
COMS4995 NNDL Tutorial:
Neural Network Training

1Based on tutorials/slides by Harris Chan, Ladislav Rampasek, Jake Snell, Kevin Swersky, Shenlong Wang & others

Neural Network

Overview

● Review: Overall Training Loop
● Initialization
● Optimization

○ Gradient Descent
○ Momentum
○ Learning Rate Schedulers: Adagrad, RMSProp, Adam

● Hyperparameter tuning: learning rate, batch size, regularization

Neural Network Training Loop

1.
2.

3.

3.

1.

Initialization of Parameters
Initial parameters of the neural network can affect the gradients and learning

Idea 1: Constant initialization

● Result: For fully connected layers: identical gradients, identical
neurons. Bad!

Idea 2: Random weights, to break symmetry

● Too large of initialization: exploding gradients
● Too small of initialization: vanishing gradients

Interactive Demo: Initialization

Source: Initializing neural networks. https://www.deeplearning.ai/ai-notes/initialization/

https://www.deeplearning.ai/ai-notes/initialization/

Neural Network Training Loop

1.
2.

3.

3.

2.

Optimization
● Optimization: (informal) Minimize (or maximize) some quantity.
● Applications:

○ Engineering: Minimize fuel consumption of an automobile
○ Economics: Maximize returns on an investment
○ Supply Chain Logistics: Minimize time taken to fulfill an order
○ Life: Maximize happiness

Optimization: Batch Gradient Descent

Batch Gradient Descent:

● Initialize the parameters randomly

● For each iteration, do until convergence:

Learning rate (a small step)

Gradient Descent
Geometric interpretation:
● Gradient is perpendicular to the tangent of the level

set curve
● Given the current point, negative gradient direction

decreases the function fastest
Alternative interpretation:
● Minimizing the first-order taylor approx of keep

the new point close to the current point

Source: Wikipedia

Stochastic Gradient Descent
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Randomly select a training sample (or
a small subset of the training samples)

○ Conduct gradient descent:

● Intuition: A noisy approximation
of the gradient of the whole
dataset

● Pro: each update requires a
small amount of training data,
good for training algorithms for a
large-scale dataset

● Tips
○ Subsample without replacement so that you visit each point on each pass through the

dataset ("epoch")
○ Divide the log-likelihood estimate by the size of mini-batches, making learning rate

invariant to the mini-batch size.

Gradient Descent with Momentum
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Update the momentum

○ Conduct gradient descent:

● Pro: “accelerate” learning by accumulating some “velocity/momentum” using
the past gradients

Learning Rate Schedulers
What if we want to be able to have a per-parameter learning rate?

● Certain parameter may be more sensitive (i.e. have higher curvature)

Learning Rate Schedulers: Adagrad
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Conduct gradient descent on i-th parameter:

Intuition: It increases the learning rate for more sparse features and decreases
the learning rate for less sparse ones, according to the history of the gradient

Learning Rate Schedulers: RMSprop/Adadelta
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Conduct gradient descent on i-th parameter:

Intuition: Unlike Adagrad, the denominator places a significant weight on the
most recent gradient. This also helps avoid decreasing learning rate too much.

Learning Rate Schedulers: Adam
● Initialize the parameters randomly
● For each iteration, do until convergence:

○ Conduct gradient descent on i-th parameter:

Bias-corrected forms of
,

Paper Link

https://arxiv.org/pdf/1412.6980.pdf

Optimizers Comparison (excluding Adam)

Source: Sebastian Ruder, https://ruder.io/optimizing-gradient-descent/, Image: Alec Radford

SGD optimization on loss surface contours
SGD optimization on loss surface contours

https://ruder.io/optimizing-gradient-descent/
https://twitter.com/alecrad

Interactive Demo: Optimizers

Source: Parameter optimization in neural networks: https://www.deeplearning.ai/ai-notes/optimization/

https://www.deeplearning.ai/ai-notes/optimization/

Neural Network Training Loop

1.
2.

3.

3.

3..

Learning Rate
Ideal Learning Rate should be:

● Should not be too big (objective will blow up)
● Should not be too small (takes longer to

converge)

Convergence criteria:

● Change in objective function is close to zero
● Gradient norm is close to zero
● Validation error starts to increase (early-

stopping)
Idealized cartoon depiction of
different learning rates.

Image Credit: Andrej Karpathy

Learning Rate: Decay Schedule
Anneal (decay) learning rate over time so the parameters can settle into a local
minimum. Typical decay strategies:

1. Step Decay: reduce by factor every few epochs (e.g. a half every 5 epochs,
or by 0.1 every 20 epochs), or when validation error stops improving

2. Exponential Decay: Set learning rate according to the equation

1. 1/t decay:

Iteration
number

Hyperparam

Neural Network Training Loop

1.
2.

3.

3.3..

Batch Size
Batch Size: the number of training data points for computing the empirical risk at
each iteration.

● Typical small batches are powers of 2: 32, 64, 128, 256, 512,
● Large batches are in the thousands

Large Batch Size has:

● Fewer frequency of updates
● More accurate gradient
● More parallelization efficiency / accelerates wallclock training
● May hurt generalization, perhaps by causing the algorithm to find poorer

local optima/plateau.

Batch Size
Related papers on batch size:

● Goyal et al., Accurate, large minibatch SGD
○ Proposes to increase the learning rate by of the minibatch size

● Hoffer et al., Train longer generalize better
○ Proposes to increase the learning rate by square root of the minibatch size

● Smith et al., Don't decay the learning rate, increase the batch size
○ Increasing batch size reduce noise, while maintaining same step size

https://arxiv.org/pdf/1706.02677.pdf
https://papers.nips.cc/paper/6770-train-longer-generalize-better-closing-the-generalization-gap-in-large-batch-training-of-neural-networks.pdf
https://arxiv.org/pdf/1711.00489.pdf

Hyperparameter Tuning
Several approaches for tuning multiple hyperparameters together:

Image source: Random Search for Hyper-Parameter Optimization

Prefer
random
search over
grid search,
higher
chance of
finding better
performing
hyper param

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Hyperparameter Tuning
Search hyperparameter on log scale:

● learning_rate = 10 ** uniform(-6, 1)
○ Learning rate and regularization strength have multiplicative effects on the training dynamics

● Start from coarse ranges then narrow down, or expand range if near the
boundary of range

One validation fold vs cross-validation:

● Simplifies code base to just use one (sizeable) validation set vs doing cross
validation

References
● Notes and tutorials from other courses:

○ Toronto ECE521 (Winter 2017) tutorial on Training neural network
○ Stanford's CS231n notes on Stochastic Gradient Descent, Setting up data and loss, and

Training neural networks
○ Deeplearning.ai's interactive notes on Initialization and Parameter optimization in neural

networks
○ Jimmy Ba's Talk for Optimization in Deep Learning at Deep Learning Summer School 2019

● Academic/white papers:
○ SGD tips and tricks from Leon Bottou
○ Efficient BackProp from Yann LeCun
○ Practical Recommendations for Gradient-Based Training of Deep Architectures from Yoshua

Bengio

https://ece521.github.io/
http://www.psi.toronto.edu/~jimmy/ece521/Tut2.pdf
https://cs231n.github.io/
https://cs231n.github.io/optimization-1/
https://cs231n.github.io/neural-networks-2/
https://cs231n.github.io/neural-networks-3/
https://www.deeplearning.ai/
https://www.deeplearning.ai/ai-notes/initialization/
https://www.deeplearning.ai/ai-notes/optimization/
https://www.youtube.com/watch?v=eHEkbDHVDuI
https://dlrlsummerschool.ca/
https://www.microsoft.com/en-us/research/publication/stochastic-gradient-tricks/?from=http%3A%2F%2Fresearch.microsoft.com%2Fpubs%2F192769%2Ftricks-2012.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
https://arxiv.org/pdf/1206.5533v2.pdf

