COMS 4995 Lecture 2:
Multilayer Perceptrons & Backpropagation

Richard Zemel

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 1/44

Limits of Linear Classification

@ Single neurons (linear classifiers) are very limited in expressive power.

@ XOR is a classic example of a function that's not linearly separable.

€2

X1

@ There's an elegant proof using convexity.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 2/44

Limits of Linear Classification

Convex Sets

N

@ A set S is convex if any line segment connecting points in S lies
entirely within §. Mathematically,

X1, €S = M +(1-A)xxe€8S for0< A< L

@ A simple inductive argument shows that for x;,...,xy € S, weighted
averages, or convex combinations, lie within the set:

Axi+ -+ Ayxy €S for \j >0, M +---Ay=1.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 3/44

Limits of Linear Classification

Showing that XOR is not linearly separable

@ Half-spaces are obviously convex.

@ Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

@ Similarly, the red line segment must line within the negative half-space.

T2

@ But the intersection can't lie in both half-spaces. Contradiction!

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 4/44

Limits of Linear Classification

A more troubling example

CCm T mm w0 pattern A CmmoTmsoTTTO pattern B
Crrrmmm w10 pattern A O rmm T w711 pattern B

e e Pattern A o pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 5/44

Limits of Linear Classification
A more troubling example

CCm T mm w0 pattern A CmmoTmsoTTTO pattern B
Crrrmmm w10 pattern A O rmm T w711 pattern B

e e Pattern A o pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

@ Suppose there's a feasible solution. The average of all translations of A is the
vector (0.25,0.25,...,0.25). Therefore, this point must be classified as A.

@ Similarly, the average of all translations of B is also (0.25,0.25,...,0.25).
Therefore, it must be classified as B. Contradiction!

Credit=Geoffrey Hinton
Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 5/44

Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

X1

P(x)= | x

X1X2
X x| ¢1(x) ¢a(x) ¢3(x) | ¢
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

@ This is linearly separable. (Try it!)
@ Not a general solution: it can be hard to pick good basis functions.
Instead, we'll use neural nets to learn nonlinear hypotheses directly.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 6/44

Multilayer Perceptrons

@ We can connect lots of
units together into a
directed acyclic graph.

@ This gives a feed-forward
neural network. That's
in contrast to recurrent
neural networks, which
can have cycles. (We'll
talk about those later.)

o Typically, units are

K depth
grouped together into
layers.
Richard Zemel COMS 4995 Lecture 2:

a hidden
unit

| aconnection

an output
unit
1

an input
unit

Multilayer Perceptro

output layer

second hidden layer

first hidden layer

input layer

7/44

Multilayer Perceptrons

@ Each layer connects N input units to M output units.

@ In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We'll consider other layer types later.

@ Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.

@ Recall from softmax regression: this means we |
need an M x N weight matrix. \

@ The output units are a function of the input
units:

y = f(x) = ¢ (Wx + b)

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 8/44

Multilayer Perceptrons

Some activation functions:

Rectified Linear Unit

(ReLU) Soft RelLU

Linear

y= y = max(0, z) y =logl+e

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 9/44

Multilayer Perceptrons

Some activation functions:

Hyperbolic Tangent

Hard Threshold Logistic (tanh)
[1 ifz>0 1 7 _ ez
Y= o0 ifz<o Yo 1qe y=S——
efte7*?

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 10/ 44

Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function

1

1 ‘@ 1

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 11/44

Multilayer Perceptrons

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 12 /44

Multilayer Perceptrons

@ Each layer computes a function, so the network
computes a composition of functions:

h(D — f(l)(x)
h(® = F@) (1)

y = F(D(h(t-1)
@ Or more simply:
y=FfBo...0 f(l)(x).

@ Neural nets provide modularity: we can implement
each layer's computations as a black box.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro

13 /44

Feature Learning

@ Neural nets can be viewed as a way of learning features:

linear regressor.
/ classifier

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 14 /44

Feature Learning

@ Neural nets can be viewed as a way of learning features:

linear regressor.
/ classifier

@ The goal:

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 14 /44

Feature Learning

Input representation of a digit : 784 dimensional vector.

Zemel COMS 4995 Lecture

Multilayer Perceptro 15 /44

Feature Learning

Each first-layer hidden unit computes o(w; x)
Here is one of the weight vectors (also called a feature).
It's reshaped into an image, with gray = 0, white = +, black = -.

To compute w,-Tx, multiply the corresponding pixels, and sum the result.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 16 / 44

-
Feature Learning

There are 256 first-level features total. Here are some of them.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro

17 /44

Expressive Power

@ We've seen that there are some functions that linear classifiers can't
represent. Are deep networks any better?

@ Any sequence of linear layers can be equivalently represented with a
single linear layer.
y = WEOWRWW
—_——
Lw/

@ Deep linear networks are no more expressive than linear regression!
o Linear layers do have their uses — stay tuned!

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 18 /44

Expressive Power

o Multilayer feed-forward neural nets with nonlinear activation functions
are universal approximators: they can approximate any function
arbitrarily well.

@ This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

e Even though RelLU is “almost” linear, it's nonlinear enough!

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 19 /44

-
Expressive Power
Universality for binary inputs and targets:

@ Hard threshold hidden units, linear output

o Strategy: 2P hidden units, each of which responds to one particular
input configuration

xr1 T I3 t

@ Only requires one hidden layer, though it needs to be extremely wide!

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 20/ 44

Expressive Power

@ What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights and
biases:

1

08+

0.6

04t

0.2

o.

-4 -3 -2 -1 o0 1 2 3 -4 -3 -2 -

y = o(x) y = o(5%)

@ This is good: logistic units are differentiable, so we can tune them
with gradient descent. (Stay tuned!)

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 21 /44

Expressive Power

@ Limits of universality

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 22 /44

Expressive Power

@ Limits of universality

e You may need to represent an exponentially large network.
e If you can learn any function, you'll just overfit.
o Really, we desire a compact representation!

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 22 /44

Expressive Power

@ Limits of universality
e You may need to represent an exponentially large network.
e If you can learn any function, you'll just overfit.
o Really, we desire a compact representation!

@ We've derived units which compute the functions AND, OR, and
NOT. Therefore, any Boolean circuit can be translated into a
feed-forward neural net.

o This suggests you might be able to learn compact representations of
some complicated functions

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 22 /44

Overview

@ We've seen that multilayer neural networks are powerful. But how can
we actually learn them?
@ Backpropagation is the central algorithm in this course.

e lIt's is an algorithm for computing gradients.
@ Really it's an instance of reverse mode automatic differentiation, which
is much more broadly applicable than just neural nets.
@ Thisis “just” a clever and efficient use of the Chain Rule for derivatives.
o We'll see how to implement an automatic differentiation system soon.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 23 /44

-
Recap: Gradient Descent

@ Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

0.5 N !
%fbo0 500 0 500 1000 1500 2000
0

@ Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

@ Conceptually, not any different from what we've seen so far — just higher
dimensional and harder to visualize!

@ We want to compute the cost gradient d.7/dw, which is the vector of
partial derivatives.

o This is the average of d£/dw over all the training examples, so in this
lecture we focus on computing d£/dw.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 24 /44

Univariate Chain Rule

@ We've already been using the univariate Chain Rule.

@ Recall: if f(x) and x(t) are univariate functions, then

d df dx
9 _ arex
a0 = 4

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 25 /44

Univariate Chain Rule

Recall: Univariate logistic least squares model

Z=wx-+b
y=o0(2)
_1 2

Let’'s compute the loss derivatives.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 26 /44

Univariate Chain Rule

How you would have done it in calculus class

_1 2
sz(a(wx-l-b)—t) or o1

or 5 11 3 = 85 E(a(wx+b)7t)2
— = — |=(c(wx+ b) — t)z]
ow Ow |2 10 >
19 :E%(U(Wx—i—b)—t)
= =~ (o(wx + b) — t)?
2 0w

:(J(Wx+b)ft)%(o(wx+b)ft) ob

) 0
= (o(wx+b) = t)o'(wx + b) - (wx +b) (o(wx + b) — t)o’ (wx + b)

= (o(wx + b) — t)o’ (wx + b)x

What are the disadvantages of this approach?

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro

= (o(wx + b) — t)g(a(wx + b) —t)

= (o(wx + b) — t)o’ (wx + b)%(wx + b)

27 /44

Univariate Chain Rule

A more structured way to do it

Computing the derivatives:

Computing the loss: dc
— =y — t
AN gz dL
/
y= i(Z) z -4’ (2)
L=5(y -1t oc _dc
ow dz
oL dC
ob dz

Remember, the goal isn't to obtain closed-form solutions, but to be able
to write a program that efficiently computes the derivatives.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 28 /44

Univariate Chain Rule

@ We can diagram out the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.

Compute Loss
_—

>~

"

Compute Derivatives
—

T t

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 29 /44

Univariate Chain Rule

A slightly more convenient notation:

@ Use ¥ to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

@ This is not a standard notation, but | couldn’t find another one that | liked.

Computing the loss: Computing the derivatives:

z=wx+b F=y—t
y:j(z) z=yod'(2)
L‘:E(y—t)z w=2zx
b=z
Richard Zemel COMS 4995 Lecture 2:

Multilayer Perceptro 30/ 44

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 17
This requires the multivariate Chain Rule!

L,-Regularized regression Multiclass logistic regression

t [)1

Z.
t
%’Z _’y—>£7£reg N _>y1\}‘
W :R "E24>Z2—.y2/'/
7 t2
- b by w1
zZ = wx + why 2
y =o0(2) >
1 zp = wejX; + b
L=Z(y- t)2 J
2
_1 _ et
R= EW Yk = Ze ez
£reg:£+)\R LZ—Ztklog}/k
k

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 31 /44

N
Multivariate Chain Rule

@ Suppose we have a function f(x, y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

d of dx = Of dy / \
af(x(t)d’(t)):gﬁ“‘@g \ /

fx,y)=y+e¥
x(t) = cost
y(t) =t
@ Plug in to Chain Rule:
df ofdx 0fdy
dt oxdt | dydt
=(ye?¥)-(—sint) + (1 + xe¥) - 2t

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 32 /44

N
Multivariable Chain Rule

@ In the context of backpropagation:

Mathematical expressions
to be evaluated

df _ 0fdw 0fdy
dt Oz dt Oy dt

Values already computed /

by our program

/\/
/\

@ In our notation:
_dx _
= X —
dt y

~+|
=lE

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 33 /44

|
Backpropagation

Full backpropagation algorithm:

Let vi,..., vy be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

Fori=1,...,N
forward pass

Compute v; as a function of Pa(v;)

T 'n=1

backward pass | Fori=N-—1,...,1

—_— R 81}j
Vi = D iech() Vi Fon

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 34 /44

-
Backpropagation
Example: univariate logistic least squares regression

" t Backward pass:

e

__ _dy
w >R —:ﬁgdﬂreg 2=y 4
"t AR =yo'(z
Forward pass: — T v (=)
S L
z=wx+b L = LCreg ALreg T ow o dw
y =o(2) = ac =zZx+Rw
= Lreg ~ 0z
E - = —t 2 o b=Zz
5 (y—1t) =T dc b
r_1l.2 dy =z
2" =L(y-1)
Lres = L+ AR
Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro

35/ 44

|
Backpropagation

Multilayer Perceptron (multiple outputs):

1 ,
u%l (1) “1|

,,”1\1;_, e \“‘\' Backward pass:

X —»Zl—>h 1—>y1\

Ve = L(yx — t
To—>2Zo—sho— Yo /‘ - ()
A

ll);

Yk
Forward pass: = ZWWS)
— (1) (1) k
zi =) wjx+b - _ T
; Z = hio'(z)
hi = o(zi) ,51) Z X
= wi b+ b7 PO

1 2
=5 ;(}’k — t)

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 36 /44

Vector Form

o Computation graphs showing individual units are cumbersome.

@ As you might have guessed, we typically draw graphs over the
vectorized variables.

w® w2 t
b b®

@ We pass messages back analogous to the ones for scalar-valued nodes.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 37 /44

Vector Form

@ Consider this computation graph:

z 1
2 2 Z—Y
Zy——»Ys3
@ Backprop rules:
_ __ Ok oy
Zj = Yk 327 z=-"Y
Zk: dz; 0z 7’
where dy/0z is the Jacobian matrix:
m .. n
N oz
2 \ow ... om
0z; Ozp

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 38 /44

N
Vector Form

Examples
@ Matrix-vector product

z=wx Zow x=w'z
Ox
@ Elementwise operations
exp(z1) 0
y = exp(z) 9y _ " Z=-exp(z)oy
0z :
0 exp(zp)

o Note: we never explicitly construct the Jacobian. It's usually simpler
and more efficient to compute the VJP directly.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 39 /44

Vector Form

Full backpropagation algorithm (vector form):
Let vq,...,vy be a topological ordering of the computation graph
(i.e. parents come before children.)
vy denotes the variable we're trying to compute derivatives of (e.g. loss).
It's a scalar, which we can treat as a 1-D vector.

Fori=1,...,N

forward pass)
Compute v; as a function of Pa(v;)

vy =1

backward pass Fori=N-1,...,1

— v, | —
. — -1 .
Vi = Ej’ECh(w) ave Vi

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 40/ 44

Vector Form

MLP example in vectorized form:

W(ii Wij) 1‘\‘ Backward pass:
X—7—h—Y—L f=l
y=~L(y-t)
b b® W@ =yh'
Forward pass: b2 — v
z=WWx + b h=wW®Ty
h=o0(z) Z=hoo'(2)
y = WO®h 4+ p® WO = zx"
1 - =
£=le—yl? b =7

41/44

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro

Computational Cost
@ Computational cost of forward pass: one add-multiply operation per

weight
zi = Z WI.J(.I)XJ- + bgl)
J

@ Computational cost of backward pass: two add-multiply operations
per weight

x

@ Rule of thumb: the backward pass is about as expensive as two
forward passes.

@ For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 42 /44

-
Closing Thoughts

@ Backprop is used to train the overwhelming majority of neural nets today.

e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally implausible.

e No evidence for biological signals analogous to error derivatives.

o All the biologically plausible alternatives we know about learn much
more slowly (on computers).

e So how on earth does the brain learn?

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 43 /44

-
Closing Thoughts

The psychological profiling [of a programmer]| is mostly the ability to shift
levels of abstraction, from low level to high level. To see something in the
small and to see something in the large.

— Don Knuth
@ By now, we've seen three different ways of looking at gradients:
e Geometric: visualization of gradient in weight space
e Algebraic: mechanics of computing the derivatives
o Implementational: efficient implementation on the computer
@ When thinking about neural nets, it's important to be able to shift
between these different perspectives!

Richard Zemel ICOMS 4995 Lecture 2: Multilayer Perceptro 44 /44

