
COMS 4995 NNDL Lecture 1: Introduction

Richard Zemel

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 1 / 68

Course information

Second course in machine learning, with a focus on neural networks

This is an advanced machine learning course following Intro to ML with
an in-depth focus on cutting-edge topics
Assumes knowledge of basic ML algorithms: linear regression, logistic
regression, maximum likelihood, PCA, EM, etc.
First 2/3: supervised learning
Last 1/3: unsupervised learning and reinforcement learning

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 2 / 68

Course information

Prerequisites:

Machine Learning: COMS 4771, or equivalent
Multivariable Calculus
Linear Algebra
Probability & Statistics

It is your responsibility to ensure that you have these prerequisites. If
you don’t you should take this course next year after fulfilling them.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 3 / 68

What should I know?

Probability

Starting from the defition of independence, show that the
independence of X and Y implies that their covariance is 0.
Write the transformation that takes x ∼ N (0., 1.) to z ∼ N (µ, σ2).
Write a code implementation to produce n independent samples from
N (µ, σ2) by transforming n samples from N (0., 1.).

Calculus
Let x , y ∈ <m,A ∈ <m×n, and square matrix B ∈ <m×m. And where x ′

is the transpose of x . Answer the following questions in vector
notation.

What is the gradient of x ′y with respect to x?
What is the gradient of x ′x with respect to x?
What is the Jacobian of A with respect to x?

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 4 / 68

What else should I know?

Machine Learning

What is a validation set? Describe the trade-offs involved in assigning
examples to the validation set versus the training set.
Suppose that you are training a decision tree but you would like to try
an ensemble method. By random resampling, you create 100 copies of
your data and train a separate decision tree based on each one of
them, and predict outputs based on the majority vote of the trees.
What is the effect of this procedure? How would your test error
compare to a single decision tree predictor?
What are the advantages and disadvantages of k-nearest neighbors
versus logistic regression? How do their decision boundaries compare?

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 5 / 68

Course information

Expectations and marking
Written homeworks (36% of total mark)

Assignments will be a mix of written and programming problems
You will have 10 days to 2 weeks to do each assignment
The written part will consist of 2-3 short conceptual questions
They may also involve some mathematical derivations
The programming questions must be done in Python, PyTorch
They will involve 10-15 lines of code, and give you a chance to
experiment with the algorithms

Exams

Midterm (16%)
Final (28%)

Project: 20%

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 6 / 68

How to get free GPUs

Colab (Mandatory) Programming assignments are to be completed
in Google Colab, which is a web-based iPython Notebook service that
has access to a free Nvidia K80 GPU per Google account.

GCE (Recommended for course projects) Google Compute Engine
delivers virtual machines running in Google’s data center. You get
$300 free credit when you sign up.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 7 / 68

https://colab.research.google.com/
https://cloud.google.com/compute/

Course information

Course web page:
http://www.cs.columbia.edu/~zemel/Class/Nndl/index.html

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 8 / 68

http://www.cs.columbia.edu/~zemel/Class/Nndl/index.html

What is machine learning?

For many problems, it’s difficult to program the correct behavior by
hand

recognizing people and objects
understanding human speech from audio files

Machine learning approach: program an algorithm to automatically
learn from data, or from experience

Some reasons you might want to use a learning algorithm:

hard to code up a solution by hand (e.g. vision, natural language
processing)
system needs to adapt to a changing environment (e.g. spam detection)
want the system to perform better than the human programmers
privacy/fairness (e.g. ranking search results)

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 9 / 68

What is machine learning?

For many problems, it’s difficult to program the correct behavior by
hand

recognizing people and objects
understanding human speech from audio files

Machine learning approach: program an algorithm to automatically
learn from data, or from experience

Some reasons you might want to use a learning algorithm:

hard to code up a solution by hand (e.g. vision, natural language
processing)
system needs to adapt to a changing environment (e.g. spam detection)
want the system to perform better than the human programmers
privacy/fairness (e.g. ranking search results)

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 9 / 68

What is machine learning?

For many problems, it’s difficult to program the correct behavior by
hand

recognizing people and objects
understanding human speech from audio files

Machine learning approach: program an algorithm to automatically
learn from data, or from experience

Some reasons you might want to use a learning algorithm:

hard to code up a solution by hand (e.g. vision, natural language
processing)
system needs to adapt to a changing environment (e.g. spam detection)
want the system to perform better than the human programmers
privacy/fairness (e.g. ranking search results)

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 9 / 68

Relations to AI

Nowadays, “machine learning” is often brought up with “artificial
intelligence” (AI)

AI often does not imply a learning based system

Symbolic reasoning
Rule based system
Tree search
etc.

Learning based system → learned based on the data → more
flexibility, good at solving pattern recognition problems.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 10 / 68

Relations to AI

Nowadays, “machine learning” is often brought up with “artificial
intelligence” (AI)

AI often does not imply a learning based system

Symbolic reasoning
Rule based system
Tree search
etc.

Learning based system → learned based on the data → more
flexibility, good at solving pattern recognition problems.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 10 / 68

Relations to AI

Nowadays, “machine learning” is often brought up with “artificial
intelligence” (AI)

AI often does not imply a learning based system

Symbolic reasoning
Rule based system
Tree search
etc.

Learning based system → learned based on the data → more
flexibility, good at solving pattern recognition problems.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 10 / 68

Relations to human learning

It is tempting to imagine machine learning as a component in AI just
like human learning in ourselves.

Human learning is:

Very data efficient
An entire multitasking system (vision, language, motor control, etc.)
Takes at least a few years :)

For serving specific purposes, machine learning doesn’t have to look
like human learning in the end.

It may borrow ideas from biological systems (e.g. neural networks).

There may also be biological constraints.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 11 / 68

Relations to human learning

It is tempting to imagine machine learning as a component in AI just
like human learning in ourselves.

Human learning is:

Very data efficient
An entire multitasking system (vision, language, motor control, etc.)
Takes at least a few years :)

For serving specific purposes, machine learning doesn’t have to look
like human learning in the end.

It may borrow ideas from biological systems (e.g. neural networks).

There may also be biological constraints.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 11 / 68

Relations to human learning

It is tempting to imagine machine learning as a component in AI just
like human learning in ourselves.

Human learning is:

Very data efficient
An entire multitasking system (vision, language, motor control, etc.)
Takes at least a few years :)

For serving specific purposes, machine learning doesn’t have to look
like human learning in the end.

It may borrow ideas from biological systems (e.g. neural networks).

There may also be biological constraints.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 11 / 68

Relations to human learning

It is tempting to imagine machine learning as a component in AI just
like human learning in ourselves.

Human learning is:

Very data efficient
An entire multitasking system (vision, language, motor control, etc.)
Takes at least a few years :)

For serving specific purposes, machine learning doesn’t have to look
like human learning in the end.

It may borrow ideas from biological systems (e.g. neural networks).

There may also be biological constraints.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 11 / 68

History of machine learning

1957 — Perceptron algorithm (implemented as a circuit!)

1959 — Arthur Samuel wrote a learning-based checkers program that
could defeat him

1969 — Minsky and Papert’s book Perceptrons (limitations of linear
models)

1980s — Some foundational ideas

Connectionist psychologists explored neural models of cognition
1984 — Leslie Valiant formalized the problem of learning as PAC
learning
1988 — Backpropagation (re-)discovered by Geoffrey Hinton and
colleagues
1988 — Judea Pearl’s book Probabilistic Reasoning in Intelligent
Systems introduced Bayesian networks

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 12 / 68

History of machine learning

1957 — Perceptron algorithm (implemented as a circuit!)

1959 — Arthur Samuel wrote a learning-based checkers program that
could defeat him

1969 — Minsky and Papert’s book Perceptrons (limitations of linear
models)

1980s — Some foundational ideas

Connectionist psychologists explored neural models of cognition
1984 — Leslie Valiant formalized the problem of learning as PAC
learning
1988 — Backpropagation (re-)discovered by Geoffrey Hinton and
colleagues
1988 — Judea Pearl’s book Probabilistic Reasoning in Intelligent
Systems introduced Bayesian networks

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 12 / 68

History of machine learning

1990s — the “AI Winter”, a time of pessimism and low funding

But looking back, the ’90s were also sort of a golden age for ML
research

Markov chain Monte Carlo
Variational inference
Kernels and support vector machines
Boosting
Convolutional networks

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning

2010–2012 — neural nets smashed previous records in speech-to-text
and object recognition
increasing adoption by the tech industry
2016 — AlphaGo defeated the human Go champion

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 13 / 68

History of machine learning

1990s — the “AI Winter”, a time of pessimism and low funding

But looking back, the ’90s were also sort of a golden age for ML
research

Markov chain Monte Carlo
Variational inference
Kernels and support vector machines
Boosting
Convolutional networks

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning

2010–2012 — neural nets smashed previous records in speech-to-text
and object recognition
increasing adoption by the tech industry
2016 — AlphaGo defeated the human Go champion

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 13 / 68

History of machine learning

1990s — the “AI Winter”, a time of pessimism and low funding

But looking back, the ’90s were also sort of a golden age for ML
research

Markov chain Monte Carlo
Variational inference
Kernels and support vector machines
Boosting
Convolutional networks

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning

2010–2012 — neural nets smashed previous records in speech-to-text
and object recognition
increasing adoption by the tech industry
2016 — AlphaGo defeated the human Go champion

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 13 / 68

History of machine learning

1990s — the “AI Winter”, a time of pessimism and low funding

But looking back, the ’90s were also sort of a golden age for ML
research

Markov chain Monte Carlo
Variational inference
Kernels and support vector machines
Boosting
Convolutional networks

2000s — applied AI fields (vision, NLP, etc.) adopted ML

2010s — deep learning

2010–2012 — neural nets smashed previous records in speech-to-text
and object recognition
increasing adoption by the tech industry
2016 — AlphaGo defeated the human Go champion

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 13 / 68

What are neural networks?

Most of the biological details aren’t essential, so we use vastly
simplified models of neurons.

While neural nets originally drew inspiration from the brain, nowadays
we mostly think about math, statistics, etc.

Neural networks are collections of thousands (or millions) of these
simple processing units that together perform useful computations.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 14 / 68

What are neural networks?

(Krizhevsky et al., 2012)Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 15 / 68

What are neural networks?

Why neural nets?

inspiration from the brain

proof of concept that a neural architecture can see and hear!

very effective across a range of applications (vision, text, speech,
medicine, robotics, etc.)

widely used in both academia and the tech industry

powerful software frameworks (PyTorch, TensorFlow, etc.) let us
quickly implement sophisticated algorithms

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 16 / 68

What are neural networks?

Some near-synonyms for neural networks
“Deep learning”

Emphasizes that the algorithms often involve hierarchies with many
stages of processing

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 17 / 68

“Deep learning”

Deep learning: many layers (stages) of processing

E.g. this network which recognizes objects in images:

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224 ⇥ 224 ⇥ 3-dimensional.

5

(Krizhevsky et al., 2012)

Each of the boxes consists of many neuron-like units similar to the one on
the previous slide!

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 18 / 68

“Deep learning”

You can visualize what a learned feature is responding to by finding
an image that excites it. (We’ll see how to do this.)

Higher layers in the network often learn higher-level, more
interpretable representations

https://distill.pub/2017/feature-visualization/

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 19 / 68

https://distill.pub/2017/feature-visualization/

“Deep learning”

You can visualize what a learned feature is responding to by finding
an image that excites it.
Higher layers in the network often learn higher-level, more
interpretable representations

https://distill.pub/2017/feature-visualization/

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 20 / 68

https://distill.pub/2017/feature-visualization/

What is a representation?

How you represent your data determines what questions are easy to
answer.

E.g. a dict of word counts is good for questions like “What is the most
common word in Hamlet?”
It’s not so good for semantic questions like “if Alice liked Harry Potter,
will she like The Hunger Games?”

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 21 / 68

What is a representation?

Idea: represent words as vectors

TSNE

Thursday, 31 January, 13

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 22 / 68

What is a representation?

Mathematical relationships between vectors encode semantic
relationships between words

Measure semantic similarity using the dot product (or dissimilarity
using Euclidean distance)
Represent a web page with the average of its word vectors
Complete analogies by doing arithmetic on word vectors

e.g. “Paris is to France as London is to ”
France – Paris + London =

It’s very hard to construct representations like these by hand, so we
need to learn them from data

This is a big part of what neural nets do, whatever type of learning
they are doing!

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 23 / 68

What is a representation?

Mathematical relationships between vectors encode semantic
relationships between words

Measure semantic similarity using the dot product (or dissimilarity
using Euclidean distance)
Represent a web page with the average of its word vectors
Complete analogies by doing arithmetic on word vectors

e.g. “Paris is to France as London is to ”
France – Paris + London =

It’s very hard to construct representations like these by hand, so we
need to learn them from data

This is a big part of what neural nets do, whatever type of learning
they are doing!

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 23 / 68

Types of machine learning

Supervised learning: have labeled examples of the correct behavior,
i.e. ground truth input/output response

Reinforcement learning: learning system receives a reward signal,
tries to learn to maximize the reward signal

Unsupervised learning: no labeled examples – instead, looking for
interesting patterns in the data

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 24 / 68

Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset

Task: given an image of a handwritten digit, predict the digit class

Input: the image
Target: the digit class

Data: 70,000 images of handwritten digits labeled by humans

Training set: first 60,000 images, used to train the network
Test set: last 10,000 images, not available during training, used to
evaluate performance

This dataset is the “fruit fly” of neural net research

Neural nets already achieved > 99% accuracy in the 1990s, but we
still continue to learn a lot from it

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 25 / 68

Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset

Task: given an image of a handwritten digit, predict the digit class

Input: the image
Target: the digit class

Data: 70,000 images of handwritten digits labeled by humans

Training set: first 60,000 images, used to train the network
Test set: last 10,000 images, not available during training, used to
evaluate performance

This dataset is the “fruit fly” of neural net research

Neural nets already achieved > 99% accuracy in the 1990s, but we
still continue to learn a lot from it

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 25 / 68

Supervised learning examples

Supervised learning: have labeled examples of the correct behavior

e.g. Handwritten digit classification with the MNIST dataset

Task: given an image of a handwritten digit, predict the digit class

Input: the image
Target: the digit class

Data: 70,000 images of handwritten digits labeled by humans

Training set: first 60,000 images, used to train the network
Test set: last 10,000 images, not available during training, used to
evaluate performance

This dataset is the “fruit fly” of neural net research

Neural nets already achieved > 99% accuracy in the 1990s, but we
still continue to learn a lot from it

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 25 / 68

Supervised learning examples

What makes a “2”?It is very hard to say what makes a 2

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 26 / 68

Supervised learning examples

Object recognition
Some examples from an earlier version of the net

(Krizhevsky and Hinton, 2012)

ImageNet dataset: one thousand categories, millions of labeled images

Lots of variability in viewpoint, lighting, etc.

Error rate dropped from 26% to under 4% over the course of a few years!

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 27 / 68

Supervised learning examples

Caption generation

(Xu et al., 2015)

Given: dataset of Flickr images with captions
More examples at http://deeplearning.cs.toronto.edu/i2t

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 28 / 68

http://deeplearning.cs.toronto.edu/i2t

Supervised learning examples

Neural Machine Translation

(Wu et al., 2016)

Now the production model on Google Translate
Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 29 / 68

Unsupervised learning examples

In generative modeling, we want to learn a distribution over some dataset,
such as natural images.
We can evaluate a generative model by sampling from the model and seeing
if it looks like the data.
These results were considered impressive in 2014:

Denton et al., 2014, Deep generative image models using a Laplacian pyramid of adversarial networks

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 30 / 68

Unsupervised learning examples

The progress of generative models:

Big GAN, Brock et al, 2019:

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 31 / 68

Unsupervised learning examples

Generative models of text. The models like BERT and GPT-2
perform unsupervised learning by reconstructing the next words in a
sentence. The GPT-2 models learns from 40GB of Internet text.

https://talktotransformer.com/

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 32 / 68

https://talktotransformer.com/

Unsupervised learning examples

Recent exciting result: a model called the CycleGAN takes lots of
images of one category (e.g. horses) and lots of images of another
category (e.g. zebras) and learns to translate between them.

https://github.com/junyanz/CycleGAN

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 33 / 68

https://github.com/junyanz/CycleGAN

Reinforcement learning

An agent interacts with an environment (e.g. game of Breakout)

In each time step,

the agent receives observations (e.g. pixels) which give it information
about the state (e.g. positions of the ball and paddle)
the agent picks an action (e.g. keystrokes) which affects the state

The agent periodically receives a reward (e.g. points)

The agent wants to learn a policy, or mapping from observations to
actions, which maximizes its average reward over time

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 34 / 68

Reinforcement learning

DeepMind trained neural networks to play many different Atari games

given the raw screen as input, plus the score as a reward

single network architecture shared between all the games

in many cases, the networks learned to play better than humans (in
terms of points in the first minute)

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 35 / 68

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Reinforcement learning for control

Learning locomotion control from scratch

The reward is to run as far as possible over all the obstacles

single control policy that learns to adapt to different terrains

https://www.youtube.com/watch?v=hx_bgoTF7bs

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 36 / 68

https://www.youtube.com/watch?v=hx_bgoTF7bs

Software frameworks

Scientific computing (NumPy)

vectorize computations (express them in terms of matrix/vector
operations) to exploit hardware efficiency

Neural net frameworks: PyTorch, TensorFlow, etc.

automatic differentiation
compiling computation graphs
libraries of algorithms and network primitives
support for graphics processing units (GPUs)

For this course:

Python, NumPy
PyTorch, a widely used neural net framework with a built-in automatic
differentiation feature

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 37 / 68

Software frameworks

Why take this class, if PyTorch does so much for you?

So you know what do to if something goes wrong!

Debugging learning algorithms requires sophisticated detective work,
which requires understanding what goes on beneath the hood.

That’s why we derive things by hand in this class!

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 38 / 68

Linear Models: Overview

One of the fundamental building blocks in deep learning are the linear
models, where you decide based on a linear function of the input
vector.

Here, we will review linear models, some other fundamental concepts
(e.g. gradient descent, generalization), and some of the common
supervised learning problems:

Regression: predict a scalar-valued target (e.g. stock price)
Binary classification: predict a binary label (e.g. spam vs. non-spam
email)
Multiway classification: predict a discrete label (e.g. object category,
from a list)

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 39 / 68

Problem Setup

Want to predict a scalar t as a function of a vector x

Given a dataset of pairs {(x(i), t(i))}Ni=1

The x(i) are called input vectors, and the t(i) are called targets.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 40 / 68

Problem Setup

Model: y is a linear function of x :

y = w>x + b

y is the prediction

w is the weight vector

b is the bias

w and b together are the parameters

Settings of the parameters are called hypotheses
Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 41 / 68

Problem Setup

Loss function: squared error

L(y , t) =
1

2
(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

J (w , b) =
1

2N

N∑
i=1

(
y (i) − t(i)

)2
=

1

2N

N∑
i=1

(
w>x(i) + b − t(i)

)2

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 42 / 68

Problem Setup

Loss function: squared error

L(y , t) =
1

2
(y − t)2

y − t is the residual, and we want to make this small in magnitude

The 1
2 factor is just to make the calculations convenient.

Cost function: loss function averaged over all training examples

J (w , b) =
1

2N

N∑
i=1

(
y (i) − t(i)

)2
=

1

2N

N∑
i=1

(
w>x(i) + b − t(i)

)2

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 42 / 68

Problem Setup

Visualizing the contours of the cost function:

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 43 / 68

Vectorization

We can organize all the training examples into a matrix X with one
row per training example, and all the targets into a vector t.

Computing the predictions for the whole dataset:

Xw + b1 =

w>x(1) + b
...

w>x(N) + b

 =

y (1)

...

y (N)

 = y

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 44 / 68

Vectorization

Computing the squared error cost across the whole dataset:

y = Xw + b1

J =
1

2N
‖y − t‖2

In Python:

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 45 / 68

Solving the optimization problem

We defined a cost function. This is what we’d like to minimize.

Recall from calculus class: the minimum of a smooth function (if it
exists) occurs at a critical point, i.e. point where the partial
derivatives are all 0.

Two strategies for optimization:

Direct solution: derive a formula that sets the partial derivatives to 0.
This works only in a handful of cases (e.g. linear regression).
Iterative methods (e.g. gradient descent): repeatedly apply an update
rule which slightly improves the current solution. This is what we’ll do
throughout the course.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 46 / 68

Direct solution

Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

∂

∂x1
f (x1, x2) = lim

h→0

f (x1 + h, x2)− f (x1, x2)

h

To compute, take the single variable derivatives, pretending the other
arguments are constant.
Example: partial derivatives of the prediction y

∂y

∂wj
=

∂

∂wj

∑
j′

wj′xj′ + b


= xj

∂y

∂b
=

∂

∂b

∑
j′

wj′xj′ + b


= 1

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 47 / 68

Direct solution

Chain rule for derivatives:
∂L
∂wj

=
dL
dy

∂y

∂wj

=
d

dy

[
1

2
(y − t)2

]
· xj

= (y − t)xj

∂L
∂b

= y − t

We will give a more precise statement of the Chain Rule next week.
It’s actually pretty complicated.
Cost derivatives (average over data points):

∂J
∂wj

=
1

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

∂J
∂b

=
1

N

N∑
i=1

y (i) − t(i)

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 48 / 68

Gradient descent

Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

The gradient descent update decreases the cost function for small
enough α:

wj ← wj − α
∂J
∂wj

= wj −
α

N

N∑
i=1

(y (i) − t(i)) x
(i)
j

α is a learning rate. The larger it is, the faster w changes.
We’ll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 49 / 68

Gradient descent

This gets its name from the gradient:

∇J (w) =
∂J
∂w

=


∂J
∂w1

...
∂J
∂wD


This is the direction of fastest increase in J .

Update rule in vector form:

w← w − α∇J (w)

= w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 50 / 68

Gradient descent

This gets its name from the gradient:

∇J (w) =
∂J
∂w

=


∂J
∂w1

...
∂J
∂wD


This is the direction of fastest increase in J .

Update rule in vector form:

w← w − α∇J (w)

= w − α

N

N∑
i=1

(y (i) − t(i)) x(i)

Hence, gradient descent updates the weights in the direction of
fastest decrease.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 50 / 68

Gradient descent

Visualization:
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_

regression.pdf#page=21

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 51 / 68

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21

Gradient descent

Why gradient descent, if we can find the optimum directly?

GD can be applied to a much broader set of models
GD can be easier to implement than direct solutions, especially with
automatic differentiation software
For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 52 / 68

Feature maps

We can convert linear models into nonlinear models using feature
maps.

y = w>φ(x)

E.g., if ψ(x) = (1, x , · · · , xD)>, then y is a polynomial in x . This
model is known as polynomial regression:

y = w0 + w1x + · · ·+ wDx
D

This doesn’t require changing the algorithm — just pretend ψ(x) is
the input vector.

We don’t need an expicit bias term, since it can be absorbed into ψ.

Feature maps let us fit nonlinear models, but it can be hard to choose
good features.

Before deep learning, most of the effort in building a practical machine
learning system was feature engineering.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 53 / 68

Feature maps

y = w0

x

t

M = 0

0 1

−1

0

1

y = w0 + w1x

x

t

M = 1

0 1

−1

0

1

y = w0 + w1x + w2x
2 + w3x

3

x

t

M = 3

0 1

−1

0

1

y = w0 + w1x + · · ·+ w9x
9

x

t

M = 9

0 1

−1

0

1

-Pattern Recognition and Machine Learning, Christopher Bishop.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 54 / 68

Generalization

Underfitting : The model is too simple - does not fit the data.

x

t

M = 0

0 1

−1

0

1

Overfitting : The model is too complex - fits perfectly, does not generalize.

x

t

M = 9

0 1

−1

0

1

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 55 / 68

Generalization

We would like our models to generalize to data they haven’t seen
before

The degree of the polynomial is an example of a hyperparameter,
something we can’t include in the training procedure itself

We can tune hyperparameters using a validation set:

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 56 / 68

Classification

Binary linear classification

classification: predict a discrete-valued target

binary: predict a binary target t ∈ {0, 1}
Training examples with t = 1 are called positive examples, and training
examples with t = 0 are called negative examples. Sorry.

linear: model is a linear function of x, thresholded at zero:

z = wTx + b

output =

{
1 if z ≥ 0
0 if z < 0

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 57 / 68

Logistic Regression

We can’t optimize classification accuracy directly with gradient
descent because it’s discontinuous.

Instead, we typically define a continuous surrogate loss function which
is easier to optimize. Logistic regression is a canonical example of
this, in the context of classification.

The model outputs a continuous value y ∈ [0, 1], which you can think
of as the probability of the example being positive.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 58 / 68

Logistic Regression

There’s obviously no reason to predict values outside [0, 1]. Let’s
squash y into this interval.

The logistic function is a kind of sigmoidal, or
S-shaped, function:

σ(z) =
1

1 + e−z

A linear model with a logistic nonlinearity is known as log-linear:

z = w>x + b

y = σ(z)

Used in this way, σ is called an activation function, and z is called the
logit.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 59 / 68

Logistic Regression

Because y ∈ [0, 1], we can interpret it as the estimated probability
that t = 1.
Being 99% confident of the wrong answer is much worse than being
90% confident of the wrong answer. Cross-entropy loss captures this
intuition:

LCE(y , t) =

{
− log y if t = 1
− log(1− y) if t = 0

= −t log y − (1− t) log(1− y)

Aside: why does it make sense to think of y as a probability? Because
cross-entropy loss is a proper scoring rule, which means the optimal y
is the true probability.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 60 / 68

Logistic Regression

Logistic regression combines the logistic activation function with
cross-entropy loss.

z = w>x + b

y = σ(z)

=
1

1 + e−z

LCE = −t log y − (1− t) log(1− y)

Interestingly, the loss asymptotes to a linear function of the logit z .

Full derivation in the readings.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 61 / 68

Multiclass Classification

What about classification tasks with more than two categories?
It is very hard to say what makes a 2 Some examples from an earlier version of the net

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 62 / 68

Multiclass Classification

Targets form a discrete set {1, . . . ,K}.
It’s often more convenient to represent them as one-hot vectors, or a
one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 63 / 68

Multiclass Classification

Now there are D input dimensions and K output dimensions, so we
need K × D weights, which we arrange as a weight matrix W.

Also, we have a K -dimensional vector b of biases.

Linear predictions:

zk =
∑
j

wkjxj + bk

Vectorized:
z = Wx + b

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 64 / 68

Multiclass Classification

A natural activation function to use is the softmax function, a
multivariable generalization of the logistic function:

yk = softmax(z1, . . . , zK)k =
ezk∑
k ′ ezk′

The inputs zk are called the logits.

Properties:

Outputs are positive and sum to 1 (so they can be interpreted as
probabilities)
If one of the zk ’s is much larger than the others, softmax(z) is
approximately the argmax. (So really it’s more like “soft-argmax”.)
Exercise: how does the case of K = 2 relate to the logistic function?

Note: sometimes σ(z) is used to denote the softmax function; in this
class, it will denote the logistic function applied elementwise.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 65 / 68

Multiclass Classification

If a model outputs a vector of class probabilities, we can use
cross-entropy as the loss function:

LCE(y, t) = −
K∑

k=1

tk log yk

= −t>(log y),

where the log is applied elementwise.

Just like with logistic regression, we typically combine the softmax
and cross-entropy into a softmax-cross-entropy function.

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 66 / 68

Multiclass Classification

Softmax regression, also called multiclass logistic regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

It’s possible to show the gradient descent updates have a convenient
form:

∂LCE

∂z
= y − t

Richard Zemel COMS 4995 NNDL Lecture 1: Introduction 67 / 68

