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Overview

We’ve talked a lot about how to compute gradients, and different
neural models.

How do we actually train those models using gradients?

Today’s lecture: various things that can go wrong in gradient descent,
and what to do about them, e.g., How to tune the learning rates?

For convenience in this part, let’s group all the parameters (weights
and biases) of our network into a single vector θ.
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Features of the Optimization Landscape

convex functions local minima saddle points

plateaux

narrow ravines
cliffs (covered in a

later lecture)

Richard Zemel COMS 4995 Lecture 4: Optimization 3 / 31



Review: Hessian Matrix

The Hessian matrix, denoted H, or ∇2J is the matrix of second
derivatives:

H = ∇2J =


∂2J
∂θ21

∂2J
∂θ1∂θ2

· · · ∂2J
∂θ1∂θD

∂2J
∂θ2∂θ1

∂2J
∂θ22

· · · ∂2J
∂θ2∂θD

...
...

. . .
...

∂2J
∂θD∂θ1

∂2J
∂θD∂θ2

· · · ∂2J
∂θ2D


It’s a symmetric matrix because ∂2J

∂θi∂θj
= ∂2J

∂θj∂θi
.
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Review: Hessian Matrix

Locally, a function can be approximated by its second-order Taylor
approximation around a point θ0:

J (θ) ≈ J (θ0) +∇J (θ0)>(θ − θ0) + 1
2(θ − θ0)>H(θ0)(θ − θ0).

A critical point is a point where the gradient is zero. In that case,

J (θ) ≈ J (θ0) + 1
2(θ − θ0)>H(θ0)(θ − θ0).
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Review: Hessian Matrix

Why the Hessian? A lot of important features of the optimization
landscape can be characterized by the eigenvalues of the Hessian H.

Recall that a symmetric matrix (such as H) has only real eigenvalues,
and there is an orthogonal basis of eigenvectors.

This can be expressed in terms of the spectral decomposition:

H = QΛQ>,

where Q is an orthogonal matrix (whose columns are the
eigenvectors) and Λ is a diagonal matrix (whose diagonal entries are
the eigenvalues).
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Review: Hessian Matrix

We often refer to H as the curvature of a function.

Suppose you move along a line defined by θ + tv for some vector v.

Second-order Taylor approximation:

J (θ + tv) ≈ J (θ) + t∇J (θ)>v +
t2

2
v>H(θ)v

Hence, in a direction where v>Hv > 0, the cost function curves
upwards, i.e. has positive curvature. Where v>Hv < 0, it has
negative curvature.
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Review: Hessian Matrix

A matrix A is positive definite if v>Av > 0 for all v 6= 0. (I.e., it
curves upwards in all directions.)

It is positive semidefinite (PSD) if v>Av ≥ 0 for all v 6= 0.

Equivalently: a matrix is positive definite iff all its eigenvalues are
positive. It is PSD iff all its eigenvalues are nonnegative. (Exercise:
show this using the Spectral Decomposition.)

For any critical point θ∗, if H(θ∗) exists and is positive definite, then
θ∗ is a local minimum (since all directions curve upwards).
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Convex Functions

Recall: a set S is convex if for any x0, x1 ∈ S,

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1.

A function f is convex if for any x0, x1,

f ((1− λ)x0 + λx1) ≤ (1− λ)f (x0) + λf (x1)

Equivalently, the set of
points lying above the
graph of f is convex.

Intuitively: the function
is bowl-shaped.
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Convex Functions

If J is smooth (more precisely, twice differentiable), there’s an
equivalent characterization in terms of H:

A smooth function is convex iff its Hessian is positive semidefinite
everywhere.
Special case: a univariate function is convex iff its second derivative is
nonnegative everywhere.

Exercise: show that squared error, logistic-cross-entropy, and
softmax-cross-entropy losses are convex (as a function of the network
outputs) by taking second derivatives.
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Convex Functions

For a linear model,
z = w>x + b is a linear
function of w and b. If
the loss function is
convex as a function of
z , then it is convex as a
function of w and b.

Hence, linear regression,
logistic regression, and
softmax regression are
convex.
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Local Minima

If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

This is very convenient for optimization since if we keep going
downhill, we’ll eventually reach a global minimum.

Unfortunately, training a network with hidden units cannot be convex
because of permutation symmetries.

I.e., we can re-order the hidden units in a way that preserves the
function computed by the network.
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Local Minima

Special case: a univariate function is convex iff its second derivative is
nonnegative everywhere.

By definition, if a function J is convex, then for any set of points
θ1, . . . ,θN in its domain,

J (λ1θ1 + · · ·+λNθN) ≤ λ1J (θ1) + · · ·+λNJ (θN) for λi ≥ 0,
∑
i

λi = 1.

Because of permutation symmetry, there are K ! permutations of the
hidden units in a given layer which all compute the same function.

Suppose we average the parameters for all K ! permutations. Then we
get a degenerate network where all the hidden units are identical.

If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

Hence, training multilayer neural nets is non-convex.
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Saddle points

A saddle point is a point where:

∇J (θ) = 0

H(θ) has some positive and some negative eigenvalues, i.e. some
directions with positive curvature and some with negative curvature.

When would saddle points be a problem?

If we’re exactly on the saddle point, then we’re stuck.

If we’re slightly to the side, then we can get unstuck.
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Saddle points

Suppose you have two hidden units with identical incoming and
outgoing weights.

After a gradient descent update, they will still have identical weights.
By induction, they’ll always remain identical.

But if you perturbed them slightly, they can start to move apart.

Important special case: don’t initialize all your weights to zero!

Instead, break the symmetry by using small random values.
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Plateaux

A flat region is called a plateau. (Plural: plateaux)

Can you think of examples?

0–1 loss

hard threshold activations

logistic activations & least squares

Richard Zemel COMS 4995 Lecture 4: Optimization 16 / 31



Plateaux

A flat region is called a plateau. (Plural: plateaux)

Can you think of examples?

0–1 loss

hard threshold activations

logistic activations & least squares

Richard Zemel COMS 4995 Lecture 4: Optimization 16 / 31



Plateaux

An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

zi = hi φ
′(z)

wij = zi xj

If φ′(zi ) is always close to zero, then the weights will get stuck.

If there is a ReLU unit whose input zi is always negative, the weight
derivatives will be exactly 0. We call this a dead unit.
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Ill-conditioned curvature

Long, narrow ravines:

Suppose H has some large positive eigenvalues (i.e. high-curvature
directions) and some eigenvalues close to 0 (i.e. low-curvature directions).

Gradient descent bounces back and forth in high curvature directions and
makes slow progress in low curvature directions.

To interpret this visually: the gradient is perpendicular to the contours.

This is known as ill-conditioned curvature. It’s very common in neural net
training.
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Ill-conditioned curvature: gradient descent dynamics

To understand why ill-conditioned curvature is a problem, consider a
convex quadratic objective

J (θ) =
1

2
θ>Aθ,

where A is PSD.

Gradient descent update:

θk+1 ← θk − α∇J (θk)

= θk − αAθk

= (I− αA)θk

Solving the recurrence,

θk = (I− αA)kθ0
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Ill-conditioned curvature: gradient descent dynamics

We can analyze matrix powers such as (I− αA)kθ0 using the spectral
decomposition.

Let A = QΛQ> be the spectral decomposition of A.

(I− αA)kθ0 = (I− αQΛQ>)kθ0

= [Q(I− αΛ)Q>]kθ0

= Q(I− αΛ)kQ>θ0

Hence, in the Q basis, each coordinate gets multiplied by (1− αλi )k ,
where the λi are the eigenvalues of A.

Cases:

0 < αλi ≤ 1: decays to 0 at a rate that depends on αλi
1 < αλi ≤ 2: oscillates
αλi > 2: unstable (diverges)
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Learning Rate

How can spectral decomposition help?

The learning rate α is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:

α too small:
slow progress

α too large:
oscillations

α much too large:
instability
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Ill-conditioned curvature: gradient descent dynamics

Just showed

0 < αλi ≤ 1: decays to 0 at a rate that depends on αλi
1 < αλi ≤ 2: oscillates
αλi > 2: unstable (diverges)

Hence, we need to set the learning rate α < 2/λmax to prevent
instability, where λmax is the largest eigenvalue, i.e. maximum
curvature.

This bounds the rate of progress in another direction:

αλi <
2λi
λmax

.

The quantity λmax/λmin is known as the condition number of A.
Larger condition numbers imply slower convergence of gradient
descent.
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Ill-conditioned curvature: gradient descent dynamics

The analysis we just did was for a quadratic toy problem

J (θ) =
1

2
θ>Aθ.

It can be easily generalized to a quadratic not centered at zero, since
the gradient descent dynamics are invariant to translation.

J (θ) =
1

2
θ>Aθ + b>θ + c

Since a smooth cost function is well approximated by a convex
quadratic (i.e. second-order Taylor approximation) in the vicinity of a
(local) optimum, this analysis is a good description of the behavior of
gradient descent near a (local) optimum.

If the Hessian is ill-conditioned, then gradient descent makes slow
progress towards the optimum.
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Ill-conditioned curvature: normalization

Suppose we have the following dataset for linear regression.

x1 x2 t
114.8 0.00323 5.1
338.1 0.00183 3.2

98.8 0.00279 4.1
...

...
...

wi = y xi

Which weight, w1 or w2, will receive a larger gradient descent update?

Which one do you want to receive a larger update?

Note: the figure vastly understates the narrowness of the ravine!
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Ill-conditioned curvature: normalization

Or consider the following dataset:

x1 x2 t
1003.2 1005.1 3.3
1001.1 1008.2 4.8

998.3 1003.4 2.9
...

...
...
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Ill-conditioned curvature: normalization

To avoid these problems, it’s a good idea to center your inputs to
zero mean and unit variance, especially when they’re in arbitrary units
(feet, seconds, etc.).

x̃j =
xj − µj
σj

Hidden units may have non-centered activations, and this is harder to
deal with.

One trick: replace logistic units (which range from 0 to 1) with tanh
units (which range from -1 to 1)
A recent method called batch normalization explicitly centers each
hidden activation. It often speeds up training by 1.5-2x, and it’s
available in all the major neural net frameworks.
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Momentum

Unfortunately, even with these normalization tricks, ill-conditioned
curvature is a fact of life. We need algorithms that are able to deal
with it.

Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

p← µp− α∂J
∂θ

θ ← θ + p

α is the learning rate, just like in gradient descent.

µ is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 1?

If µ = 1, conservation of energy implies it will never settle down.
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Momentum

In the high curvature directions, the
gradients cancel each other out, so
momentum dampens the oscillations.

In the low curvature directions, the
gradients point in the same direction,
allowing the parameters to pick up speed.

If the gradient is constant (i.e. the cost surface is a plane), the parameters
will reach a terminal velocity of

− α

1− µ
· ∂J
∂θ

This suggests if you increase µ, you should lower α to compensate.

Momentum sometimes helps a lot, and almost never hurts.
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Ravines

Even with momentum and normalization tricks, narrow ravines are
still one of the biggest obstacles in optimizing neural networks.

Empirically, the curvature can be many orders of magnitude larger in
some directions than others!

An area of research known as second-order optimization develops
algorithms which explicitly use curvature information (second
derivatives), but these are complicated and difficult to scale to large
neural nets and large datasets.

There is an optimization procedure called Adam which uses just a
little bit of curvature information and often works much better than
gradient descent. It’s available in all the major neural net frameworks.
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RMSprop and Adam

Recall: SGD takes large steps in directions of high curvature and
small steps in directions of low curvature.

RMSprop is a variant of SGD which rescales each coordinate of the
gradient to have norm 1 on average. It does this by keeping an
exponential moving average sj of the squared gradients.

The following update is applied to each coordinate j independently:

sj ← (1− γ)sj + γ[∂J∂θj ]2

θj ← θj −
α

√
sj + ε

∂J
∂θj

If the eigenvectors of the Hessian are axis-aligned (dubious
assumption), then RMSprop can correct for the curvature. In
practice, it typically works slightly better than SGD.

Adam = RMSprop + momentum

Both optimizers are included in TensorFlow, Pytorch, etc.

Richard Zemel COMS 4995 Lecture 4: Optimization 30 / 31



Recap

We’ve seen how to analyze the typical phenomena in optimization:

Local minima: neural nets are not convex.
Saddle points: Hessian has both positive and negative eigenvalues.
Occurs when there are weight symmetries upon initialization.
Plateaux: Jacobian close to zero, e.g., dead neurons.
Ill-conditioned cuvature (ravines): Hessian has extremely large and very
small positive eigenvalues. Affects the largest possible learning rate
before divergence.

You will likely encounter some of these problems when training neural
nets.

This lecture helps understanding the causes of these phenomena. We
will discuss the workarounds in a future lecture.
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