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Motivation

Uncertainty arises through:
e Noisy measurements
e Variability between samples
o Finite size of data sets

Probability provides a consistent framework for the quantification and
manipulation of uncertainty.
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Sample Space

Sample space €2 is the set of all possible outcomes of an
experiment.

Observations w € {2 are points in the space also called sample
outcomes, realizations, or elements.

Events E C () are subsets of the sample space.
In this experiment we flip a coin twice:
Sample space All outcomes Q = {HH,HT,TH, TT}
Observation w = HT valid sample since w € )
Event Both flips same E = {HH,TT} valid event since E C
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Probability

The probability of an event E, P(FE), satisfies three axioms:

1: P(E) > 0 for every E
2: P(Q)=1
3: If Eq, Es, ... are disjoint then

P(U E;) = ZP(Ez')
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Joint and Conditional Probabilities

Joint Probability of A and B is denoted P(A, B).
Conditional Probability of A given B is denoted P(A|B).

Joint: p(4,B) = p(ANB)

Conditional: p(4|B) = %

p(A, B) = p(A|B)p(B) = p(B|A)p(A)
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Conditional Example

Probability of passing the final is 60% and probability of passing both
the final and the midterm is 45%.

What is the probability of passing the final given the student passed
the midterm?
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Conditional Example

Probability of passing the final is 60% and probability of passing both
the final and the midterm is 45%.

What is the probability of passing the final given the student passed
the midterm?

P(M|F) = P(M, F)/P(F)
= 0.45/0.60
=0.75
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Independence

Events A and B are independent if P(A, B) = P(A)P(B).
o Indepentent: A: first toss is HEAD; B: second toss is HEAD;

P(A,B)=0.5%0.5=P(A)P(B)
o Not Indepentent: A: first toss is HEAD; B: first toss is HEAD:;

P(A,B) = 0.5 # P(A)P(B)
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Independence

Events A and B are conditionally independent given C' if
P(A, B|C) = P(B|C)P(A|C)

Consider two coins 2: A regular coin and a coin which always outputs
HEAD or always outputs TAIL.

A=The first toss is HEAD; B=The second toss is HEAD; C=The
regular coin is used. D=The other coin is used.

Then A and B are conditionally independent given C, but A and B are
NOT conditionally independent given D.

2w probabilitycourse.com/chapterl/1_4_4_conditional_independence.
php
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Marginalization and Law of Total Probability
Law of Total Probability 3
P(X)=) P(X,Y)=> PX[Y)P(Y)
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Bayes’ Rule

Bayes’ Rule:
_ P(B|A)P(A)
_ P(z|0)P(0)
. Likelihood * Prior
Posterior = -
Evidence

Posterior o< Likelihood x Prior
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Bayes’ Example

Suppose you have tested positive for a disease. What is the probability
you actually have the disease?

This depends on the prior probability of the disease:
e P(T=1|D =1)=0.95 (likelihood)
e P(T =1|D =0) =0.10 (likelihood)
e P(D=1)=0.1 (prior)

So P(D=1T=1)="
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Bayes’ Example

Suppose you have tested positive for a disease. What is the probability
you actually have the disease?
P(T =1|D =1) = 0.95 (true positive)
P(T =1|D =0) = 0.10 (false positive)
P(D =1)=0.1 (prior)
So P(D=1|T=1) ="
Use Bayes’” Rule:

P(T=1D=1)P(D=1) 095%0.1

P(T=1) T P(T=1)

P(T=1)=P(T =1|D=1)P(D=1) + P(T = 1|D = 0)P(D = 0)
=0.95%0.1+0.10.90 = 0.185

PD=1T=1)=

= 0.51
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Random Variable

How do we connect sample spaces and events to data?
A random variable is

Intro ML (UofT) CSC311-Tutl 13/1



Random Variable

How do we connect sample spaces and events to data?
A random variable is a mapping which assigns a real number X (w) to
each observed outcome w € ()

For example, let’s flip a coin 10 times. X (w) counts the number of
Heads we observe in our sequence. If w = HHTHTHHTHT then
X(w) =6.
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Discrete and Continuous Random Variables

Discrete Random Variables
o Takes countably many values, e.g., number of heads
e Distribution defined by probability mass function (PMF)
o Marginalization: p(z) = >_, p(z,y)

Continuous Random Variables
o Takes uncountably many values, e.g., time to complete task
e Distribution defined by probability density function (PDF)
e Marginalization: p(x) = fyp(x,y)dy

Intro ML (UofT) CSC311-Tutl 14/1



LI.D.

Random variables are said to be independent and identically
distributed (i.i.d.) if they are sampled from the same probability
distribution and are mutually independent.

This is a common assumption for observations. For example, coin flips
are assumed to be iid.
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Probability Distribution Statistics

Mean: First Moment, u

[e.e]
Elz] = Z@p(mz) (univariate discrete r.v.)
=1
' oo
Elz] = / xp(z)dz (univariate continuous r.v.)
—00

Variance: Second (central) Moment, o2

Vorlel = [ (o= Pp(a)ds

= Bl(z — p)’]
= E[2?] — E[z]?
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Univariate Gaussian Distribution

Also known as the Normal Distribution, N (u, 0?)
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Multivariate Gaussian Distribution

Multidimensional generalization of the Gaussian.
x is a D-dimensional vector

w is a D-dimensional mean vector
Y is a D x D covariance matrix with determinant |X|

Ni(x|p, 3) = W%ﬂm%ﬂexp{—éw WS = )}

Multivariate Normal Distribution
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0.0008
0.0006
0.0004
0.0002
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Covariance Matrix

Recall that x and g are D-dimensional vectors
Covariance matrix ¥ is a matrix whose (7, j) entry is the covariance

Yij = Cov(x;, %)
= BE[(x; — i) (xj — p15)]
— El(xix;)] — pit

so notice that the diagonal entries are the variance of each elements.

The covariant matrix has the property that it is symmetric and
positive-semidefinite (this is useful for whitening).
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Inferring Parameters

We have data X and we assume it is sampled from some distribution.

How do we figure out the parameters that ‘best’ fit that distribution?
Maximum Likelihood Estimation (MLE)

éMLE = argmaxP(X\@)
0
Maximum A posteriori Probability (MAP)

Orap = argmaxP(0]X)
0
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MLE for Univariate Gaussian Distribution

We are trying to infer the parameters for a Univariate Gaussian
Distribution, mean (1) and variance (o2).

1 1
2y _ _ N2
N(z|p,0%) = 5Pl 53 (z—p)7}
The likelihood that our observations x1,...,xN were generated by a

univariate Gaussian with parameters p and o2 is

N

1 1
Likelihood = p(z1 ...z x|, 0%) = exp{—— (z; — p)?
p(z1...xn|p,07) Z||1 s p{ 202( 1)}
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MLE for Univariate Gaussian Distribution

For MLE we want to maximize this likelihood, which is difficult
because it is represented by a product of terms

1 2
Wexp{_ﬁ(l‘i - M) }

So we take the log of the likelihood so the product becomes a sum

N
1

Likelihood = p(z; ...z Ny, 0%) = H

i=1

Log Likelihood = log p(z1 ... zx|p, 0%)

al 1 1
_ E _ . )2
N i=1 o 2mo? exp{ 202 (i = )7}

Since log is monotonically increasing max L(f) = max log L(6)
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MLE for Univariate Gaussian Distribution

The log Likelihood simplifies to

N
1 1
Ly, o) = log ————exp{———=(x; — p)?
(1, 0) ;:1 8 o Plgz (@ — 1))

2

1 N (x; — )
_ 2 v
= —§Nlog(27ra ) — ;1 552

Which we want to maximize. How?
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MLE for Univariate Gaussian Distribution

To maximize we take the derivatives, set equal to 0, and solve:

1 > (i — )’
Ly, o) = —§Nlog(27r02) -y @27
=1

Derivative w.r.t. u, set equal to 0, and solve for /i

N
0L, o) _ -1
o —O:H—N;%

Therefore the (i that maximizes the likelihood is the average of the
data points.

Derivative w.r.t. o2, set equal to 0, and solve for &2

85(/1,0)_ A2_1 l N2
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