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Overview

@ In generative modeling, we'd like to train a network that models a
distribution, such as a distribution over images.
@ We have seen a few approaches to generative modeling:
o Autoregressive models
o Generative adversarial networks (last lecture)
o Reversible architectures (this lecture)
o Variational autoencoders (next lecture)

All four approaches have different pros and cons.
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Generator Networks

@ Start by sampling the code vector z from a fixed, simple distribution
(e.g. spherical Gaussian)

@ The generator network computes a differentiable function G mapping
z to an x in data space

generated distribution
A

-

true data distribution

p(x)
unit gaussian
generative
O model .
2 || (neural net) « floss| 7
image space image space
https://blog.openai.com/generative-models/
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https://blog.openai.com/generative-models/

Generator Networks

Each dimension of the code
vector is sampled independently
from a simple distribution,
e.g. Gaussian or uniform.

This is fed to a
(deterministic) The network
generator network. outputs an image.

@ We have seen how to learn generator networks by training a
discriminator in GANs.

@ Problem:

o Learning can be very unstable. Need to tune many hyperparameters.
o No direct evaluation metric to assess the trained generator networks.

@ Idea: learn the generator directly via change of variables. (Calculus!)
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Change of Variables Formula

@ Let f denote a differentiable, bijective mapping from space Z to
space X. (l.e., it must be 1-to-1 and cover all of X.)

@ Since f defines a one-to-one correspondence between values z € Z
and x € X, we can think of it as a change-of-variables transformation.

o Change-of-Variables Formula from probability theory: if x = f(z),

then
Oox
det | —
) (8z)
@ Intuition for the Jacobian term:

/740N

small B:E/Bz large dx/0z,
high density p(z low density p(z)

-1

px(x) = pz(z)
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Change of Variables Formula

@ Suppose we have a generator network which computes the function f.
It's tempting to apply the change-of-variables formula in order to
compute the density px(x).

e le., compute z = f1(x)

@ Problems?
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Change of Variables Formula

@ Suppose we have a generator network which computes the function f.
It's tempting to apply the change-of-variables formula in order to
compute the density px(x).

e le., compute z = f1(x)

-1

Ox
det | —
) (8z)
@ Problems?

o It needs to be differentiable, so that the Jacobian 9x/0z is defined.
e The mapping f needs to be invertible, with an easy-to-compute inverse.
e We need to be able to compute the (log) determinant.
e Differentiability is easy (just use a differentiable activation function),
but the other requirements are trickier.
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Reversible Blocks

@ Now let's define a reversible block which is invertible and has a
tractable determinant.

@ Such blocks can be composed.

o Inversion: f~1 = 7‘_10---07‘,:1 f=

Ir
fa
fko“'0f1 X
o Determinants: axk| _} Ox ‘ 3Xz‘|3x1|
fi

axk,1 8x1
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Reversible Blocks

@ Recall the residual blocks:

y =x+F(x)

@ Reversible blocks are a variant of F(x) d:I

residual blocks. Divide the units into
two groups, X1 and X». X

y1 = x1 + F(x2)

Y2 = X2
@ Inverting a reversible block:

X2 =Y¥2
x1 =y1 — F(x2)
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Reversible Blocks

Composition of two reversible blocks, but with x; and x swapped:

Y1 Yo
o Forward: i i
%
y1 = x1 + F(x2) 4
y2 = x2 + G(y1)
o Backward:
¢
x2 =y2 — G(y1)
x1 =y1 — F(x2)
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Volume Preservation

@ It remains to compute the log determinant of the Jacobian.

@ The Jacobian of the reversible block:

y1 = X1 + F(x2) 63’_<| gf;)
0 1

Y2 = X2 Ox
@ This is an upper triangular matrix. The determinant of an upper

triangular matrix is the product of the diagonal entries, or in this
case, 1.

@ Since the determinant is 1, the mapping is said to be volume
preserving.
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Nonlinear Independent Components Estimation

@ We've just defined the reversible block.
e Easy to invert by subtracting rather than adding the residual function.
e The determinant of the Jacobian is 1.

@ Nonlinear Independent Components Estimation (NICE) trains a
generator network which is a composition of lots of reversible blocks.

@ We can compute the likelihood function using the change-of-variables

formula:
ox
det <8z>

@ We can train this model using maximum likelihood. l.e., given a
dataset {x(M, ... x(M} we maximize the likelihood

-1

px(x) = pz(z) = pz(2)

N . N .
[T px () =TT pz(F~1(x))
i=1 i=1
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Nonlinear Independent Components Estimation

@ Likelihood:
px(x) = pz(2z) = pz(f*(x))
@ Remember, py is a simple, fixed distribution (e.g. independent
Gaussians)

e Intuition: train the network such that f~! maps each data point to a
high-density region of the code vector space Z.
e Without constraints on f, it could map everything to 0, and this
likelihood objective would make no sense.
e But it can't do this because it's volume preserving.
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Nonlinear Independent Components Estimation
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Dinh et al., 2016. Density estimation using RealNVP.
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Nonlinear Independent Components Estimation

Samples produced by RealNVP, a model based on NICE.

ImageNet celebrities bedrooms

Dinh et al., 2016. Density estimation using RealNVP.
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|
RevNets (optional)

@ A side benefit of reversible blocks: you don't need to store the
activations in memory to do backprop, since you can reverse the
computation.

o l.e., compute the activations as you need them, moving backwards
through the computation graph.

@ Notice that reversible blocks look a lot like residual blocks.

@ Can use this to design a reversible residual network (RevNet)
architecture which is like a ResNet, but with reversible blocks instead
of residual blocks.

e Matches state-of-the-art performance on ImageNet, but without the
memory cost of activations!

o Gomez et al., NIPS 2017. “The reversible residual network: backprop
without storing activations” .
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