM reads the input
one character at a time and produces the output character
by character. The characters are initially meaningless from
the model’s perspective; for instance, the model does not
know that “+” means addition or that 6 is followed by 7.
Indeed, scrambling the input characters (e.g., replacing “a”
with “q”, “b” with “w”, etc.,) would have no effect on the
model’s ability to solve this problem. We demonstrate the
difficulty of the task by presenting an input-output example
with scrambled characters in Figure 2.

Example training inputs

Learning to Execute

Input:
vqppkn
sqdvfljmnc
y2vxdddsepnimcbvubkomhrpliibtwztbljipcc

Target: hkhpg

Figure 2. An example program with scrambled characters. It
helps illustrate the difficulty faced by our neural network.

3.1. Memorization Task

In addition to program evaluation, we also investigate the
task of memorizing a random sequence of numbers. Given
an example input 123456789, the LSTM reads it one char-
acter at a time, stores it in memory, and then outputs
123456789 one character at a time. We present and ex-
plore two simple performance enhancing techniques: input
reversing (from Sutskever et al. (2014)) and input doubling.

The idea of input reversing is to reverse the order of the
input (987654321) while keeping the desired output un-
changed (123456789). It seems to be a neutral operation as
the average distance between each input and its correspond-
ing target did not become shorter. However, input reversing
introduces many short term dependencies that make it eas-
ier for the LSTM to start making correct predictions. This
strategy was first introduced for LSTMs for machine trans-
lation by Sutskever et al. (2014).

The second performance enhancing technique is input dou-
bling, where we present the input sequence twice (so the
example input becomes 123456789; 123456789), while the
output is unchanged (123456789). This method is mean-
ingless from a probabilistic perspective as RNNs approx-
imate the conditional distribution p(y|x), yet here we at-
tempt to learn p(y|x, x). Still, it gives noticeable per-
formance improvements. By processing the input several
times before producing an output, the LSTM is given the
opportunity to correct the mistakes it made in the earlier
passes.

4. Curriculum Learning
Our program generation scheme is parametrized by length
and nesting. These two parameters allow us control the
complexity of the program. When length and nesting are
large enough, the learning problem nearly intractable. This
indicates that in order to learn to evaluate programs of a
given length = a and nesting = b, it may help to first learn
to evaluate programs with length ⌧ a and nesting ⌧ b.
We compare the following curriculum learning strategies:

No curriculum learning (baseline) The baseline approach
does not use curriculum learning. This means that we

generate all the training samples with length = a and
nesting = b. This strategy is most “sound” from statis-
tical perspective, as it is generally recommended to make
the training distribution identical to test distribution.

Naive curriculum strategy (naive)

We begin with length = 1 and nesting = 1. Once learning
stops making progress, we increase length by 1. We repeat
this process until its length reaches a, in which case we
increase nesting by one and reset length to 1.

We can also choose to first increase nesting and then length.
However, it does not make a noticeable difference in per-
formance. We skip this option in the rest of paper, and
increase length first in all our experiments. This strategy is
has been examined in previous work on curriculum learn-
ing (Bengio et al., 2009). However, we show that often it
gives even worse performance than baseline.

Mixed strategy (mix)

To generate a random sample, we first pick a random length
from [1, a] and a random nesting from [1, b] independently
for every sample. The Mixed strategy uses a balanced mix-
ture of easy and difficult examples, so at any time during
training, a sizable fraction of the training samples will have
the appropriate difficulty for the LSTM.

Combining the mixed strategy with naive curriculum
strategy (combined)

This strategy combines the mix strategy with the naive
strategy. In this approach, every training case is obtained
either by the naive strategy or by the mix strategy. As a
result, the combined strategy always exposes the network
at least to some difficult examples, which is the key way in
which it differs from the naive curriculum strategy. We no-
ticed that it reliably outperformed the other strategies in our
experiments. We explain why our new curriculum learning
strategies outperform the naive curriculum strategy in Sec-
tion 7.

We evaluate these four strategies on the program evaluation
task (Section 6.1) and on the memorization task (Section
6.2).

5. RNN with LSTM cells
In this section we briefly describe the deep LSTM (Sec-
tion 5.1). All vectors are n-dimensional unless explicitly
stated otherwise. Let hl

t 2 Rn be a hidden state in layer
l in timestep t. Let Tn,m : Rn ! Rm be a biased lin-
ear mapping (x ! Wx + b for some W and b). We
let � be element-wise multiplication and let h0

t be the in-
put at timestep k. We use the activations at the top layer
L (namely hL

t) to predict yt where L is the depth of our
LSTM.

A training input with characters scrambled

W. Zaremba and I. Sutskever, “Learning to Execute.” http://arxiv.org/abs/1410.4615

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 15 / 34

http://arxiv.org/abs/1410.4615

What can RNNs compute?

Some example results:

Under review as a conference paper at ICLR 2015

SUPPLEMENTARY MATERIAL

Input: length, nesting
stack = EmptyStack()
Operations = Addition, Subtraction, Multiplication, If-Statement,
For-Loop, Variable Assignment
for i = 1 to nesting do
Operation = a random operation from Operations
Values = List
Code = List
for params in Operation.params do
if not empty stack and Uniform(1) > 0.5 then
value, code = stack.pop()

else
value = random.int(10length)
code = toString(value)

end if
values.append(value)
code.append(code)

end for
new value= Operation.evaluate(values)
new code = Operation.generate code(codes)
stack.push((new value, new code))

end for
final value, final code = stack.pop()
datasets = training, validation, testing
idx = hash(final code) modulo 3
datasets[idx].add((final value, final code))

Algorithm 1: Pseudocode of the algorithm used to generate the distribution over the python pro-
gram. Programs produced by this algorithm are guaranteed to never have dead code. The type of the
sample (train, test, or validation) is determined by its hash modulo 3.

11 ADDITIONAL RESULTS ON THE MEMORIZATION PROBLEM

We present the algorithm for generating the training cases, and present an extensive qualitative evaluation of
the samples and the kinds of predictions made by the trained LSTMs.

We emphasize that these predictions rely on teacher forcing. That is, even if the LSTM made an incorrect
prediction in the i-th output digit, the LSTM will be provided as input the correct i-th output digit for predicting
the i + 1-th digit. While teacher forcing has no effect whenever the LSTM makes no errors at all, a sample that
makes an early error and gets the remainder of the digits correctly needs to be interpreted with care.

12 QUALITATIVE EVALUATION OF THE CURRICULUM STRATEGIES

12.1 EXAMPLES OF PROGRAM EVALUATION PREDICTION. LENGTH = 4, NESTING = 1

Input:
print(6652).

Target: 6652.
”Baseline” prediction: 6652.
”Naive” prediction: 6652.
”Mix” prediction: 6652.
”Combined” prediction: 6652.

Input:

10

Under review as a conference paper at ICLR 2015

Input:
b=9930
for x in range(11):b-=4369
g=b;
print(((g-8043)+9955)).

Target: -36217.
”Baseline” prediction: -37515.
”Naive” prediction: -38609.
”Mix” prediction: -35893.
”Combined” prediction: -35055.

Input:
d=5446
for x in range(8):d+=(2678 if 4803<2829 else 9848)
print((d if 5935<4845 else 3043)).

Target: 3043.
”Baseline” prediction: 3043.
”Naive” prediction: 3043.
”Mix” prediction: 3043.
”Combined” prediction: 3043.

Input:
print((((2578 if 7750<1768 else 8639)-2590)+342)).

Target: 6391.
”Baseline” prediction: -555.
”Naive” prediction: 6329.
”Mix” prediction: 6461.
”Combined” prediction: 6105.

Input:
print((((841 if 2076<7326 else 1869)*10) if 7827<317 else 7192)).

Target: 7192.
”Baseline” prediction: 7192.
”Naive” prediction: 7192.
”Mix” prediction: 7192.
”Combined” prediction: 7192.

Input:
d=8640;
print((7135 if 6710>((d+7080)*14) else 7200)).

Target: 7200.
”Baseline” prediction: 7200.
”Naive” prediction: 7200.
”Mix” prediction: 7200.
”Combined” prediction: 7200.

Input:
b=6968
for x in range(10):b-=(299 if 3389<9977 else 203)
print((12*b)).

15

Under review as a conference paper at ICLR 2015

Figure 8: Prediction accuracy on the memorization task for the four curriculum strategies. The input
length ranges from 5 to 65 digits. Every strategy is evaluated with the following 4 input modification
schemes: no modification; input inversion; input doubling; and input doubling and inversion. The
training time is limited to 20 epochs.

print((5997-738)).

Target: 5259.
”Baseline” prediction: 5101.
”Naive” prediction: 5101.
”Mix” prediction: 5249.
”Combined” prediction: 5229.

Input:
print((16*3071)).

Target: 49136.
”Baseline” prediction: 49336.
”Naive” prediction: 48676.
”Mix” prediction: 57026.
”Combined” prediction: 49626.

Input:
c=2060;
print((c-4387)).

Target: -2327.
”Baseline” prediction: -2320.
”Naive” prediction: -2201.
”Mix” prediction: -2377.
”Combined” prediction: -2317.

Input:
print((2*5172)).

11

Under review as a conference paper at ICLR 2015

Target: 47736.
”Baseline” prediction: -0666.
”Naive” prediction: 11262.
”Mix” prediction: 48666.
”Combined” prediction: 48766.

Input:
j=(1*5057);
print(((j+1215)+6931)).

Target: 13203.
”Baseline” prediction: 13015.
”Naive” prediction: 12007.
”Mix” prediction: 13379.
”Combined” prediction: 13205.

Input:
print(((1090-3305)+9466)).

Target: 7251.
”Baseline” prediction: 7111.
”Naive” prediction: 7099.
”Mix” prediction: 7595.
”Combined” prediction: 7699.

Input:
a=8331;
print((a-(15*7082))).

Target: -97899.
”Baseline” prediction: -96991.
”Naive” prediction: -19959.
”Mix” prediction: -95551.
”Combined” prediction: -96397.

12.4 EXAMPLES OF PROGRAM EVALUATION PREDICTION. LENGTH = 6, NESTING = 1

Input:
print((71647-548966)).

Target: -477319.
”Baseline” prediction: -472122.
”Naive” prediction: -477591.
”Mix” prediction: -479705.
”Combined” prediction: -475009.

Input:
print(1508).

Target: 1508.
”Baseline” prediction: 1508.
”Naive” prediction: 1508.
”Mix” prediction: 1508.
”Combined” prediction: 1508.

Input:

16

Take a look through the results (http://arxiv.org/pdf/1410.4615v2.pdf#page=10). It’s fun

to try to guess from the mistakes what algorithms it’s discovered.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 16 / 34

http://arxiv.org/pdf/1410.4615v2.pdf#page=10

Backprop Through Time

As you can guess, we learn the RNN weights using backprop.

In particular, we do backprop on the unrolled network. This is known
as backprop through time.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 17 / 34

Backprop Through Time

Here’s the unrolled computation graph. Notice the weight sharing.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 18 / 34

Backprop Through Time

Activations:

L = 1

y (t) = L ∂L
∂y (t)

r (t) = y (t) φ′(r (t))

h(t) = r (t) v + z (t+1) w

z (t) = h(t) φ′(z (t))

Parameters:

u=
∑
t

z (t) x (t)

v =
∑
t

r (t) h(t)

w =
∑
t

z (t+1) h(t)

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 19 / 34

Backprop Through Time

Now you know how to compute the derivatives using backprop
through time.

The hard part is using the derivatives in optimization. They can
explode or vanish. Addressing this issue will take all of the next
lecture.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 20 / 34

Why Gradients Explode or Vanish

Consider a univariate version of the encoder network:

Backprop updates:

h(t) = z (t+1) w

z (t) = h(t) φ′(z (t))

Applying this recursively:

h(1) = wT−1φ′(z (2)) · · ·φ′(z (T))︸ ︷︷ ︸
the Jacobian ∂h(T)/∂h(1)

h(T)

With linear activations:

∂h(T)/∂h(1) = wT−1

Exploding:

w = 1.1,T = 50 ⇒ ∂h(T)

∂h(1)
= 117.4

Vanishing:

w = 0.9,T = 50 ⇒ ∂h(T)

∂h(1)
= 0.00515

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 21 / 34

Why Gradients Explode or Vanish

More generally, in the multivariate case, the Jacobians multiply:

∂h(T)

∂h(1)
=

∂h(T)

∂h(T−1)
· · · ∂h

(2)

∂h(1)

Matrices can explode or vanish just like scalar values, though it’s
slightly harder to make precise.

Contrast this with the forward pass:

The forward pass has nonlinear activation functions which squash the
activations, preventing them from blowing up.
The backward pass is linear, so it’s hard to keep things stable. There’s
a thin line between exploding and vanishing.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 22 / 34

Why Gradients Explode or Vanish

We just looked at exploding/vanishing gradients in terms of the
mechanics of backprop. Now let’s think about it conceptually.
The Jacobian ∂h(T)/∂h(1) means, how much does h(T) change when
you change h(1)?
Let’s imagine an RNN’s behavior as a dynamical system, which has
various attractors:

– Geoffrey Hinton, Coursera

Within one of the colored regions, the gradients vanish because even
if you move a little, you still wind up at the same attractor.
If you’re on the boundary, the gradient blows up because moving
slightly moves you from one attractor to the other.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 23 / 34

Iterated Functions

Each hidden layer computes some function of the previous hiddens
and the current input. This function gets iterated:

h(4) = f (f (f (h(1), x(2)), x(3)), x(4)).

Consider a toy iterated function: f (x) = 3.5 x (1− x)

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 24 / 34

Keeping Things Stable

One simple solution: gradient clipping
Clip the gradient g so that it has a norm of at most η:

if ‖g‖ > η:

g← ηg

‖g‖
The gradients are biased, but at least they don’t blow up.

— Goodfellow et al., Deep Learning

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 25 / 34

Long-Term Short Term Memory

Really, we’re better off redesigning the architecture, since the
exploding/vanishing problem highlights a conceptual problem with
vanilla RNNs.

Long-Term Short Term Memory (LSTM) is a popular architecture
that makes it easy to remember information over long time periods.

What’s with the name? The idea is that a network’s activations are its
short-term memory and its weights are its long-term memory.
The LSTM architecture wants the short-term memory to last for a long
time period.

It’s composed of memory cells which have controllers saying when to
store or forget information.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 26 / 34

Long-Term Short Term Memory

Replace each single unit in an RNN by a memory block -

ct+1 = ct · forget gate + new input · input gate

i = 0, f = 1⇒ remember the previous
value

i = 1, f = 1⇒ add to the previous value

i = 0, f = 0⇒ erase the value

i = 1, f = 0⇒ overwrite the value

Setting i = 0, f = 1 gives the reasonable
“default” behavior of just remembering things.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 27 / 34

Long-Term Short Term Memory

In each step, we have a vector of memory cells c, a vector of hidden
units h, and vectors of input, output, and forget gates i, o, and f.

There’s a full set of connections from all the inputs and hiddens to
the input and all of the gates:

it
ft
ot
gt

 =


σ
σ
σ

tanh

W

(
yt

ht−1

)

ct = ft ◦ ct−1 + it ◦ gt
ht = ot ◦ tanh(ct)

Exercise: show that if ft+1 = 1, it+1 = 0, and ot = 0, the gradients
for the memory cell get passed through unmodified, i.e.

ct = ct+1.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 28 / 34

Long-Term Short Term Memory

Sound complicated? ML researchers thought so, so LSTMs were
hardly used for about a decade after they were proposed.

In 2013 and 2014, researchers used them to get impressive results on
challenging and important problems like speech recognition and
machine translation.

Since then, they’ve been one of the most widely used RNN
architectures.

There have been many attempts to simplify the architecture, but
nothing was conclusively shown to be simpler and better.

You never have to think about the complexity, since frameworks like
TensorFlow provide nice black box implementations.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 29 / 34

Long-Term Short Term Memory

Visualizations:

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 30 / 34

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Detour: Deep Residual Networks

It turns out the intuition of using linear units to by-pass vanishing
gradient problem was a crucial idea behind the best ImageNet models
from 2015, deep residual nets.

Year Model Top-5 error
2010 Hand-designed descriptors + SVM 28.2%
2011 Compressed Fisher Vectors + SVM 25.8%
2012 AlexNet 16.4%
2013 a variant of AlexNet 11.7%
2014 GoogLeNet 6.6%
2015 deep residual nets 4.5%

The idea is using linear skip connections to easily pass information
directly through a network.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 31 / 34

Detour: Deep Residual Networks

Recall: the Jacobian ∂h(T)/∂h(1) is the product of the individual
Jacobians:

∂h(T)

∂h(1)
=

∂h(T)

∂h(T−1)
· · · ∂h

(2)

∂h(1)

But this applies to multilayer perceptrons and conv nets as well! (Let
t index the layers rather than time.)

Then how come we didn’t have to worry about exploding/vanishing
gradients until we talked about RNNs?

MLPs and conv nets were at most 10s of layers deep.
RNNs would be run over hundreds of time steps.
This means if we want to train a really deep conv net, we need to
worry about exploding/vanishing gradients!

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 32 / 34

Detour: Deep Residual Networks

The core modular definition in deep residual nets is this architecture:

z = W(1)x + b(1)

h = φ(z)

y = x + W(2)h

This is called a residual block, and it’s actually
pretty useful.

Each layer adds something (i.e. a residual) to
the previous value, rather than producing an
entirely new value.

Note: the network for F can have multiple
layers, be convolutional, etc.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 33 / 34

Detour: Deep Residual Networks

We can string together a bunch of residual
blocks.

What happens if we set the parameters such
that F(x(`)) = 0 in every layer?

Then it passes x(1) straight through unmodified!
This means it’s easy for the network to
represent the identity function.

Backprop:

x(`) = x(`+1) + x(`+1)
∂F
∂x

= x(`+1)

(
I +

∂F
∂x

)
As long as the Jacobian ∂F/∂x is small, the
derivatives are stable.

Richard Zemel COMS 4995 Lecture 8: Recurrent Neural Networks 34 / 34

