COMS 4995 Lecture 4:
Optimization

Richard Zemel

Richard Zemel COMS 4995 Lecture 4: Optimization 1/31



Overview

@ We've talked a lot about how to compute gradients, and different
neural models.

@ How do we actually train those models using gradients?

@ Today's lecture: various things that can go wrong in gradient descent,
and what to do about them, e.g., How to tune the learning rates?

e For convenience in this part, let's group all the parameters (weights
and biases) of our network into a single vector 6.
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Features of the Optimization Landscape

convex functions

local minima
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Review: Hessian Matrix

@ The Hessian matrix, denoted H, or V27 is the matrix of second

derivatives:
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@ It's a symmetric matrix because % = —a‘z,ge,.
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Review: Hessian Matrix

@ Locally, a function can be approximated by its second-order Taylor
approximation around a point g:

J(6) ~ T (80) + VI (60) (6 — 60) + 3(6 — 60) TH(60)(6 — 6o).
@ A critical point is a point where the gradient is zero. In that case,

J(0) ~ J(60) + 3(0 — 60) "H(60)(6 — 6o).
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Review: Hessian Matrix

@ Why the Hessian? A lot of important features of the optimization
landscape can be characterized by the eigenvalues of the Hessian H.

@ Recall that a symmetric matrix (such as H) has only real eigenvalues,
and there is an orthogonal basis of eigenvectors.

@ This can be expressed in terms of the spectral decomposition:
H=QAQ",

where Q is an orthogonal matrix (whose columns are the
eigenvectors) and A is a diagonal matrix (whose diagonal entries are
the eigenvalues).
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Review: Hessian Matrix

@ We often refer to H as the curvature of a function.
@ Suppose you move along a line defined by @ + tv for some vector v.
@ Second-order Taylor approximation:

2
T+ tv)~ T(0)+tV.T(0) v+ v

5 v H(O)v

@ Hence, in a direction where v  Hv > 0, the cost function curves
upwards, i.e. has positive curvature. Where v Hv < 0, it has
negative curvature.
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Review: Hessian Matrix

@ A matrix A is positive definite if v Av > 0 for all v #0. (le., it
curves upwards in all directions.)

o It is positive semidefinite (PSD) if v Av > 0 for all v # 0.

o Equivalently: a matrix is positive definite iff all its eigenvalues are
positive. It is PSD iff all its eigenvalues are nonnegative. (Exercise:
show this using the Spectral Decomposition.)

e For any critical point 8., if H(6.) exists and is positive definite, then
0. is a local minimum (since all directions curve upwards).

Richard Zemel COMS 4995 Lecture 4: Optimization 8/31



N
Convex Functions

@ Recall: a set S is convex if for any xg,x; € S,

(1—=Axo+Mx; €S for0<A<1L #|

@ A function f is convex if for any xq, x1,

F((1 = Mxo + Ax1) < (1 — \F(x0) + AM(x1)

@ Equivalently, the set of
. . (1= XA)f(xo) i :
points lying above the b\ Ao e

g + Af(z1)
graph of f is convex.
@ Intuitively: the function
is bowl-shaped. £ = Nao !
+ Azq) ;! ;i i

Zo (1- Nz T
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Convex Functions

e If J is smooth (more precisely, twice differentiable), there's an
equivalent characterization in terms of H:
e A smooth function is convex iff its Hessian is positive semidefinite
everywhere.
o Special case: a univariate function is convex iff its second derivative is
nonnegative everywhere.

o Exercise: show that squared error, logistic-cross-entropy, and
softmax-cross-entropy losses are convex (as a function of the network
outputs) by taking second derivatives.
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Convex Functions

@ For a linear model,
z=w'x+ bis a linear
function of w and b. If §
the loss function is (=NLlwo) L\ -------------------- e of -

_ +AL(wy)
convex as a function of
z, then it is convex as a
function of w and b.

L((1 = Nwo
@ Hence, linear regression,  +\w) i f i
logistic regression, and
softmax regression are
convex. - - >
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Local Minima

@ If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

@ This is very convenient for optimization since if we keep going
downhill, we'll eventually reach a global minimum.
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Local Minima

@ If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

@ This is very convenient for optimization since if we keep going
downhill, we'll eventually reach a global minimum.

@ Unfortunately, training a network with hidden units cannot be convex
because of permutation symmetries.

e l.e., we can re-order the hidden units in a way that preserves the
function computed by the network.

E\E =D el
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Local Minima

Special case: a univariate function is convex iff its second derivative is
nonnegative everywhere.

@ By definition, if a function J is convex, then for any set of points
04,...,0p in its domain,

TJMO1+- -+ AOn) < MT(01)+- -+ AnT (On) for A 2072)\,': 1.

@ Because of permutation symmetry, there are K! permutations of the
hidden units in a given layer which all compute the same function.

@ Suppose we average the parameters for all K! permutations. Then we
get a degenerate network where all the hidden units are identical.

@ If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

@ Hence, training multilayer neural nets is non-convex.
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|
Saddle points

A saddle point is a point where:
e VJ(0)=0
@ H(0) has some positive and some negative eigenvalues, i.e. some
directions with positive curvature and some with negative curvature.

When would saddle points be a problem?
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|
Saddle points

A saddle point is a point where:
e VJ(0)=0
@ H(0) has some positive and some negative eigenvalues, i.e. some
directions with positive curvature and some with negative curvature.

When would saddle points be a problem?
o If we're exactly on the saddle point, then we're stuck.

o If we're slightly to the side, then we can get unstuck.
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|
Saddle points

@ Suppose you have two hidden units with identical incoming and
outgoing weights.

o After a gradient descent update, they will still have identical weights.
By induction, they'll always remain identical.

@ But if you perturbed them slightly, they can start to move apart.
@ Important special case: don't initialize all your weights to zero!
o Instead, break the symmetry by using small random values.
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Plateaux

A flat region is called a plateau. (Plural: plateaux)

RN T

Can you think of examples?
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Plateaux

A flat region is called a plateau. (Plural: plateaux)

RN T

Can you think of examples?
@ 0-1 loss
@ hard threshold activations

@ logistic activations & least squares
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N
Plateaux

@ An important example of a plateau is a saturated unit. This is when
it is in the flat region of its activation function. Recall the backprop
equation for the weight derivative:

o If ¢/(z) is always close to zero, then the weights will get stuck.

o If there is a ReLU unit whose input z; is always negative, the weight
derivatives will be exactly 0. We call this a dead unit.
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[ll-conditioned curvature

Long, narrow ravines:

Resenbrock / o
minimum
% : \ 2 //v

@ Suppose H has some large positive eigenvalues (i.e. high-curvature
directions) and some eigenvalues close to 0 (i.e. low-curvature directions).

@ Gradient descent bounces back and forth in high curvature directions and
makes slow progress in low curvature directions.

e To interpret this visually: the gradient is perpendicular to the contours.
@ This is known as ill-conditioned curvature. It's very common in neural net
training.
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lll-conditioned curvature: gradient descent dynamics

@ To understand why ill-conditioned curvature is a problem, consider a
convex quadratic objective

J(6) = 507 A6,

where A is PSD.
o Gradient descent update:

0k+1 — Ok — an(Hk)
= 0 — oAb,
= (1—aA)d,

@ Solving the recurrence,
0, = (1 — aA)<6
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lll-conditioned curvature: gradient descent dynamics

@ We can analyze matrix powers such as (I — aA)*8 using the spectral
decomposition.

o Let A= QAQ' be the spectral decomposition of A.

(1 — aA) 0y = (1 — aQAQ T )*0,
= [Q(1 - an)Q ]"60
= Q(1 — aN) Q"6

@ Hence, in the Q basis, each coordinate gets multiplied by (1 — a/\,-)k,
where the A; are the eigenvalues of A.
o Cases:

o 0 < a); < 1: decays to 0 at a rate that depends on a);
o 1 < a); <2: oscillates
e a); > 2: unstable (diverges)
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Learning Rate

@ How can spectral decomposition help?

@ The learning rate « is a hyperparameter we need to tune. Here are
the things that can go wrong in batch mode:

o too small: a too large:
slow progress oscillations

a much too large:
instability
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lll-conditioned curvature: gradient descent dynamics

@ Just showed
e 0 < a); <1: decays to 0 at a rate that depends on a;
o 1 < a); <2: oscillates
e a); > 2: unstable (diverges)
@ Hence, we need to set the learning rate o < 2/A\pax to prevent
instability, where A ax is the largest eigenvalue, i.e. maximum
curvature.

@ This bounds the rate of progress in another direction:
2
a\j < L.

)\max

@ The quantity Amax/Amin is known as the condition number of A.

Larger condition numbers imply slower convergence of gradient
descent.
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lll-conditioned curvature: gradient descent dynamics

@ The analysis we just did was for a quadratic toy problem
1
J(0) = §esrTAe.

@ It can be easily generalized to a quadratic not centered at zero, since
the gradient descent dynamics are invariant to translation.

1
J(0) = 5¢9TA49 +b'0+c

@ Since a smooth cost function is well approximated by a convex
quadratic (i.e. second-order Taylor approximation) in the vicinity of a
(local) optimum, this analysis is a good description of the behavior of
gradient descent near a (local) optimum.

@ If the Hessian is ill-conditioned, then gradient descent makes slow
progress towards the optimum.
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[ll-conditioned curvature: normalization

@ Suppose we have the following dataset for linear regression.

/\\ /W\\,
W,.,(

X1 X2 t

114.8 0.00323 | 5.1

338.1 0.00183 | 3.2
98.8 0.00279 | 4.1 Wi =V x;

R

W,

@ Which weight, wy or wy, will receive a larger gradient descent update?
@ Which one do you want to receive a larger update?

o Note: the figure vastly understates the narrowness of the ravine!
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[ll-conditioned curvature: normalization

@ Or consider the following dataset:

X1 Xo ‘ t
1003.2 1005.1 | 3.3
1001.1 1008.2 | 4.8

998.3 1003.4 | 2.9
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[ll-conditioned curvature: normalization

@ To avoid these problems, it's a good idea to center your inputs to
zero mean and unit variance, especially when they’re in arbitrary units
(feet, seconds, etc.).

X TR
gj

13

<

@ Hidden units may have non-centered activations, and this is harder to
deal with.
o One trick: replace logistic units (which range from 0 to 1) with tanh
units (which range from -1 to 1)
o A recent method called batch normalization explicitly centers each
hidden activation. It often speeds up training by 1.5-2x, and it’s
available in all the major neural net frameworks.
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Momentum

@ Unfortunately, even with these normalization tricks, ill-conditioned
curvature is a fact of life. We need algorithms that are able to deal
with it.

@ Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

up—a’d
P < up 90
0—60+p

@ « is the learning rate, just like in gradient descent.

@ 1 is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 17
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Momentum

@ Unfortunately, even with these normalization tricks, ill-conditioned
curvature is a fact of life. We need algorithms that are able to deal
with it.

@ Momentum is a simple and highly effective method. Imagine a hockey
puck on a frictionless surface (representing the cost function). It will
accumulate momentum in the downhill direction:

-
P pp—agg
0—60+p

@ « is the learning rate, just like in gradient descent.

@ 1 is a damping parameter. It should be slightly less than 1 (e.g. 0.9
or 0.99). Why not exactly 17

o If 4 =1, conservation of energy implies it will never settle down.

Richard Zemel COMS 4995 Lecture 4: Optimization 27/31



Momentum

20
@ In the high curvature directions, the

gradients cancel each other out, so
momentum dampens the oscillations. 0

10

@ In the low curvature directions, the -10

gradients point in the same direction, —20
allowing the parameters to pick up speed.

—30
—30 —-20 —10 0 0 20

@ If the gradient is constant (i.e. the cost surface is a plane), the parameters
will reach a terminal velocity of

o 9T
1—p 00

This suggests if you increase p, you should lower a to compensate.

@ Momentum sometimes helps a lot, and almost never hurts.
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Ravines

@ Even with momentum and normalization tricks, narrow ravines are
still one of the biggest obstacles in optimizing neural networks.

@ Empirically, the curvature can be many orders of magnitude larger in
some directions than others!

@ An area of research known as second-order optimization develops
algorithms which explicitly use curvature information (second
derivatives), but these are complicated and difficult to scale to large
neural nets and large datasets.

@ There is an optimization procedure called Adam which uses just a
little bit of curvature information and often works much better than
gradient descent. It's available in all the major neural net frameworks.
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-
RMSprop and Adam

Recall: SGD takes large steps in directions of high curvature and
small steps in directions of low curvature.
RMSprop is a variant of SGD which rescales each coordinate of the
gradient to have norm 1 on average. It does this by keeping an
exponential moving average s; of the squared gradients.
The following update is applied to each coordinate j independently:
5« (1=7)s + 131

a 0F
NGCREXL
If the eigenvectors of the Hessian are axis-aligned (dubious
assumption), then RMSprop can correct for the curvature. In
practice, it typically works slightly better than SGD.

9j<—9j—

@ Adam = RMSprop + momentum
@ Both optimizers are included in TensorFlow, Pytorch, etc.
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|
Recap

@ We've seen how to analyze the typical phenomena in optimization:

e Local minima: neural nets are not convex.

e Saddle points: Hessian has both positive and negative eigenvalues.
Occurs when there are weight symmetries upon initialization.

o Plateaux: Jacobian close to zero, e.g., dead neurons.

o lll-conditioned cuvature (ravines): Hessian has extremely large and very
small positive eigenvalues. Affects the largest possible learning rate
before divergence.

@ You will likely encounter some of these problems when training neural
nets.

@ This lecture helps understanding the causes of these phenomena. We
will discuss the workarounds in a future lecture.
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