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Logistics

Assignment 1 due Friday at 2pm

Late policy: Except in the case of an official Student Medical
Certificate, assignments will be accepted with a 10% penalty every 24
hours from the deadline, up to 5 days. After that no credit.

Project: guidelines released; suggestions to follow

Midterm

Will cover up thru CNNs (Monday’s lecture)
Estimated time: 1 hour, but will have full period
Reviews: Thursday at 5, Monday at 4.
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Overview

So far in the course, we’ve seen two types of layers:

fully connected layers

embedding layers (i.e. lookup tables)

Different layers could be stacked together to build powerful models.
Let’s add another layer type: convolution layers
Conv layers are very useful building blocks for computer vision applications.
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A brief history
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How do we teach computers vision?

What makes vision hard?

Vison needs to be robust to a lot of transformations or distortions:

change in pose/viewpoint
change in illumination
deformation
occlusion (some objects are hidden behind others)

Many object categories can vary wildly in appearance (e.g. chairs)

Geoff Hinton: “Imagine a medical database in which the age of the
patient sometimes hops to the input dimension which normally codes
for weight!”
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How do we teach computers vision?

What will you do?

This isn’t going to scale to full-sized images.
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Overview

Suppose we want to train a network that takes a 200 × 200 RGB image as
input.

1000 hidden units

200

200

3

densely connected

What is the problem with having this as the first layer?

Too many parameters! Input size = 200 × 200 × 3 = 120K.
Parameters = 120K × 1000 = 120 million.

What happens if the object in the image shifts a little?
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How do we teach computers vision?

In the fully connected layer, each feature (hidden unit) looks at the entire image.
Since the image is a BIG thing, we end up with lots of parameters.

But, do we really expect to learn a useful feature at the first layer which depends
on pixels that are spatially far away ?
The far away pixels will probably belong to completely different objects (or object
sub-parts). Very little correlation.
We want the incoming weights to focus on local patterns of the input image.
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How do we teach computers vision?

The same sorts of features that are useful in analyzing one part of the
image will probably be useful for analyzing other parts as well.

E.g., edges, corners, contours, object parts

We want a neural net architecture that lets us learn a set of feature
detectors shared at all image locations.
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Convolution Layers

Fully connected layers:

Each hidden unit looks at the entire image.
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Convolution Layers

Locally connected layers:

Each column of hidden units looks at a small region of the image.
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Convolution Layers

Convolution layers:

Tied weights

Each column of hidden units looks at a small region of the image, and the
weights are shared between all image locations.
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Going Deeply Convolutional

Convolution layers can be stacked:

Tied weights
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Convolution

We’ve already been vectorizing our computations by expressing them in
terms of matrix and vector operations.

Now we’ll introduce a new high-level operation, convolution. Here the
motivation isn’t computational efficiency — we’ll see more efficient ways
to do the computations later. Rather, the motivation is to get some
understanding of what convolution layers can do.

Let’s look at the 1-D case first. If a and b are two arrays,

(a ∗ b)t =
∑
τ

aτbt−τ .

Note: indexing conventions are inconsistent. We’ll explain them in each
case.
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Convolution

Method 1: translate-and-scale
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Convolution

Method 2: flip-and-filter
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Convolution

Convolution can also be viewed as matrix multiplication:

(2,−1, 1) ∗ (1, 1, 2) =


1
1 1
2 1 1

2 1
2


 2
−1
1



Aside: This is how convolution is typically implemented. (More efficient
than the fast Fourier transform (FFT) for modern conv nets on GPUs!)
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Convolution

Some properties of convolution:

Commutativity
a ∗ b = b ∗ a

Linearity
a ∗ (λ1b + λ2c) = λ1a ∗ b + λ2a ∗ c
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2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A ∗ B)ij =
∑
s

∑
t

AstBi−s,j−t .
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2-D Convolution

Method 1: Translate-and-Scale
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2-D Convolution

Method 2: Flip-and-Filter
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2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this convolution kernel do?

� 0 1 0
1 4 1

0 1 0

Answer: Blur
Note: We call the resulting image an ”activation map” by the kernel
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2-D Convolution

What does this convolution kernel do?

� 0 -1 0
-1 8 -1

0 -1 0

Answer: Sharpen
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2-D Convolution

What does this convolution kernel do?

� 0 -1 0
-1 4 -1

0 -1 0

Answer: Edge Detection
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2-D Convolution
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2-D Convolution

What does this convolution kernel do?

� 1 0 -1
2 0 -2

1 0 -1

Answer: Stronger Edge Detection
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2-D Convolution

What does this convolution kernel do?
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Convolutional networks

Let’s finally turn to convolutional networks. These have two kinds of
layers: detection layers (or convolution layers), and pooling layers.

The convolution layer has a set of filters. Its output is a set of feature
maps, each one obtained by convolving the image with a filter.

convolution

Example first-layer filters
826 M.D. Zeiler and R. Fergus

(a) (b)

(c) (d)

Fig. 5. (a): 1st layer features without feature scale clipping. Note that one feature dom-
inates. (b): 1st layer features from Krizhevsky et al. [18]. (c): Our 1st layer features. The
smaller stride (2 vs 4) and filter size (7x7 vs 11x11) results in more distinctive features
and fewer “dead” features. (d): Visualizations of 2nd layer features from Krizhevsky
et al. [18]. (e): Visualizations of our 2nd layer features. These are cleaner, with no
aliasing artifacts that are visible in (d).

1 & 2). This model, shown in Fig. 3, significantly outperforms the architecture
of Krizhevsky et al. [18], beating their single model result by 1.7% (test top-5).
When we combine multiple models, we obtain a test error of 14.8%, an improve-
ment of 1.6%. This result is close to that produced by the data-augmentation
approaches of Howard [15], which could easily be combined with our architec-
ture. However, our model is some way short of the winner of the 2013 Imagenet
classification competition [28].

Table 1. ImageNet 2012/2013 classification error rates. The ∗ indicates models that
were trained on both ImageNet 2011 and 2012 training sets.

Val Val Test
Error % Top-1 Top-5 Top-5

Gunji et al. [12] - - 26.2

DeCAF [7] - - 19.2

Krizhevsky et al. [18], 1 convnet 40.7 18.2 −−
Krizhevsky et al. [18], 5 convnets 38.1 16.4 16.4
Krizhevsky et al. ∗[18], 1 convnets 39.0 16.6 −−
Krizhevsky et al. ∗[18], 7 convnets 36.7 15.4 15.3

Our replication of
Krizhevsky et al. , 1 convnet 40.5 18.1 −−
1 convnet as per Fig. 3 38.4 16.5 −−
5 convnets as per Fig. 3 – (a) 36.7 15.3 15.3

1 convnet as per Fig. 3 but with
layers 3,4,5: 512,1024,512 maps – (b) 37.5 16.0 16.1

6 convnets, (a) & (b) combined 36.0 14.7 14.8

Howard [15] - - 13.5
Clarifai [28] - - 11.7

Varying ImageNet Model Sizes: In Table 2, we first explore the architecture
of Krizhevsky et al. [18] by adjusting the size of layers, or removing them entirely.
In each case, the model is trained from scratch with the revised architecture.
Removing the fully connected layers (6,7) only gives a slight increase in error (in

(Zeiler and Fergus, 2013, Visualizing and understanding

convolutional networks)
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