COMS 4995 Lecture 3:
Automatic Differentiation
& Distributed Representations

Richard Zemel

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 1/48

Overview

@ Lecture 2 covered the algebraic view of backprop.
@ This lecture focuses on how to implement an automatic
differentiation library:
e build the computation graph
o vector-Jacobian products (VJP) for primitive ops
o the backwards pass
o We'll cover Autograd, a lightweight autodiff tool. PyTorch’s
implementation is very similar.
e You will probably never have to implement autodiff yourself but it is
good to know its inner workings.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 2/48

Confusing Terminology

e Automatic differentiation (autodiff) refers to a general way of taking
a program which computes a value, and automatically constructing a
procedure for computing derivatives of that value.

@ Backpropagation is the special case of autodiff applied to neural nets

e But in machine learning, we often use backprop synonymously with
autodiff

@ Autograd is the name of a particular autodiff library we will cover in
this lecture. There are many others, e.g. PyTorch, TensorFlow.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 3/48

What Autodiff Is Not: Finite Differences

@ We often use finite differences to check our gradient calculations.
@ One-sided version:

X1,y Xi+hyooo xn) = F(X1, ooy Xiy e ooy XN)
h

0
8—)(if(xl, Ce XN R

@ Two-sided version:

O, xi b oxw) = (x5 = hy o x)
aXif-(Xh...,XN) ~ >h

— exact
— one-sided
— two-sided

r—h T T+ h

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti

4/48

N
What Autodiff Is Not: Finite Differences

@ Autodiff is not finite differences.
e Finite differences are expensive, since you need to do a forward pass for
each derivative.
o It also induces huge numerical error.
e Normally, we only use it for testing.
e Autodiff is both efficient (linear in the cost of computing the value)
and numerically stable.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 5/48

N
What Autodiff Is

@ An autodiff system will convert the program into a sequence of primitive
operations (ops) which have specified routines for computing derivatives.

@ In this representation, backprop can be done in a completely mechanical way.

Sequence of primitive operations:

tp = wx
Original program: 0t b
Z =1
z=wx-+b t3 = —z
y = 71 ty = exp(t3)
1+ exp(—2) =14t
1
5=§(y—t)2 y=1/ts
te =y —t
=t
L= t7/2

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 6/48

N
What Autodiff Is

import autograd.numpy as np
from autograd import grad very sneaky!

def sigmoid(x):
return 0.5%(np.tanh(x) + 1)

def logistic_predictions(weights, inputs):
Outputs probability of a label being true according to logistic model.
return sigmoid(np.dot(inputs, weights))

de

&

training_loss(weights):

Training loss is the negative log-likelihood of the training labels.
preds = logistic_predictions(weights, inputs)

label_probabilities = preds * targets + (1 - preds) * (1 - targets)
return -np.sum(np.log(label_probabilities))

... (load the data) ...

Define a function that returns gradients of training loss using Autograd.
training_gradient_fun = grad(training_loss)
¥~ Autograd constructs a

Optimize weights using gradient descent. function for computing derivatives

weights = np.array([0.0, 0.0, 0.0])
print "Initial loss:", training_loss(weights)
for i in xrange(100):

weights -= training_gradient_fun(weights) * 0.01

print "Trained loss:", training_loss(weights)

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 7/48

-
Autograd

@ The rest of this lecture covers how Autograd is implemented.
@ Source code for the original Autograd package:
e https://github.com/HIPS/autograd

o Autodidact, a pedagogical implementation of Autograd — you are
encouraged to read the code.

e https://github.com/mattjj/autodidact
e Thanks to Matt Johnson for providing this!

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 8/48

https://github.com/HIPS/autograd
https://github.com/mattjj/autodidact

-
Building the Computation Graph

w w®)
X—7Z—h—Y—/[
b® b®

@ Most autodiff systems, including Autograd, explicitly construct the
computation graph.
@ Some frameworks like TensorFlow provide mini-languages for building
computation graphs directly. Disadvantage: need to learn a totally new API.
o Autograd instead builds them by tracing the forward pass computation,
allowing for an interface nearly indistinguishable from NumPy.
@ The Node class (defined in tracer.py) represents a node of the
computation graph. It has attributes:
e value, the actual value computed on a particular set of inputs
o fun, the primitive operation defining the node
o args and kwargs, the arguments the op was called with
@ parents, the parent Nodes

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 9/48

-
Building the Computation Graph

@ Autograd’s fake NumPy module provides primitive ops which look and
feel like NumPy functions, but secretly build the computation graph.

@ They wrap around NumPy functions:

function: F

primitive

autograd.numpy.sum

parents: [X]

Richard Zemel

unbox

numpy . sum

box

ICOMS 4995 Lecture 3: Automatic Differenti

function: anp.sum
parents: [a]

10/48

-
Building the Computation Graph

Example:

def logistic(z):
return 1. / (1. + np.exp(-z))

that 1is equivalent to:
def logistic2(z):
return np.reciprocal(np.add(1l, np.exp(np.negative(z))))

z=1.5
= logistic(z)
node z node t1 node t2 node t3 node y
value: 1.5 value: -1.5 value: 0.223 value: 1.223 value: 0.818
function: None function: negative function: exp function: add function: reciprocal
parents: [| parents: [z] parents: [t1] parents: [t2] parents: [t3]

/

1

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 11/48

Recap: Vector-Jacobian Products

@ Recall: the Jacobian is the matrix of partial derivatives:

v ... n
Ox1 Oxp
dy : .
J = — =
ox . : .
m .. OYm
Ox1 Oxp

@ The backprop equation (single child node) can be written as a
vector-Jacobian product (VJP):

— __ Oy o T
Xj=) Vi x=y J
2o
@ That gives a row vector. We can treat it as a column vector by taking

x=JTy

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 12 /48

Recap: Vector-Jacobian Products

Examples
@ Matrix-vector product

z=Wx J=W x=W'z
@ Elementwise operations

exp(z1) 0
y=epz) J= 7= exp(2) o
0 exp(zp)

o Note: we never explicitly construct the Jacobian. It's usually simpler
and more efficient to compute the VJP directly.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 13 /48

Vector-Jacobian Products

@ For each primitive operation, we must specify VJPs for each of its
arguments. Consider y = exp(x).

@ This is a function which takes in the output gradient (i.e. y), the
answer (y), and the arguments (x), and returns the input gradient (X)

@ defvjp (defined in core.py) is a convenience routine for registering
VJPs. It just adds them to a dict.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 14 /48

-
Backprop as Message Passing

o Consider a naive backprop implementation where the z module needs
to compute Z using the formula:

@ This breaks modularity, since z needs to know how it's used in the
network in order to compute partial derivatives of r, s, and t.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 15 /48

-
Backprop as Message Passing

Backprop as message passing:
@ Each node receives a bunch
of messages from its
children, which it aggregates
to get its error signal. It
then passes messages to its
parents.

@ Each of these messages is a VJP.

@ This formulation provides modularity: each node needs to know how
to compute its outgoing messages, i.e. the VJPs corresponding to
each of its parents (arguments to the function).

@ The implementation of z doesn't need to know where Z came from.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 16 /48

Backward Pass

@ The backwards pass is defined in core.py.
@ The argument g is the error signal for the end node; for us this is always £ = 1.

def backward_pass(g, end_node):
outgrads = {end_node: g}
for node in toposort(end_node):
outgrad = outgrads.pop(node)
fun, value, args, kwargs, argnums = node.recipe
for argnum, parent in zip(argnums, node.parents):
vjp = primitive_vjps[funl] [argnum]
parent_grad = vjp(outgrad, value, xargs, *xkwargs)
outgrads [parent] = add_outgrads(outgrads.get(parent), parent_grad)

return outgrad

def add_outgrads(prev_g, g):
if prev_g is None:
return g
return prev_g + g

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 17 /48

Backward Pass

@ grad (in differential_operators.py) is just a wrapper around make_vjp (in
core.py) which builds the computation graph and feeds it to backward_pass.
@ grad itself is viewed as a VJP, if we treat £ as the 1 x 1 matrix with entry 1.

def

def

oL oL —
w - ow”

make_vip(fun, x):
"""Trace the computation to build the computation graph, and return
a function which implements the backward pass."""
start_node = Node.new_root()
end_value, end node = trace(start_node, fun, x)
def vip(g):
return backward_pass(g, end_node)
return vip, end_value

grad(fun, argnum=@):

def gradfun(*args, **kwargs):
unary_fun = lambda x: fun(*subwal(args, argnum, x), **kwargs)
vip, ans = make_vip(unary_fun, args[argnum])
return vjp(np.ones_likeCans))

return gradfun

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 18 /48

Recap

@ We saw three main parts to the code:

e tracing the forward pass to build the computation graph
e vector-Jacobian products for primitive ops
e the backwards pass

@ Building the computation graph requires fancy NumPy gymnastics,
but other two items are basically what | showed you.

@ You're encouraged to read the full code (< 200 lines!) at:

https://github.com/mattjj/autodidact/tree/master/autograd

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti

19/48

https://github.com/mattjj/autodidact/tree/master/autograd

Learning to learning by gradient descent by gradient
descent

Y
+

) 8
Optimizee —> + — + |
- Tjt-z - 91 i 9t

Optimizer —> m 3 —> m : :
t2 | ght-1 i 5 h ; P4

https://arxiv.org/pdf/1606.04474.pdf

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 20 /48

https://arxiv.org/pdf/1606.04474.pdf

|
Gradient-Based Hyperparameter Optimization

P(digit | image)

7 T

6 Layer 1
2 5 Layer 2
®
= Layer 3
o4
£ Layer 4
=3
]
2 2

1]

0

20 40 60 80 100
Schedule index

[=)

j

https://arxiv.org/abs/1502.03492

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 21/48

https://arxiv.org/abs/1502.03492

Overview

@ Let's now take a break from backpropagation and see a real example
of a neural net to learn feature representations of words.

o We'll see a lot more neural net architectures later in the course.

o We'll also introduce the models used in Assignment 1.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 22 /48

-
Review: Probability and Bayes’ Rule

Suppose we want to build a speech recognition system.

We'd like to be able to infer a likely sentence s given the observed speech
signal a. The generative approach is to build two components:

@ An observation model, represented as p(a|s), which tells us how
likely the sentence s is to lead to the acoustic signal a.

@ A prior, represented as p(s), which tells us how likely a given sentence

s is. E.g., it should know that “recognize speech” is more likely that
“wreck a nice beach.”

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 23 /48

-
Review: Probability and Bayes’ Rule

Suppose we want to build a speech recognition system.
We'd like to be able to infer a likely sentence s given the observed speech
signal a. The generative approach is to build two components:
@ An observation model, represented as p(a|s), which tells us how
likely the sentence s is to lead to the acoustic signal a.

@ A prior, represented as p(s), which tells us how likely a given sentence
s is. E.g., it should know that “recognize speech” is more likely that
“wreck a nice beach.”

Given these components, we can use Bayes' Rule to infer a posterior
distribution over sentences given the speech signal:

p(s)p(als)
g P(s)p(als’)

p(SIa):Z

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 23 /48

-
Language Modeling

From here on, we will focus on learning a good distribution p(s) of
sentences. This problem is known as language modeling.

Assume we have a corpus of sentences s, ... s(M). The maximum
likelihood criterion says we want our model to maximize the probability
our model assigns to the observed sentences. We assume the sentences are
independent, so that their probabilities multiply.

N
maxH p(s).
i=1

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 24 /48

-
Language Modeling

In maximum likelihood training, we want to maximize vazl p(s).

The probability of generating the whole training corpus is vanishingly small
— like monkeys typing all of Shakespeare.

@ The log probability is something we can work with more easily. It also
conveniently decomposes as a sum:

N N
log [T p(s”) = > log p(s”).
i=1 i=1

@ This is equivalent to the cross-entropy loss.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 25 /48

-
Language Modeling

@ Probability of a sentence? What does that even mean?

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 26 /48

-
Language Modeling

@ Probability of a sentence? What does that even mean?

o A sentence is a sequence of words wi, wa, ..., wr. Using the chain rule of
conditional probability, we can decompose the probability as

p(S) = p(W17 ey WT) = p(Wl)p(W2 | Wl) e p(WT | Wi, ..., WT*I)-
@ Therefore, the language modeling problem is equivalent to being able to

predict the next word!

@ We typically make a Markov assumption, i.e. that the distribution over the
next word only depends on the preceding few words. l.e., if we use a context
of length 3,

p(we |wi, ..., we1) = p(we | we_3, we_2, we_1).

@ Such a model is called memoryless.

o Now it's basically a supervised prediction problem. We need to predict the
conditional distribution of each word given the previous K.

@ When we decompose it into separate prediction problems this way, it's called
an autoregressive model.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 26 /48

-
N-Gram Language Models

@ One sort of Markov model we can learn uses a conditional probability table,

i.e.)
‘ cat and city

the fat 0.21 0.003 0.01
four score | 0.0001 0.55 0.0001
New York 0.002 0.0001 0.48

@ Maybe the simplest way to estimate the probabilities is from the empirical
distribution:
p(wy = the, wy = fat, wy = cat)

— cat = th = fat) =
p(ws = cat | wy €, W2 at) p(wy = the, wy, = fat)

__ count(the fat cat)
count(the fat)

@ The phrases we're counting are called n-grams (where n is the length), so
this is an n-gram language model.

o Note: the above example is considered a 3-gram model; not-a 2-gram
Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 27 /48

-
N-Gram Language Models

Shakespeare:

—To him swallowed confess hear both. Which. Of save on trail for are ay device and
1 rote life have
gram —Hill he late speaks; or! a more to leg less first you enter

—Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
2 king. Follow.
gram —What means, sir. I confess she? then all sorts, he is trim, captain.

—Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,

3 ’tis done.

gram -This shall forbid it should be branded, if renown made it empty.

—King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
4 great banquet serv’d in;
gram -It cannot be but so.

Jurafsky and Martin, Speech and Language Processing

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 28 /48

-
N-Gram Language Models

Woall Street Journal:

1 Months the my and issue of year foreign new exchange’s september

gram were recession exchange new endorsed a acquire to six executives
Last December through the way to preserve the Hudson corporation N.

2 B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

They also point to ninety nine point six billion dollars from two hundred
3 four oh six three percent of the rates of interest stores as Mexico and
gram Brazil on market conditions

Jurafsky and Martin, Speech and Language Processing

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 29 /48

-
N-Gram Language Models

@ Problems with n-gram language models

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 30/48

-
N-Gram Language Models

@ Problems with n-gram language models
e The number of entries in the conditional probability table is
exponential in the context length.
e Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 30/48

-
N-Gram Language Models

@ Problems with n-gram language models

e The number of entries in the conditional probability table is
exponential in the context length.

e Data sparsity: most n-grams never appear in the corpus, even if they
are possible.

o Traditional ways to deal with data sparsity

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 30/48

-
N-Gram Language Models

@ Problems with n-gram language models
e The number of entries in the conditional probability table is
exponential in the context length.
e Data sparsity: most n-grams never appear in the corpus, even if they
are possible.
o Traditional ways to deal with data sparsity
o Use a short context (but this means the model is less powerful)
e Smooth the probabilities, e.g. by adding imaginary counts
o Make predictions using an ensemble of n-gram models with different n

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 30/48

Distributed Representations

@ Conditional probability tables are a kind of localist representation: all the
information about a particular word is stored in one place, i.e. a column of the
table.

@ But different words are related, so we ought to be able to share information
between them. For instance, consider this matrix of word attributes:

| academic politics plural person building

students 1 0 1 1 0
colleges 1 0 1 0 1
legislators 0 1 1 1 0
schoolhouse 1 0 0 0 1

@ And this matrix of how each attribute influences the next word:

bill is are papers built standing
academic — +
politics + -
plural — +
person +
building + +

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 31/48

@ Imagine these matrices are layers in an MLP. (One-hot representations of words,
softmax over next word.)

current word features next word

<
legislators /\

@ Here, the information about a given word is distributed throughout the
representation. We call this a distributed representation.

@ In general, when we train an MLP with backprop, the hidden units won't have
intuitive meanings like in this cartoon. But this is a useful intuition pump for what
MLPs can represent.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 32/48

Distributed Representations

@ We would like to be able to share information between related words.
E.g., suppose we've seen the sentence
The cat got squashed in the garden on Friday.

@ This should help us predict the words in the sentence
The dog got flattened in the yard on Monday.

@ An n-gram model can't generalize this way, but a distributed
representation might let us do so.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 33/48

-
Neural Language Model

@ Predicting the distribution of the next word given the previous K is
just a multiway classification problem.

o Inputs: previous K words

o Target: next word

@ Loss: cross-entropy. Recall that this is equivalent to maximum
likelihood:

-
—log p(s) = — Iong(wt [Wi, ..., Weet)

t=1

T
= —Zlogp(wt [wa, ..., wee1)
=1

T v
= - Z Z tw log yiv,

t=1 v=1
where t;, is the one-hot encoding for the ith word and y;, is the
predicted probability for the ith word being index v.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 34 /48

Bengio's Neural Language Model

@ Here is a classic neural probabilistic language model, or just neural

language model:

| “softmax” units (one per possible next word) |

skip-layer
connections

{

| units that leafn to predict the output word from features of the|input words |

1

learned distributed
encoding of word t-2
'T‘table look-up

| index of word at t-2 |

http://www. jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

t

learned distributed
encoding of word t-1

T table look-up

| index of word at t-1 |

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti

35/48

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

-
Neural Language Model

o If we use a 1-of-K encoding for the words, the first layer can be
thought of as a linear layer with tied weights.

[Twy |[Twy [[Tws |
R R R
[00@0][@000][000 @]
w1 (105} w3

@ The weight matrix basically acts like a lookup table. Each column is
the representation of a word, also called an embedding, feature
vector, or encoding.

o “Embedding” emphasizes that it's a location in a high-dimensonal
space; words that are closer together are more semantically similar

o “Feature vector’ emphasizes that it's a vector that can be used for
making predictions, just like other feature mappigns we've looked at
(e.g. polynomials)

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 36 /48

-
Neural Language Model

@ We can measure the similarity or dissimilarity of two words using

o the dot product r{ r,
o Euclidean distance ||r; — r3||

@ If the vectors have unit norm, the two are equivalent:

Jr1—rol> = (r1—r2) " (r1 — r2)

= rlTrl — 2r1Tr2 + r2Tr2
=2— 2rIr2

@ In this case, the dot product is called cosine similarity.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 37/48

-
Neural Language Model

@ This model is very compact: the number of parameters is linear in the
context size, compared with exponential for n-gram models.

| “softmax” units (one per possible next word) |
skip-layer A
connections

| units that leafn to predict the output word from features of the|input words |

¢ t

learned distributed learned distributed
encoding of word t-2 encoding of word t-1

Ttable look-up 1‘table look-up
| index of word at t-2 | | index of word at t-1 |

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 38/48

-
Neural Language Model

@ What do these word embeddings look like?

@ It's hard to visualize an n-dimensional space, but there are algorithms
for mapping the embeddings to two dimensions.

@ The following 2-D embeddings are done with an algorithm called
tSNE which tries to make distnaces in the 2-D embedding match the
original 30-D distances as closely as possible.

@ Note: the visualizations are from a slightly different model.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 39/48

-
Neural Language Model

winmexr
r
playe nfl SOoCCer)
te bafpelliidder ing
Hub sport baseball
leaglle ol ic wxes ngy
cha‘mpinwp sports
STMERSY e RIRER D S
finals championships
ol ics
TR matches
bW(Tp races games
medal teg}nlrl.bs
oiiSa players

awards fans

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 40/48

Neural Language Model

ictoxia

Lom mmn‘nchester
beghivs
moscow i scotland
mexico gland
canada ; iveland i eain
. aus sl o den
singapo, . i
:}ﬁema 201{% trri
as]ﬁl";i-ca_ nieia d
Imlr'éa_ apan yome
pa N eqypt

[
41/48

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti

-
Neural Language Model

rather incre ai:i“g_lll' hg‘r thigh
ompiatet £ ?
completely yipom
newl ¥ % wh
greatly j
eavi i 1y iy 11 o]“t'tll:"th %ther
wucioseii bxriefly ¥ ever even SHEX ¥
widelfivectly alveady
then o Vet
C: Yy “officially nox
specific S TYETN as_ but
Sy ghortly *° it o
. ;lary_eli':r cumtl}' ot never o iately bec:use we“ere
Hﬂ"ffﬂ i1Ine !Eﬂﬂ%ﬁ }
moStly generalip eventuallyagain

i hilst
paytigulayTprmernf meﬂfﬁ&éi““u amm%fgi}') before

excep!

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 42 /48

-
Neural Language Model

@ Thinking about high-dimensional embeddings
o Most vectors are nearly orthogonal (i.e. dot product is close to 0)
e Most points are far away from each other
e "In a 30-dimensional grocery store, anchovies can be next to fish and
next to pizza toppings.” — Geoff Hinton
@ The 2-D embeddings might be fairly misleading, since they can't
preserve the distance relationships from a higher-dimensional
embedding. (l.e., unrelated words might be close together in 2-D, but
far apart in 30-D.)

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 43 /48

GloVe

o Fitting language models is really hard:
e lIt's really important to make good predictions about relative
probabilities of rare words.
o Computing the predictive distribution requires a large softmax.

@ Maybe this is overkill if all you want is word representations.

@ Global Vector (GloVe) embeddings are a simpler and faster approach
based on a matrix factorization similar to principal component
analysis (PCA).

o First fit the distributed word representations using GloVe, then plug
them into a neural net that does some other task (e.g. language
modeling, translation).

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 44 /438

N
GloVe

@ Distributional hypothesis: words with similar distributions have similar
meanings (“judge a word by the company it keeps")

@ Consider a co-occurrence matrix X, which counts the number of
times two words appear nearby (say, less than 5 positions apart)

e Thisis a V x V matrix, where V is the vocabulary size (very large)

o Intuition pump: suppose we fit a rank-K approximation X ~ RR",
where R and R are V' x K matrices.
e Each row r; of R is the K-dimensional representation of a word
o Each entry is approximated as x; ~ r,-T?j
e Hence, more similar words are more likely to co-occur
o

Minimizing the squared Frobenius norm
X = RRT|2 = > i(xij — r]¥;)? is basically PCA,

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 45 /48

N
GloVe

@ Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 46 /48

N
GloVe

@ Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.
o Solution: Reweight the entries so that only nonzero counts matter

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 46 /48

N
GloVe

@ Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.
o Solution: Reweight the entries so that only nonzero counts matter
@ Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 46 /48

N
GloVe

@ Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.
o Solution: Reweight the entries so that only nonzero counts matter
@ Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.
o Solution: Approximate log x;; instead of x;;.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 46 /48

N
GloVe

@ Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.
o Solution: Reweight the entries so that only nonzero counts matter
@ Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.
o Solution: Approximate log x;; instead of x;;.
@ Global Vector (GloVe) embedding cost function:

J(R) = Z f(x;)(ri' ¥ + bi + b; — log x;)?

i

(7)*if x; < 100
f(xy) = .
1 if x; > 100

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 46 /48

N
GloVe

@ Problem 1: X is extremely large, so fitting the above factorization
uisng least squares is infeasible.
o Solution: Reweight the entries so that only nonzero counts matter
@ Problem 2: Word counts are a heavy-tailed distribution, so the most
common words will dominate the cost function.
o Solution: Approximate log x;; instead of x;;.

@ Global Vector (GloVe) embedding cost function:

J(R) = f(xy)(r# + br + bj — log x;)*

ij
xii \3/4 .
Flxg) = (ﬁ) if x;; < 100
g 1 if x; > 100

@ b; and Ej are bias parameters.
e We can avoid computing log0 since f(0) = 0.
@ We only need to consider the nonzero entries of X. This gives a big

computational savings since X is extremely sparse!

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 46 /48

-
Word Analogies

@ Here's a linear projection of word representations for cities and capitals into
2 dimensions.

@ The mapping city — capital corresponds roughly to a single direction in the

vector Space: Country and Capital Vectors Projected by PCA

2 T T T T

China¢
~Beijing
15 Russia< 1
Japan<
*Moscow
1k 4
Turkey: Ankara ~Tokyo
05 | b
Poland-
of Germany- i
France *Warsaw
5 Berlin
-05 Italy< Paris B
Greece: s —Athens
4L Spain Rome |
I “Madrid |
-1.5 |- Portugal ‘Lisbon
2 . . . L L . I
-2 -1.5 -1 -0.5 0 0.5 1 15 2

@ Note: this figure actually comes from skip-grams, a predecessor to GloVe.

Richard Zemel ICOMS 4995 Lecture 3: Automatic Differenti 47 /48

-
Word Analogies

@ In other words,
vector(Paris) — vector(France) ~ vector(London) — vector(England)

@ This means we can analogies by doing arithmetic on word vectors:
e e.g. "Parisis to France as Londonisto "
e Find the word whose vector is closest to
vector(France) — vector(Paris) 4+ vector(London)
@ Example analogies:

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Dallas: Texas Kona: Hawaii

Richard Zemel

Miami - Florida
Einstein - scientist
Sarkozy - France

Microsoft - Ballmer
Japan - sushi

Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy

Google: Yahoo
Germany: bratwurst

Mozart: violinist
Merkel: Germany

IBM: McNealy
France: tapas

Picasso: painter
Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack
Microsoft - Windows Google: Android IBM: Linux Apple: iPhone

Apple: Jobs
USA: pizza

ICOMS 4995 Lecture 3: Automatic Differenti

48 /48

