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Course information

@ Second course in machine learning, with a focus on neural networks
e This is an advanced machine learning course following Intro to ML with
an in-depth focus on cutting-edge topics
e Assumes knowledge of basic ML algorithms: linear regression, logistic
regression, maximum likelihood, PCA, EM, etc.
o First 2/3: supervised learning
e Last 1/3: unsupervised learning and reinforcement learning
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Course information

@ Prerequisites:

Machine Learning: COMS 4771, or equivalent
Multivariable Calculus

Linear Algebra

Probability & Statistics

@ It is your responsibility to ensure that you have these prerequisites. If
you don't you should take this course next year after fulfilling them.
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N
What should | know?

@ Probability
e Starting from the defition of independence, show that the
independence of X and Y implies that their covariance is 0.
o Write the transformation that takes x ~ N(0.,1.) to z ~ N(u, 0?).
o Write a code implementation to produce n independent samples from
N (u,0%) by transforming n samples from N(0., 1.).

o Calculus
o Let x,y € R™ A€ R™" and square matrix B € ™*™. And where x’
is the transpose of x. Answer the following questions in vector
notation.
@ What is the gradient of x’y with respect to x?
e What is the gradient of x’x with respect to x?
@ What is the Jacobian of A with respect to x?
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What else should | know?

@ Machine Learning

o What is a validation set? Describe the trade-offs involved in assigning
examples to the validation set versus the training set.

e Suppose that you are training a decision tree but you would like to try
an ensemble method. By random resampling, you create 100 copies of
your data and train a separate decision tree based on each one of
them, and predict outputs based on the majority vote of the trees.
What is the effect of this procedure? How would your test error
compare to a single decision tree predictor?

e What are the advantages and disadvantages of k-nearest neighbors
versus logistic regression? How do their decision boundaries compare?
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Course information

@ Expectations and marking
o Written homeworks (36% of total mark)

Assignments will be a mix of written and programming problems
You will have 10 days to 2 weeks to do each assignment

The written part will consist of 2-3 short conceptual questions
They may also involve some mathematical derivations

The programming questions must be done in Python, PyTorch
They will involve 10-15 lines of code, and give you a chance to
experiment with the algorithms

o Exams

Midterm (16%)
Final (28%)

o Project: 20%
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-
How to get free GPUs

e Colab (Mandatory) Programming assignments are to be completed
in Google Colab, which is a web-based iPython Notebook service that
has access to a free Nvidia K80 GPU per Google account.

e GCE (Recommended for course projects) Google Compute Engine
delivers virtual machines running in Google's data center. You get
$300 free credit when you sign up.
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https://colab.research.google.com/
https://cloud.google.com/compute/

Course information

Course web page:
http://www.cs.columbia.edu/~zemel/Class/Nndl/index.html
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What is machine learning?

@ For many problems, it's difficult to program the correct behavior by
hand

e recognizing people and objects
e understanding human speech from audio files
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What is machine learning?

@ For many problems, it's difficult to program the correct behavior by
hand
e recognizing people and objects
e understanding human speech from audio files
@ Machine learning approach: program an algorithm to automatically
learn from data, or from experience
@ Some reasons you might want to use a learning algorithm:
e hard to code up a solution by hand (e.g. vision, natural language

processing)
o system needs to adapt to a changing environment (e.g. spam detection)
e want the system to perform better than the human programmers

e privacy/fairness (e.g. ranking search results)
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N
Relations to Al

o Nowadays, “machine learning” is often brought up with “artificial
intelligence” (Al)
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N
Relations to Al

o Nowadays, “machine learning” is often brought up with “artificial
intelligence” (Al)

@ Al often does not imply a learning based system

Symbolic reasoning
Rule based system
Tree search

etc.
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N
Relations to Al

o Nowadays, “machine learning” is often brought up with “artificial
intelligence” (Al)

@ Al often does not imply a learning based system

Symbolic reasoning
Rule based system
Tree search

etc.

@ Learning based system — learned based on the data — more
flexibility, good at solving pattern recognition problems.
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Relations to human learning

o It is tempting to imagine machine learning as a component in Al just
like human learning in ourselves.
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Relations to human learning

o It is tempting to imagine machine learning as a component in Al just
like human learning in ourselves.

@ Human learning is:

o Very data efficient
o An entire multitasking system (vision, language, motor control, etc.)
o Takes at least a few years :)

@ For serving specific purposes, machine learning doesn't have to look
like human learning in the end.
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Relations to human learning

It is tempting to imagine machine learning as a component in Al just
like human learning in ourselves.

@ Human learning is:

o Very data efficient
o An entire multitasking system (vision, language, motor control, etc.)
o Takes at least a few years :)

@ For serving specific purposes, machine learning doesn't have to look
like human learning in the end.

It may borrow ideas from biological systems (e.g. neural networks).

There may also be biological constraints.
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History of machine learning

@ 1957 — Perceptron algorithm (implemented as a circuit!)

@ 1959 — Arthur Samuel wrote a learning-based checkers program that
could defeat him

@ 1969 — Minsky and Papert's book Perceptrons (limitations of linear
models)
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History of machine learning

1957 — Perceptron algorithm (implemented as a circuit!)

1959 — Arthur Samuel wrote a learning-based checkers program that
could defeat him

1969 — Minsky and Papert’s book Perceptrons (limitations of linear

models)

@ 1980s — Some foundational ideas

e Connectionist psychologists explored neural models of cognition

e 1984 — Leslie Valiant formalized the problem of learning as PAC
learning

e 1988 — Backpropagation (re-)discovered by Geoffrey Hinton and
colleagues

e 1988 — Judea Pearl's book Probabilistic Reasoning in Intelligent
Systems introduced Bayesian networks
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History of machine learning

@ 1990s — the “Al Winter”, a time of pessimism and low funding
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History of machine learning

@ 1990s — the “Al Winter”, a time of pessimism and low funding

@ But looking back, the '90s were also sort of a golden age for ML
research

Markov chain Monte Carlo

Variational inference

Kernels and support vector machines

Boosting

Convolutional networks
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History of machine learning

@ 1990s — the “Al Winter”, a time of pessimism and low funding
@ But looking back, the '90s were also sort of a golden age for ML
research

e Markov chain Monte Carlo

e Variational inference

e Kernels and support vector machines

e Boosting

e Convolutional networks

@ 2000s — applied Al fields (vision, NLP, etc.) adopted ML
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History of machine learning

@ 1990s — the “Al Winter”, a time of pessimism and low funding
@ But looking back, the '90s were also sort of a golden age for ML
research

e Markov chain Monte Carlo

e Variational inference

e Kernels and support vector machines

e Boosting

e Convolutional networks
@ 2000s — applied Al fields (vision, NLP, etc.) adopted ML

(]

2010s — deep learning
e 2010-2012 — neural nets smashed previous records in speech-to-text
and object recognition
e increasing adoption by the tech industry
e 2016 — AlphaGo defeated the human Go champion
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What are neural networks?

@ Most of the biological details aren't essential, so we use vastly
simplified models of neurons.

@ While neural nets originally drew inspiration from the brain, nowadays
we mostly think about math, statistics, etc.

y H .
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o Neural networks are collections of thousands (or millions) of these
simple processing units that together perform useful computations.
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What are neural networks?

TECHNOLOGY Ehe New Pork Times m
Turing Award Won by 3

Pioneers in Artificial Intelligence

From left, Yann LeCun, Geoffrey Hinton and Yoshua Bengio. The researchers worked on key developments
for neural networks, which are reshaping how computer systems are built. From left, Facebook, via Associated
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What are neural networks?

Why neural nets?
@ inspiration from the brain
e proof of concept that a neural architecture can see and hear!

o very effective across a range of applications (vision, text, speech,
medicine, robotics, etc.)

@ widely used in both academia and the tech industry

e powerful software frameworks (PyTorch, TensorFlow, etc.) let us
quickly implement sophisticated algorithms
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What are neural networks?

@ Some near-synonyms for neural networks
o "“Deep learning”

o Emphasizes that the algorithms often involve hierarchies with many
stages of processing
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“Deep learning”

Deep learning: many layers (stages) of processing

E.g. this network which recognizes objects in images:

153 207 2048 \dense

dense dense|

1000

192 128 Max
Max 128 Max pooling
pooling pooling

204 2048

(Krizhevsky et al., 2012)

Each of the boxes consists of many neuron-like units similar to the one on

the previous slide!
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“Deep learning”

@ You can visualize what a learned feature is responding to by finding
an image that excites it. (We'll see how to do this.)

@ Higher layers in the network often learn higher-level, more
interpretable representations

R ST 4
yer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a)

https://distill.pub/2017/feature-visualization/
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“Deep learning”

@ You can visualize what a learned feature is responding to by finding
an image that excites it.

@ Higher layers in the network often learn higher-level, more
interpretable representations

&

5 Lo
‘, ). y b

Parts (layers mixed4b & mixed4c) Objects (layers mixed4d & mixed4e)

L

https://distill.pub/2017/feature-visualization/
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What is a representation?

@ How you represent your data determines what questions are easy to

answer.
e E.g. a dict of word counts is good for questions like “What is the most

common word in Hamlet?"
e It's not so good for semantic questions like “if Alice liked Harry Potter,

will she like The Hunger Games?"
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What is a representation?

Idea: represent words as vectors
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What is a representation?

@ Mathematical relationships between vectors encode semantic
relationships between words

o Measure semantic similarity using the dot product (or dissimilarity
using Euclidean distance)
o Represent a web page with the average of its word vectors
o Complete analogies by doing arithmetic on word vectors
o e.g. “Paris is to France as Londonisto "
o France — Paris 4+ London =
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What is a representation?

@ Mathematical relationships between vectors encode semantic
relationships between words
o Measure semantic similarity using the dot product (or dissimilarity
using Euclidean distance)
o Represent a web page with the average of its word vectors
o Complete analogies by doing arithmetic on word vectors

i

@ e.g. “Paris is to France as London is to
o France — Paris 4+ London =

@ It's very hard to construct representations like these by hand, so we
need to learn them from data

e This is a big part of what neural nets do, whatever type of learning
they are doing!
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Types of machine learning

@ Supervised learning: have labeled examples of the correct behavior,
i.e. ground truth input/output response

@ Reinforcement learning: learning system receives a reward signal,
tries to learn to maximize the reward signal

@ Unsupervised learning: no labeled examples — instead, looking for
interesting patterns in the data
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Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset
@ Task: given an image of a handwritten digit, predict the digit class

o Input: the image
e Target: the digit class
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Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset
@ Task: given an image of a handwritten digit, predict the digit class
o Input: the image
e Target: the digit class
e Data: 70,000 images of handwritten digits labeled by humans

e Training set: first 60,000 images, used to train the network
o Test set: last 10,000 images, not available during training, used to
evaluate performance
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Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset
@ Task: given an image of a handwritten digit, predict the digit class
o Input: the image
e Target: the digit class
e Data: 70,000 images of handwritten digits labeled by humans

e Training set: first 60,000 images, used to train the network
o Test set: last 10,000 images, not available during training, used to
evaluate performance

@ This dataset is the “fruit fly” of neural net research

@ Neural nets already achieved > 99% accuracy in the 1990s, but we
still continue to learn a lot from it
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Supervised learning examples
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Supervised learning examples

Object recognition

snowplow scabbard

otter snowplow earthworm
quail drilling platform guillotine
ruffed grouse lifeboat orangutan l

partridge garbage truck broom ||

50% 50% 50%

(Krizhevsky and Hinton, 2012)

ImageNet dataset: one thousand categories, millions of labeled images
Lots of variability in viewpoint, lighting, etc.
Error rate dropped from 26% to under 4% over the course of a few years!
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Supervised learning examples

Caption generation

Vision Language
Deep CNN Generating RNN
o. A group of people
~ shopping at an outdoor
o market.
—
o There are many
s vegetables at the
L4 Fruit stand

A woman s throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a

mountain in the background
(Xu et al., 2015)

Given: dataset of Flickr images with captions
More examples at http://deeplearning.cs.toronto.edu/i2t
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Supervised learning examples

Neural Machine Translation

Encoder LSTMs

Geug

siaers
Geu3

cpuz

GPuz

GPur

_~" bgtoder LsTH . _

(Wu et al., 2016)

-@

chus

Gpu3

GPuz

Gpur

Input sentence:

Translation (PBMT):

Translation (GNMT):

FresaLLITAT IR0
MR RN, B
MEAEIBHE ST
MEAEERERY

.

Li Kegiang premier
added this line to start
the annual dialogue
mechanism with the
Canadian Prime Minister
Trudeau two prime
ministers held its first
annual session.

Li Kegiang will start the
annual dialogue
mechanism with Prime
Minister Trudeau of
Canada and hold the first
annual dialogue between
the two premiers.

Richard Zemel

Now the production model on Google Translate
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Unsupervised learning examples

@ In generative modeling, we want to learn a distribution over some dataset,
such as natural images.

@ We can evaluate a generative model by sampling from the model and seeing
if it looks like the data.

@ These results were considered impressive in 2014:

Denton et al., 2014, Deep generative image models using a Laplacian pyramid of adversarial networks
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Unsupervised learning examples

@ The progress of generative models:

Odena et al
2016

Miyato et al
2017

Zhang et al
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Unsupervised learning examples

@ Generative models of text. The models like BERT and GPT-2
perform unsupervised learning by reconstructing the next words in a
sentence. The GPT-2 models learns from 40GB of Internet text.

Custom prompt -

1100k CSC413 introduction to deep learning last year

GENERATE ANOTHER

Completion

BERT OpenAl GPT 1'took CSC413 introduction to deep learning last year, and this year | know |

( ] - N want to make that course (course 2, actually) a real staple in my curriculum.
T, T, i, T, T,
i \T] - L

The lecture style s intimidating at first, but after a few weeks | got really into

= - - ~ it. CSC413 i not only thorough and delivers valuable practical material, but

Crm )(tm ) Gm) (m \(m\) 4 < P

NG i < AN the lecturers always make a point of going out of their way to focus on
presenting real world challenges you can encounter while solving deep

G ))(tm D) Crm (7 ) learning algorithms. At the end of the semester, the final project that | was

NN J NGNS

given was something completely out of my class that | had to develop myself,
and that was a fascinating final project project. On a completely unrelated
note, this weekend, | went and hit up Google for X.org and Autodesk and let

https://talktotransformer.com/
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Unsupervised learning examples

@ Recent exciting result: a model called the CycleGAN takes lots of
images of one category (e.g. horses) and lots of images of another
category (e.g. zebras) and learns to translate between them.

Monet Z_> Photos ) Zebras = Horses

photo —>Monet horse —» zebra

https://github.com/junyanz/CycleGAN
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Reinforcement learning

An agent interacts with an environment (e.g. game of Breakout)

In each time step,
o the agent receives observations (e.g. pixels) which give it information
about the state (e.g. positions of the ball and paddle)
o the agent picks an action (e.g. keystrokes) which affects the state

The agent periodically receives a reward (e.g. points)

@ The agent wants to learn a policy, or mapping from observations to
actions, which maximizes its average reward over time
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Reinforcement learning

DeepMind trained neural networks to play many different Atari games
@ given the raw screen as input, plus the score as a reward
@ single network architecture shared between all the games

@ in many cases, the networks learned to play better than humans (in
terms of points in the first minute)

https://www.youtube.com/watch?v=V1eYniJORnk
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Reinforcement learning for control

Learning locomotion control from scratch
@ The reward is to run as far as possible over all the obstacles
@ single control policy that learns to adapt to different terrains
https://www.youtube.com/watch?v=hx_bgoTF7bs
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Software frameworks

e Scientific computing (NumPy)
e vectorize computations (express them in terms of matrix/vector
operations) to exploit hardware efficiency
@ Neural net frameworks: PyTorch, TensorFlow, etc.
automatic differentiation
e compiling computation graphs
o libraries of algorithms and network primitives
o support for graphics processing units (GPUs)

@ For this course:

o Python, NumPy
o PyTorch, a widely used neural net framework with a built-in automatic
differentiation feature
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Software frameworks

Why take this class, if PyTorch does so much for you?

So you know what do to if something goes wrong!

@ Debugging learning algorithms requires sophisticated detective work,
which requires understanding what goes on beneath the hood.

@ That's why we derive things by hand in this class!
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Linear Models: Overview

@ One of the fundamental building blocks in deep learning are the linear
models, where you decide based on a linear function of the input
vector.

@ Here, we will review linear models, some other fundamental concepts
(e.g. gradient descent, generalization), and some of the common
supervised learning problems:

o Regression: predict a scalar-valued target (e.g. stock price)

e Binary classification: predict a binary label (e.g. spam vs. non-spam
email)

o Multiway classification: predict a discrete label (e.g. object category,
from a list)
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|
Problem Setup

4.0
35
3.0 ° g

25

15
1.0

0.5

0.0

@ Want to predict a scalar t as a function of a vector x
o Given a dataset of pairs {(x(), t())}N

o The x(!) are called input vectors, and the t() are called targets.
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|
Problem Setup

Data space Weight space
40 3.0
35 25
3.0 . ';,/;'/\ 2.0
25 . /,:// 15 .
>2.0 . /MO' e
15 /'/ P 05
1.0 e 4\ 0.0
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Model: y is a linear function of x:

y = w'x+b
@ y is the prediction
@ w is the weight vector
@ b is the bias
@ w and b together are the parameters
o

Settings of the parameters are called hypotheses
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|
Problem Setup

o Loss function: squared error

L0t = 50— 02

@ y — tis the residual, and we want to make this small in magnitude

@ The % factor is just to make the calculations convenient.
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|
Problem Setup

o Loss function: squared error

L0t = 50— 02

@ y — tis the residual, and we want to make this small in magnitude

° The factor is just to make the calculations convenient.
o Cost functnon. loss function averaged over all training examples

(m_gﬂz

(wa(i) +b— t(i))

1

T(.0) = 3.

2

M= HMZ

1

2N

i=1
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|
Problem Setup

Visualizing the contours of the cost function:
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Vectorization

@ We can organize all the training examples into a matrix X with one
row per training example, and all the targets into a vector t.

one feature across
all training examples

x(MT 80| 3 0 N
X=1x E z; 1 - g _51 52 g exzr?wep};a(l\r/“er;?o )
X _

@ Computing the predictions for the whole dataset:

w'x(M 4+ p y@
Xw + bl = : = : =y
w'x(N) 4 p y(N)

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 44 /68



Vectorization

@ Computing the squared error cost across the whole dataset:
y = Xw + bl
J = 7||y —t|?

@ In Python:

y = np.dot(X, w) + b
cost = Ap.sum((y - £) ** 2) / (2. * N)
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Solving the optimization problem

@ We defined a cost function. This is what we'd like to minimize.

@ Recall from calculus class: the minimum of a smooth function (if it
exists) occurs at a critical point, i.e. point where the partial
derivatives are all 0.

@ Two strategies for optimization:

e Direct solution: derive a formula that sets the partial derivatives to 0.
This works only in a handful of cases (e.g. linear regression).

o lIterative methods (e.g. gradient descent): repeatedly apply an update
rule which slightly improves the current solution. This is what we'll do

throughout the course.
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Direct solution

@ Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

B f(Xl + h, X2) — f(Xl, X2)
By | C102) = Jim, h

@ To compute, take the single variable derivatives, pretending the other
arguments are constant.
@ Example: partial derivatives of the prediction y

8y _
a\/\/] avvj |:Z,W/X/ :|
=%

P
=% [Z wjr Xjr + b]
j/

Il
—
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Direct solution

@ Chain rule for derivatives:

oL _dc oy
8W_, dy@w_,
d
- 0]
=y —t)x
9L _, 4
ab 7

@ We will give a more precise statement of the Chain Rule next week.
It's actually pretty complicated.
o Cost derivatives (average over data points):

OWJ 72(( -t
oJ 1 ;
E:N,Zly()_t()
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Gradient descent

o Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

@ The gradient descent update decreases the cost function for small

enough «:
oJ
N
@ i i i
:M_NZ(y()_t()))S_()
i=1

@ « is a learning rate. The larger it is, the faster w changes.
o We'll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001
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Gradient descent

@ This gets its name from the gradient:

o7

N "
VI (w) = ow :
o)

B

o This is the direction of fastest increase in J.

50 /68
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Gradient descent

@ This gets its name from the gradient:

o7

N "
VI (w) = ow :
o)

B

o This is the direction of fastest increase in J.

@ Update rule in vector form:
W w— onJ(w)

_W_fz JIOING

@ Hence, gradient descent updates the weights in the direction of

fastest decrease.
50 /68
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Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/1lec/W01/linear_
regression.pdf#page=21
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Gradient descent

@ Why gradient descent, if we can find the optimum directly?
e GD can be applied to a much broader set of models
e GD can be easier to implement than direct solutions, especially with
automatic differentiation software
e For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).
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Feature maps

@ We can convert linear models into nonlinear models using feature
maps.
-
y=w ¢(x)
o Eg., if(x)=(1, x, ---,xP)T, then y is a polynomial in x. This
model is known as polynomial regression:

y = W0+W1x+---+WDxD

@ This doesn't require changing the algorithm — just pretend ¥ (x) is
the input vector.

@ We don’t need an expicit bias term, since it can be absorbed into .

@ Feature maps let us fit nonlinear models, but it can be hard to choose
good features.

o Before deep learning, most of the effort in building a practical machine
learning system was feature engineering.
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Feature maps

Yy =w Yy = W + wix

0 . 1

0 1 0 1

x z
-Pattern Recognition and Machine Learning, Christopher Bishop.
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Generalization

Underfitting : The model is too simple - does not fit the data.

1 00 M=0

0 . 1

-1
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Generalization

@ We would like our models to generalize to data they haven’t seen
before

@ The degree of the polynomial is an example of a hyperparameter,
something we can't include in the training procedure itself

@ We can tune hyperparameters using a validation set:

validation

set ’ test set

‘ training set ‘

‘ train w/ degree 1 ‘—»‘ err=7.3 ‘ X
’ train w/ degree 3 ’—v‘ err=1.1 '\/—»
‘ train w/ degree 10 ’—»‘ err=10.5 ‘ x
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Classification

Binary linear classification

o classification: predict a discrete-valued target
@ binary: predict a binary target t € {0,1}
e Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

@ linear: model is a linear function of x, thresholded at zero:
z=w'x+b

tout = 1 ifz>0
OWPUL =190 ifz <0
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Logistic Regression

@ We can't optimize classification accuracy directly with gradient
descent because it's discontinuous.

@ Instead, we typically define a continuous surrogate loss function which
is easier to optimize. Logistic regression is a canonical example of
this, in the context of classification.

@ The model outputs a continuous value y € [0, 1], which you can think
of as the probability of the example being positive.
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Logistic Regression

@ There's obviously no reason to predict values outside [0, 1]. Let's
squash y into this interval.

@ The logistic function is a kind of sigmoidal, or 0
S-shaped, function: 05

o(z2) 1 *

1 + eiz 00— =2 0 2
@ A linear model with a logistic nonlinearity is known as log-linear:

z=w'x+b

y=0(2)

@ Used in this way, o is called an activation function, and z is called the

logit.
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Logistic Regression

@ Because y € [0, 1], we can interpret it as the estimated probability
that t = 1.

@ Being 99% confident of the wrong answer is much worse than being
90% confident of the wrong answer. Cross-entropy loss captures this
intuition:

IS

w

| —logy ift=1
‘CCE(y’t)_{ ~log(1—y) ift=0

= —tlogy — (1 —t)log(1l —y)

cross-entropy loss
N
“~
Il
_
-
Il
o

-

8.0 0.2 0.4 0.6 0.8 1.0
y

@ Aside: why does it make sense to think of y as a probability? Because
cross-entropy loss is a proper scoring rule, which means the optimal y
is the true probability.
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-
Logistic Regression

@ Logistic regression combines the logistic activation function with

cross-entropy loss.

z = wa+ b
y =o0(z)
_ 1
14 ez
Lcg = —tlogy — (1 —t)log(l —y)

— logistic + CE

@ Interestingly, the loss asymptotes to a linear function of the logit z.

o Full derivation in the readings.
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Multiclass Classification

@ What about classification tasks with more than two categories?

ouzen 1233

216294970659

AV WA RS

89378409497
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Multiclass Classification

o Targets form a discrete set {1,..., K}.

@ It's often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t=(0,...,0,1,0,...,0)

~
entry k is 1

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 63 /68



Multiclass Classification

@ Now there are D input dimensions and K output dimensions, so we
need K x D weights, which we arrange as a weight matrix W.

@ Also, we have a K-dimensional vector b of biases.

@ Linear predictions:

ZK = Z Wi Xj + by

@ Vectorized:
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Multiclass Classification

@ A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

ek

yk = softmax(zi, ..., zx )k = e
k/

@ The inputs zx are called the logits.
@ Properties:

o Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)

o If one of the z;'s is much larger than the others, softmax(z) is
approximately the argmax. (So really it's more like “soft-argmax”.)

o Exercise: how does the case of K = 2 relate to the logistic function?

o Note: sometimes o(z) is used to denote the softmax function; in this
class, it will denote the logistic function applied elementwise.
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Multiclass Classification

o If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

K
Lop(yt) == tklogyk
k=1

= —t' (logy),

where the log is applied elementwise.

@ Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.
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Multiclass Classification

@ Softmax regression, also called multiclass logistic regression:

z=Wx+b

y = softmax(z)
Lcg = —t! (logy)

@ It's possible to show the gradient descent updates have a convenient
form:

OLce
0z

y—t
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