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Motivation

Uncertainty arises through:

Noisy measurements

Variability between samples

Finite size of data sets

Probability provides a consistent framework for the quantification and
manipulation of uncertainty.
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Sample Space

Sample space Ω is the set of all possible outcomes of an
experiment.

Observations ω ∈ Ω are points in the space also called sample
outcomes, realizations, or elements.

Events E ⊂ Ω are subsets of the sample space.

In this experiment we flip a coin twice:

Sample space All outcomes Ω = {HH,HT, TH, TT}
Observation ω = HT valid sample since ω ∈ Ω

Event Both flips same E = {HH,TT} valid event since E ⊂ Ω
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Probability

The probability of an event E, P (E), satisfies three axioms:

1: P (E) ≥ 0 for every E

2: P (Ω) = 1

3: If E1, E2, . . . are disjoint then

P (

∞⋃
i=1

Ei) =

∞∑
i=1

P (Ei)
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Joint and Conditional Probabilities

Joint Probability of A and B is denoted P (A,B).

Conditional Probability of A given B is denoted P (A|B).

𝐴 ∩ 𝐵𝐴 𝐵

Joint: 𝑝 𝐴, 𝐵 = 𝑝(𝐴 ∩ 𝐵)

Conditional: 𝑝 𝐴|𝐵 = *(+∩,)
*(,)

p(A,B) = p(A|B)p(B) = p(B|A)p(A)
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Conditional Example

Probability of passing the final is 60% and probability of passing both
the final and the midterm is 45%.
What is the probability of passing the final given the student passed
the midterm?

P (M |F ) = P (M,F )/P (F )

= 0.45/0.60

= 0.75
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Independence

Events A and B are independent if P (A,B) = P (A)P (B).

Indepentent: A: first toss is HEAD; B: second toss is HEAD;

P (A,B) = 0.5 ∗ 0.5 = P (A)P (B)

Not Indepentent: A: first toss is HEAD; B: first toss is HEAD;

P (A,B) = 0.5 6= P (A)P (B)
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Independence

Events A and B are conditionally independent given C if

P (A,B|C) = P (B|C)P (A|C)

Consider two coins 2: A regular coin and a coin which always outputs
HEAD or always outputs TAIL.
A=The first toss is HEAD; B=The second toss is HEAD; C=The
regular coin is used. D=The other coin is used.
Then A and B are conditionally independent given C, but A and B are
NOT conditionally independent given D.

2www.probabilitycourse.com/chapter1/1_4_4_conditional_independence.

php
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Marginalization and Law of Total Probability

Law of Total Probability 3

P (X) =
∑
Y

P (X,Y ) =
∑
Y

P (X|Y )P (Y )

3www.probabilitycourse.com/chapter1/1_4_2_total_probability.php
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Bayes’ Rule

Bayes’ Rule:

P (A|B) =
P (B|A)P (A)

P (B)

P (θ|x) =
P (x|θ)P (θ)

P (x)

Posterior =
Likelihood ∗ Prior

Evidence
Posterior ∝ Likelihood× Prior
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Bayes’ Example

Suppose you have tested positive for a disease. What is the probability
you actually have the disease?
This depends on the prior probability of the disease:

P (T = 1|D = 1) = 0.95 (likelihood)

P (T = 1|D = 0) = 0.10 (likelihood)

P (D = 1) = 0.1 (prior)

So P (D = 1|T = 1) =?

Intro ML (UofT) CSC311-Tut1 11 / 1



Bayes’ Example

Suppose you have tested positive for a disease. What is the probability
you actually have the disease?

P (T = 1|D = 1) = 0.95 (true positive)

P (T = 1|D = 0) = 0.10 (false positive)

P (D = 1) = 0.1 (prior)

So P (D = 1|T = 1) =?
Use Bayes’ Rule:

P (D = 1|T = 1) =
P (T = 1|D = 1)P (D = 1)

P (T = 1)
=

0.95 ∗ 0.1

P (T = 1)
= 0.51

P (T = 1) = P (T = 1|D = 1)P (D = 1) + P (T = 1|D = 0)P (D = 0)

= 0.95 ∗ 0.1 + 0.1 ∗ 0.90 = 0.185
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Random Variable

How do we connect sample spaces and events to data?
A random variable is

a mapping which assigns a real number X(ω) to
each observed outcome ω ∈ Ω

For example, let’s flip a coin 10 times. X(ω) counts the number of
Heads we observe in our sequence. If ω = HHTHTHHTHT then
X(ω) = 6.
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Discrete and Continuous Random Variables

Discrete Random Variables

Takes countably many values, e.g., number of heads

Distribution defined by probability mass function (PMF)

Marginalization: p(x) =
∑

y p(x, y)

Continuous Random Variables

Takes uncountably many values, e.g., time to complete task

Distribution defined by probability density function (PDF)

Marginalization: p(x) =
∫
y p(x, y)dy
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I.I.D.

Random variables are said to be independent and identically
distributed (i.i.d.) if they are sampled from the same probability
distribution and are mutually independent.
This is a common assumption for observations. For example, coin flips
are assumed to be iid.
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Probability Distribution Statistics

Mean: First Moment, µ

E[x] =

∞∑
i=1

xip(xi) (univariate discrete r.v.)

E[x] =

∫ ∞
−∞

xp(x)dx (univariate continuous r.v.)

Variance: Second (central) Moment, σ2

V ar[x] =

∫ ∞
−∞

(x− µ)2p(x)dx

= E[(x− µ)2]

= E[x2]− E[x]2

Intro ML (UofT) CSC311-Tut1 16 / 1



Univariate Gaussian Distribution

Also known as the Normal Distribution, N (µ, σ2)

N (x|µ, σ2) =
1√

2πσ2
exp{− 1

2σ2
(x− µ)2}
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Multivariate Gaussian Distribution

Multidimensional generalization of the Gaussian.
x is a D-dimensional vector
µ is a D-dimensional mean vector
Σ is a D ×D covariance matrix with determinant |Σ|

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp{−1

2
(x− µ)TΣ−1(x− µ)}
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Covariance Matrix

Recall that x and µ are D-dimensional vectors
Covariance matrix Σ is a matrix whose (i, j) entry is the covariance

Σij = Cov(xi,xj)

= E[(xi − µi)(xj − µj)]
= E[(xixj)]− µiµj

so notice that the diagonal entries are the variance of each elements.
The covariant matrix has the property that it is symmetric and
positive-semidefinite (this is useful for whitening).
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Inferring Parameters

We have data X and we assume it is sampled from some distribution.
How do we figure out the parameters that ‘best’ fit that distribution?
Maximum Likelihood Estimation (MLE)

θ̂MLE = argmax
θ

P (X|θ)

Maximum A posteriori Probability (MAP)

θ̂MAP = argmax
θ

P (θ|X)
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MLE for Univariate Gaussian Distribution

We are trying to infer the parameters for a Univariate Gaussian
Distribution, mean (µ) and variance (σ2).

N (x|µ, σ2) =
1√

2πσ2
exp{− 1

2σ2
(x− µ)2}

The likelihood that our observations x1, . . . , xN were generated by a
univariate Gaussian with parameters µ and σ2 is

Likelihood = p(x1 . . . xN |µ, σ2) =

N∏
i=1

1√
2πσ2

exp{− 1

2σ2
(xi − µ)2}
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MLE for Univariate Gaussian Distribution

For MLE we want to maximize this likelihood, which is difficult
because it is represented by a product of terms

Likelihood = p(x1 . . . xN |µ, σ2) =

N∏
i=1

1√
2πσ2

exp{− 1

2σ2
(xi − µ)2}

So we take the log of the likelihood so the product becomes a sum

Log Likelihood = log p(x1 . . . xN |µ, σ2)

=

N∑
i=1

log
1√

2πσ2
exp{− 1

2σ2
(xi − µ)2}

Since log is monotonically increasing maxL(θ) = max logL(θ)
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MLE for Univariate Gaussian Distribution

The log Likelihood simplifies to

L(µ, σ) =

N∑
i=1

log
1√

2πσ2
exp{− 1

2σ2
(xi − µ)2}

= −1

2
N log(2πσ2)−

N∑
i=1

(xi − µ)2

2σ2

Which we want to maximize. How?
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MLE for Univariate Gaussian Distribution

To maximize we take the derivatives, set equal to 0, and solve:

L(µ, σ) = −1

2
N log(2πσ2)−

N∑
i=1

(xi − µ)2

2σ2

Derivative w.r.t. µ, set equal to 0, and solve for µ̂

∂L(µ, σ)

∂µ
= 0 =⇒ µ̂ =

1

N

N∑
i=1

xi

Therefore the µ̂ that maximizes the likelihood is the average of the
data points.
Derivative w.r.t. σ2, set equal to 0, and solve for σ̂2

∂L(µ, σ)

∂σ2
= 0 =⇒ σ̂2 =

1

N

N∑
i=1

(xi − µ̂)2
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