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Overview

> Transfer Learning
> Label Imbalance
> Normalization




Transfer learning: idea

Instead of training a deep network from scratch for your task:

e Take a network trained on a different domain for a different source task
e Adapt it for your domain and your target task
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https://towardsdatascience com/a-comnrehensive-hands-on-cuide-to-transfer-learnine-with-real-world-anolications-i




Freeze or fine-tune?
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Bottom n layers can be frozen or fine tuned.

e Frozen: not updated during backprop fc2 + softmax

e Fine-tuned: updated during backprop

fc1

Which to do depends on target task:

:

e Freeze: target task labels are scarce, and we
want to avoid overfitting
o Fine-tune: target task labels are more plentiful

:

Zk frozen Fine tunelf

In general, we can set learning rates to be different
for each layer to find a tradeoff between freezing
and fine tuning data

L

https://towardsdatascience com/a-comnrehensive-hands-on-cuide-to-transfer-learnine-with-real-world-anolications-i



Transfer Learning: Rule of thumb

|Target Dataset| is small |[Target Dataset| is large

Similar to Source

dataset Freeze Fine-tune all
Dissimilar to Source Try SVM from low-level .

Train from scratch
dataset features first

http://cs231n.github.i



Transfer Learning

- Additional advice:
> Smaller learning rate when fine-tuning

http://cs231n.github.i



Task Transfer Learning

> Same domain, different tasks

© CompUter Vision TaSkOﬂOmy:htto://taskonomv.stanford.edu

> What is the relation between 3d keypoint detection
and depth estimation?

Taskonomy: Disentangling Task Transfer Learni



http://taskonomy.stanford.edu
https://arxiv.org/abs/1804.08328

Task Transfer Learning

> Same domain, different tasks

© CompUter Vision TaSkOﬂOmy:htto://taskonomv.stanford.edu

> What is the relation between 3d keypoint detection
and depth estimation?

> |sit able to structurally represented?

Taskonomy: Disentangling Task Transfer Learni



http://taskonomy.stanford.edu
https://arxiv.org/abs/1804.08328

Task Transfer Learning

Task Similarity Tree Based on Transfering-Out
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Taskonomy: Disentangling Task Transfer Learni



https://arxiv.org/abs/1804.08328

Task Transfer Learning: Result

> How significant is the discovered structure of task
space?
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https://arxiv.org/abs/1804.08328

Transfer Learning from ImageNet?

> Always better?
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https://arxiv.org/abs/1811.08883

Transfer Learning from ImageNet?

> Always better?
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https://arxiv.org/abs/1811.08883

Transfer Learning from ImageNet?

> With only 1k training image:
> w/ pretrain: 9.9 AP
> Random init: 3.5 AP

Rethinking ImageNet Pre-training,



https://arxiv.org/abs/1811.08883

Transfer Learning: Rule of thumb

|Target Dataset| is small |[Target Dataset| is large

Similar to Source

dataset Freeze Fine-tune all
Dissimilar to Source Try SVM from low-level .

Train from scratch
dataset features first

http://cs231n.github.i
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Label Imbalance
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> Semantic Segmentation
> Contour Detection 00
> Longtail recognition 0
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Label Imbalance

> Reweight the loss by class ratio
> Data Resampling by class ratio

traffic light




Structure of ConvNet

Conv -> Normalization -> RelLU -> Pooling
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Normalization layers
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Learnable parameters, to make sure the
normalization layer can represent identity
transformation
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Batch normalization
Layer normalization
Instance normalization
Group normalization
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BatchNorm

> Internal Covariate Shift
> Compute batch statistic during training
> Dependent on mini-batch




BatchNorm

> Usually, during training, BN keeps a
running estimate of the mean and variance,
which are used at testing time.




BatchNorm Example

Pvtorch documentation

CLASS toxch.nn.BatchNoxm2d (num_features, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

e num_features: C from an expected input of size (N, C, H, W)

Example: convolution block in Inception Net V3

class BasicConv2d(nn.Module):

def init (
self,
in_channels: int,
out channels: int,
**kwargs: Any
) -> None:
super(BasicConv2d, self). init ()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

def forward(self, x: Tensor) -> Tensor:
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)

[SOURCE]



https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py

BatchNorm -- limitations

> Performance depends on the batch size
> Difficult to apply to recurrent connections

sequence dimension
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LayerNorm

> Normalize across the entire layer for each training
example.

Batch Norm

Layer Norm
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LayerNorm

Attentivg reader
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Figure 2: Validation curves for the attentive reader model. BN results are taken from [Cooijmans

etal.|2016].



LayerNorm Example

Pvtorch documentation

CLASS torxch.nn.LayerNoxm(normalized_shape: Union[int, List[int],
SOURCE
torch.Size], eps: float = l1e-05, elementwise_affine: bool = True) : ]

input = torch.randn(20, 5, 10, 10)

# With Learnable Parameters

m = nn.LayerNorm(input.size()[1:])

# Without Learnable Parameters

m = nn.LayerNorm(input.size()[1:], elementwise affine=False)
# Normalize over last two dimensions

m = nn.LayerNorm([10, 10])

# Normalize over last dimension of size 10
m = nn.LayerNorm(10)

# Activating the module

output = m(input)



https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

InstanceNorm

> Special Case: Feed-Forward Stylization

Content image
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InstanceNorm

> Special Case: Feed-Forward Stylization
> |nvariant to the contrast (style) of the content image



InstanceNorm

> Special Case: Feed-Forward Stylization
> |nvariant to the contrast (style) of the content image
> Channel-wise normalization



InstanceNorm

Special Case: Feed-Forward Stylization

O

Invariant to the contrast of the content image

Normalize over channel for each image
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InstanceNorm Example

Pvtorch documentation

CLASS torxch.nn.InstanceNorm2d(num_features: int, eps: float = 1e-05, momentum: float = 0.1, o
affine: bool = False, track_running_stats: bool = False) C -

® num_features: C from an expected input of size (N, C, H, W)

e By default, there are no learnable parameters, and does not track running
statistics (unlike BN or LN)

# Without Learnable Parameters

m = nn.InstanceNorm2d(160)

# With Learnable Parameters

m = nn.InstanceNorm2d(100, affine=True)
input = torch.randn(20, 100, 35, 45)
output = m(input)



https://pytorch.org/docs/stable/generated/torch.nn.InstanceNorm2d.html

Sometimes batch size is small due to

Large Feed-Forward network
computational constraints
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Group a set of features and normalize them

O

GroupNorm

> like normalizing HOG and SIF T separately



GroupNorm

3671

—+Batch Norm
~©-Group Norm

'
NS
T

error (%)
[ W o
oe o o

()
[=))

& -
N

[
=S

S o S

.

o
(5]

16 8 4
batch size (images per worker)

s
o




GroupNorm Example

Pvtorch documentation

CLASS toxch.nn.GroupNoxm(num_groups: int, num_channels: int,eps: float = le-05, affine: SOORCE
bool = True) . -

num_groups (int) — number of groups to separate the channels into
num_channels (int) — number of channels expected in input

input = torch.randn(20, 6, 10, 10)

# Separate 6 channels into 3 groups

m = nn.GroupNorm(3, 6)

# Separate 6 channels into 6 groups (equivalent with InstanceNorm)

m = nn.GroupNorm(6, 6)

# Put all 6 channels into a single group (equivalent with LayerNorm)
m = nn.GroupNorm(1, 6)

# Activating the module

output = m(input)



https://pytorch.org/docs/stable/generated/torch.nn.GroupNorm.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

SyncBatchNorm

> Split large batch into several and distribute them
many GPUs
> Collect the batch statistics from all devices


https://pytorch.org/docs/stable/generated/torch.nn.SyncBatchNorm.html

ﬁ Any Question?



