COMS4995 NNDL Tutorial:
Neural Network Training

Based on tutorials/slides by Harris Chan, Ladislav Rampasek, Jake Snell, Kevin Swersky, Shenlong Wang & others



Overview

e Review: Overall Training Loop
e Initialization
e Optimization
o Gradient Descent
o Momentum
o Learning Rate Schedulers: Adagrad, RMSProp, Adam
e Hyperparameter tuning: learning rate, batch size, regularization
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Initialize
Parameters

Initialization of Parameters

Initial parameters of the neural network can affect the gradients and learning

Idea 1: Constant initialization

e Result: For fully connected layers: identical gradients, identical
neurons. Bad!

Idea 2: Random weights, to break symmetry

e Too large of initialization: exploding gradients
e Too small of initialization: vanishing gradients



Intialize

Interactive Demo: Initialization Parameters

1. Choose input dataset 2. Choose initialization method 3. Train the network.
Select a training dataset. Select an initialization method for the values of your neural network parameters’. Observe the cost function and the decision
boundary.
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Source: Initializing neural networks. https://www.deeplearning.ai/ai-notes/initialization/



https://www.deeplearning.ai/ai-notes/initialization/
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Optimization

e Optimization: (informal) Minimize (or maximize) some quantity.
e Applications:
o Engineering: Minimize fuel consumption of an automobile
o Economics: Maximize returns on an investment
o Supply Chain Logistics: Minimize time taken to fulfill an order
o Life: Maximize happiness



\

Optimization: Batch Gradient Descent [opu;mm
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Batch Gradient Descent:
e |Initialize the parameters randomly

e For each iteration, do until convergence:
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Gradient Descent

Geometric interpretation:
e Gradient is perpendicular to the tangent of the level
set curve

e Given the current point, negative gradient direction
decreases the function fastest

Alternative interpretation:
e Minimizing the first-order taylor approx of f keep
the new point close to the current point
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Source: Wikipedia



Stochastic Gradient Descent

Initialize the parameters randomly
For each iteration, do until convergence:
o Randomly select a training sample  (or
a small subset of the training samplgs)
o Conduct gradient descent:

el — gik) _ v £;(0%))

e Tips

o Subsample without replacement so that you visit each point on each pass through the

dataset ("epoch")

Intuition: A noisy approximation
of the gradient of the whole
dataset

Pro: each update requires a
small amount of training data,
good for training algorithms for a
large-scale dataset

o Divide the log-likelihood estimate by the size of mini-batches, making learning rate

invariant to the mini-batch size.



Gradient Descent with Momentum

e [nitialize the parameters randomly
e For each iteration, do until convergence:
o Update the momentum
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o Conduct gradient descent:
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e Pro: “accelerate” learning by accumulating some “velocity/momentum” using

the past gradients



Learning Rate Schedulers

What if we want to be able to have a per-parameter learning rate?

e Certain parameter may be more sensitive (i.e. have higher curvature)



Learning Rate Schedulers: Adagrad [OpJ

e [nitialize the parameters randomly
e For each iteration, do until convergence:
o Conduct gradient descent on i-th parameter:
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Intuition: It increases the learning rate for more sparse features and decreases
the learning rate for less sparse ones, according to the history of the gradient



Learning Rate Schedulers: RMSprop/Adade

e [nitialize the parameters randomly
e For each iteration, do until convergence:
o Conduct gradient descent on i-th parameter:
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Intuition: Unlike Adagrad, the denominator places a significant weight on the
most recent gradient. This also helps avoid decreasing learning rate too much.



Learning Rate Schedulers: Adam ‘

e [nitialize the parameters randomly
e For each iteration, do until convergence:

o Conduct gradient descent on i-th pa:amete/
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Adam: A method for stochastic optimizaton ~ Paper Link
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https://arxiv.org/pdf/1412.6980.pdf
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SGD optimization on loss surface contours

SGD optimization on loss surface contours

Source: Sebastian Ruder, https:/ruder.io/optimizing-aradient-descent/, Image: Alec Radford



https://ruder.io/optimizing-gradient-descent/
https://twitter.com/alecrad

Interactive Demo: Optimizers

In this visualization, you can compare optimizers applied to
different cost functions and initialization. For a given cost
landscape (1) and initialization (2), you can choose optimizers,
their learning rate and decay (3). Then, press the play button to see
the optimization process (4). There's no explicit model, but you can
assume that finding the cost function's minimum is equivalent to
finding the best model for your task.

1. Choose a cost landscape

Select an artificial landscape J (w1, w2).
D S av

2. Choose initial parameters

On the cost landscape graph, drag the red dot to choose initial
parameter values and thus the initial value of the cost.

3. Choose an optimizer

Select the optimizer(s) and hyperparameters.

Optimizer Learning Rate Learning Rate Decay
Gradient Descent 0.001 0
Momentum 0.001 0
RMSprop 0.001 0
m Adam nom 0

This 2D plot describes the cost function's value for different values
of the two parameters (w1, ws). The lighter the color, the smaller
the cost value.
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The graph below shows how the value of the cost changes through
successive epochs for each optimizer.
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Source: Parameter optimization in neural networks: https://www.deeplearning.ai/ai-notes/optimization/



https://www.deeplearning.ai/ai-notes/optimization/
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Learning Rate

|ldeal Learning Rate should be:

e Should not be too big (objective will blow up )
e Should not be too small (takes longer to
converge)

Convergence criteria:

e Change in objective function is close to zero
e Gradient norm is close to zero
e \Validation error starts to increase (early-

stopping)

Leaming
Rate, etc.

good learning rate

epoch

Idealized cartoon depiction of
different learning rates.

Image Credit: Andrej Karpathy



Leaming

Learning Rate: Decay Schedule Rate, lc

Anneal (decay) learning rate over time so the parameters can settle into a local
minimum. Typical decay strategies:

1. Step Decay: reduce by factor every few epochs (e.g. a half every 5 epochs,
or by 0.1 every 20 epochs), or when validation error stops improving
2. Exponential Decay: Set learning rate according to the equation

Hyperparam

1. 1/t decay: 77(75) _ Mo
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’ Minibatch

BatCh S|Ze | SizeM '

Batch Size: the number of training data points for computing the empirical risk at
each iteration.

e Typical small batches are powers of 2: 32, 64, 128, 256, 512,
e Large batches are in the thousands

Large Batch Size has:

Fewer frequency of updates

More accurate gradient

More parallelization efficiency / accelerates wallclock training

May hurt generalization, perhaps by causing the algorithm to find poorer
local optima/plateau.



. Minibatch
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Related papers on batch size:

e Goyal et al., Accurate, large minibatch SGD
o Proposes to increase the learning rate by of the minibatch size

e Hoffer et al., Train longer generalize better
o Proposes to increase the learning rate by square root of the minibatch size

e Smith et al., Don't decay the learning rate, increase the batch size
o Increasing batch size reduce noise, while maintaining same step size



https://arxiv.org/pdf/1706.02677.pdf
https://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks.pdf
https://arxiv.org/pdf/1711.00489.pdf

Hyperparameter Tuning

Several approaches for tuning multiple hyperparameters together:
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Image source: Random Search for Hyper-Parameter Optimization
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http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
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Search hyperparameter on log scale:

e learning rate = 10 ** uniform(-6, 1)
o Learning rate and regularization strength have multiplicative effects on the training dynamics

e Start from coarse ranges then narrow down, or expand range if near the
boundary of range

One validation fold vs cross-validation:

e Simplifies code base to just use one (sizeable) validation set vs doing cross
validation
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