Tutorial:
some) BE@St Practices of
ConvNet Applicatio

{{
Math-hReawy tutorial

-> High-level guidance

HAS/AMATHITEST
AT SCHOOL

it

ACCIDENTALLY PACKS TV'S
REMOTE INSTEAD OF®
= CALCULATOR" = 2

Overview

> Transfer Learning
> Label Imbalance
> Normalization

Transfer learning: idea

Instead of training a deep network from scratch for your task:

e Take a network trained on a different domain for a different source task
e Adapt it for your domain and your target task

i . arge
Variations: /_L.w I m\

e Same domain, different task Rpe

1 model

of data/labels
e Different domain, same task M'M/l Sotnce */ fetoe /

’ Source data , |
E.g. ImageNet g,m

https://towardsdatascience com/a-comnrehensive-hands-on-cuide-to-transfer-learnine-with-real-world-anolications-i

Freeze or fine-tune?

o
pe
v

o

Bottom n layers can be frozen or fine tuned.

e Frozen: not updated during backprop fc2 + softmax

e Fine-tuned: updated during backprop

fc1

Which to do depends on target task:

:

e Freeze: target task labels are scarce, and we
want to avoid overfitting
o Fine-tune: target task labels are more plentiful

:

Zk frozen Fine tunelf

In general, we can set learning rates to be different
for each layer to find a tradeoff between freezing
and fine tuning data

L

https://towardsdatascience com/a-comnrehensive-hands-on-cuide-to-transfer-learnine-with-real-world-anolications-i

Transfer Learning: Rule of thumb

|Target Dataset| is small |[Target Dataset| is large

Similar to Source

dataset Freeze Fine-tune all
Dissimilar to Source Try SVM from low-level .

Train from scratch
dataset features first

http://cs231n.github.i

Transfer Learning

- Additional advice:
> Smaller learning rate when fine-tuning

http://cs231n.github.i

Task Transfer Learning

> Same domain, different tasks

© CompUter Vision TaSkOﬂOmy:htto://taskonomv.stanford.edu

> What is the relation between 3d keypoint detection
and depth estimation?

Taskonomy: Disentangling Task Transfer Learni

http://taskonomy.stanford.edu
https://arxiv.org/abs/1804.08328

Task Transfer Learning

> Same domain, different tasks

© CompUter Vision TaSkOﬂOmy:htto://taskonomv.stanford.edu

> What is the relation between 3d keypoint detection
and depth estimation?

> |sit able to structurally represented?

Taskonomy: Disentangling Task Transfer Learni

http://taskonomy.stanford.edu
https://arxiv.org/abs/1804.08328

Task Transfer Learning

Task Similarity Tree Based on Transfering-Out

buipeysay
sobp3 uoisn|220
9J$uelsiq
yidaqg-z
sjulodAay ¢
2Jn1eAIn)
'wb3s as'z
S|eW.ION 2Jeuns
buiuied-u|
uonezloj0)
'wbas az
syuiodAs) gz
Buipoousoiny
sabp3 Az

_ ._H (Xyuou) 350 "We)
mesbi[

— ‘[o4d wopuey

._H (X1}) 9S0d "wWe)
uoinowobhy

— buiyojep

T T

['S)d bulysiuep
1NoAeuwooy

'SSe|D) dUIS
W 'sse|) 193(q0
‘Wwbhas d1uewsas

Buisiouaq

Taskonomy: Disentangling Task Transfer Learni

https://arxiv.org/abs/1804.08328

Task Transfer Learning: Result

> How significant is the discovered structure of task
space?

Gain
1.0
0.9
08
0.7 /|
o6 | i1 ...¢ 1 L4011l V4
0s 111 .
0.4
03
0.2
0.1
00 21

6 11 16
Supervision Budget

Taskonomy: Disentangling Task Transfer Learni

https://arxiv.org/abs/1804.08328

Transfer Learning from ImageNet?

> Always better?

(¢}

O

ImageNet: 130M
COCQO: 8.6M

45 -

35+

30 F

251

20

15|

10F

Rethinking ImageNet Pre-training,

bbox AP: R50-FPN, GN

| typical
| fine-tuning
| schedule

|

—random init
—w/ pre-train

1

2 3 4 5
iterations (10°)

https://arxiv.org/abs/1811.08883

Transfer Learning from ImageNet?

> Always better?

leca <Nl L. 4A"NNMNNA

bbox AP: 35k training images

bbox AP: R50-FPN, GN
45 ’»

bbox AP: 10k training images

Pe— NS ROSs

26.0 259

andom init
i/ pre-train
—_—
5 —random init st —random init 5
—w/ pre-train —w/ pre-train
d A . A : " o A : : :
0 1 2 3 4 5 0 0.5 1 15 2
iterations (10°) iterations (10°)

https://arxiv.org/abs/1811.08883

Transfer Learning from ImageNet?

> With only 1k training image:
> w/ pretrain: 9.9 AP
> Random init: 3.5 AP

Rethinking ImageNet Pre-training,

https://arxiv.org/abs/1811.08883

Transfer Learning: Rule of thumb

|Target Dataset| is small |[Target Dataset| is large

Similar to Source

dataset Freeze Fine-tune all
Dissimilar to Source Try SVM from low-level .

Train from scratch
dataset features first

http://cs231n.github.i

1200

=
8

Label Imbalance

o]
-
o

Occurrences
(=)
=

S
(=3
(=}

> Semantic Segmentation
> Contour Detection 00
> Longtail recognition 0

0 50 100 150 200 250 300
Class index

Label Imbalance

> Reweight the loss by class ratio
> Data Resampling by class ratio

traffic light

Structure of ConvNet

Conv -> Normalization -> RelLU -> Pooling

| WAS WINNING
! !!Mi!lﬂ'

\!". |

s
a3

Aty

UNTILA
DEEPER MODEL
CAME ALONG

Normalization layers

_ o-Bl] |
y_\/Var[m]—I—e e

Learnable parameters, to make sure the
normalization layer can represent identity
transformation

(o]

Batch normalization
Layer normalization
Instance normalization
Group normalization

(0]

(0]

o

BatchNorm

> Internal Covariate Shift
> Compute batch statistic during training
> Dependent on mini-batch

BatchNorm

> Usually, during training, BN keeps a
running estimate of the mean and variance,
which are used at testing time.

BatchNorm Example

Pvtorch documentation

CLASS toxch.nn.BatchNoxm2d (num_features, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

e num_features: C from an expected input of size (N, C, H, W)

Example: convolution block in Inception Net V3

class BasicConv2d(nn.Module):

def init (
self,
in_channels: int,
out channels: int,
**kwargs: Any
) -> None:
super(BasicConv2d, self). init ()
self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)

def forward(self, x: Tensor) -> Tensor:
x = self.conv(x)
x = self.bn(x)
return F.relu(x, inplace=True)

[SOURCE]

https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm2d.html
https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py

BatchNorm -- limitations

> Performance depends on the batch size
> Difficult to apply to recurrent connections

sequence dimension

3|22 |3

a0

2

=

batch dimension

1
5
2

LayerNorm

> Normalize across the entire layer for each training
example.

Batch Norm

Layer Norm

LV T

[

O LR
NN
Z, \SNECEa

LayerNorm

Attentivg reader

1.0 v
— LSTM

0.9 — BN-LSTM
— BN-everywhere
—— LN-LSTM

o
©

o
o

validation error rate
o
~J

o
n

o
-

100 200 300 400 500 600 700 800
training steps (thousands)

Figure 2: Validation curves for the attentive reader model. BN results are taken from [Cooijmans

etal.|2016].

LayerNorm Example

Pvtorch documentation

CLASS torxch.nn.LayerNoxm(normalized_shape: Union[int, List[int],
SOURCE
torch.Size], eps: float = l1e-05, elementwise_affine: bool = True) :]

input = torch.randn(20, 5, 10, 10)

With Learnable Parameters

m = nn.LayerNorm(input.size()[1:])

Without Learnable Parameters

m = nn.LayerNorm(input.size()[1:], elementwise affine=False)
Normalize over last two dimensions

m = nn.LayerNorm([10, 10])

Normalize over last dimension of size 10
m = nn.LayerNorm(10)

Activating the module

output = m(input)

https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html

InstanceNorm

> Special Case: Feed-Forward Stylization

Content image

Style| '
ylelmage =

InstanceNorm

> Special Case: Feed-Forward Stylization
> |nvariant to the contrast (style) of the content image

InstanceNorm

> Special Case: Feed-Forward Stylization
> |nvariant to the contrast (style) of the content image
> Channel-wise normalization

InstanceNorm

Special Case: Feed-Forward Stylization

O

Invariant to the contrast of the content image

Normalize over channel for each image

(¢}

O

InstanceNorm Example

Pvtorch documentation

CLASS torxch.nn.InstanceNorm2d(num_features: int, eps: float = 1e-05, momentum: float = 0.1, o
affine: bool = False, track_running_stats: bool = False) C -

® num_features: C from an expected input of size (N, C, H, W)

e By default, there are no learnable parameters, and does not track running
statistics (unlike BN or LN)

Without Learnable Parameters

m = nn.InstanceNorm2d(160)

With Learnable Parameters

m = nn.InstanceNorm2d(100, affine=True)
input = torch.randn(20, 100, 35, 45)
output = m(input)

https://pytorch.org/docs/stable/generated/torch.nn.InstanceNorm2d.html

Sometimes batch size is small due to

Large Feed-Forward network
computational constraints

5 £
= S2
S JM,W
> 83
o = O
o O
o (@) HO
el
G o o

Group a set of features and normalize them

O

GroupNorm

> like normalizing HOG and SIF T separately

GroupNorm

3671

—+Batch Norm
~©-Group Norm

'
NS
T

error (%)
[W o
oe o o

()
[=))

& -
N

[
=S

S o S

.

o
(5]

16 8 4
batch size (images per worker)

s
o

GroupNorm Example

Pvtorch documentation

CLASS toxch.nn.GroupNoxm(num_groups: int, num_channels: int,eps: float = le-05, affine: SOORCE
bool = True) . -

num_groups (int) — number of groups to separate the channels into
num_channels (int) — number of channels expected in input

input = torch.randn(20, 6, 10, 10)

Separate 6 channels into 3 groups

m = nn.GroupNorm(3, 6)

Separate 6 channels into 6 groups (equivalent with InstanceNorm)

m = nn.GroupNorm(6, 6)

Put all 6 channels into a single group (equivalent with LayerNorm)
m = nn.GroupNorm(1, 6)

Activating the module

output = m(input)

https://pytorch.org/docs/stable/generated/torch.nn.GroupNorm.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

SyncBatchNorm

> Split large batch into several and distribute them
many GPUs
> Collect the batch statistics from all devices

https://pytorch.org/docs/stable/generated/torch.nn.SyncBatchNorm.html

ﬁ Any Question?

