I am a professor in the Department of Computer Science at Columbia University.
I am on leave from the University of Toronto and the Vector Institute.
I am broadly interested in machine learning, artificial intelligence, statistics, neuroscience, and cognitive science.
My recent research interests include:
During the academic year I hold weekly office hours. For the Fall 2021 term these are Mondays 1:30-2:30PM. For students and postdocs, coming to my office hours is easier than using email to make an appointment.
Here are some recent talks:
Students and Postdocs:
Former students and postdocs:
If you are interested in applying for a PhD in Machine Learning at Columbia, you should apply through the Columbia University Computer Science department.
Environment inference for invariant learning
Elliot Creager, Jorn Jacobsen, Richard Zemel.
ICML, 2021.
SketchEmbedNet: Learning novel concepts by imitating drawings
Alex Wang, Mengye Ren, Richard Zemel
ICML, 2021.
Universal template for few-shot dataset generalization
Eleni Triantafillou, Hugo Larochelle, Richard Zemel, Vincent Dumoulin
ICML, 2021.
On monotonic linear interpolation of neural network parameters
James Lucas, Juhan Bae, Michael Zhang, Stanislav Fort, Richard Zemel, Roger Grosse
ICML, 2021
A computational framework for slang generation
Zhewei Sun, Richard Zemel, Yang Xu
Transactions of the Association for Computational Linguistics, 9: 478-462 (2021).
Wandering within a world: Online contextualized few-shot learning
Mengye Ren, Michael Iuzzolino, Michael Mozer, Richard Zemel
ICLR, 2021.
Bayesian few-shot classification with one-vs-each Polya-Gamma augmented Gaussian Processes
Jake Snell, Richard Zemel.
ICLR, 2021.
Theoretical bounds on estimation error for meta-learning
James Lucas, Mengye Ren, Irene Kameni, Toni Pitassi, Richard Zemel
ICLR, 2021.
A PAC-Bayesian approach to generalization bounds for graph neural networks
Renjie Liao, Raquel Urtasun, Richard Zemel
ICLR, 2021.
Shortcut learning in deep neural networks
Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias Bethge, Felix Wichmann
Nature Machine Intelligence: 2, 2020.
Causal modeling for fairness in dynamical systems
Elliot Creager, David Madras, Toni Pitassi, Richard Zemel
ICML, 2020.
Cutting out the middle-man: Training and evaluating energy-based models
Will Grathwohl, Jackson Wang, Jorn Jacobsen, David Duvenaud, Richard Zemel
ICML, 2020.
Optimizing long-term social welfare in recommender systems: A constrained matching approach
Martin Mladenov, Elliot Creager, O Ben-Porat, Kevin Swersky, Richard Zemel, Craig Boutilier
ICML, 2020.
Understanding the limitations of conditional generative models
Ethan Fetaya, Joern-Henrik Jacobsen, Will Grathwohl, Richard Zemel
ICLR, 2020.
A divergence minimization perspective on imitation learning methods
Seyed Kamyar Seyed Ghasemipour, Richard Zemel, Shane Gu
CORL, 2019.
Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William Hamilton, David Duvenaud, Raquel Urtasun, Richard Zemel
Efficient graph generation with graph recurrent attention networks
NeurIPS, 2019.
SMILe: Scalable meta inverse reinforcement learning through context-conditional policies
Seyed Kamyar Seyed Ghasemipour, Shane Gu, Richard Zemel
NeurIPS, 2019.
Incremental few-shot learning with attention attractor networks
Mengye Ren, Renjie Liao, Ethan Fetaya, Richard Zemel
NeurIPS, 2019.
Understanding the origins of bias in word embedding
Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, Richard Zemel
ICML, 2019.
Lorentzian distance learning for hyperbolic representations
Marc Law, Renjie Liao, Jake Snell, Richard Zemel
ICML, 2019.
Elliot Creager, David Madras, Joern-Henrik Jacobsen, Marissa Weis, Kevin Swersky, Toniann Pitassi, Richard Zemel
Flexibly fair representation learning by disentanglement
ICML, 2019.
Dimensionality reduction for representing the knowledge of probabilistic models
Marc Law, Jake Snell, Amir-massoud Farahmand, Raquel Urtasun, Richard Zemel
ICLR, 2019.
Aggregated momentum: Stability through passive damping
James Lucas, Shengyang Sun, Richard Zemel, Roger Grosse
ICLR, 2019.
Excessive invariance causes adversarial vulnerability
Jörn-Henrik Jacobsen, Jens Behrmann, Richard Zemel, Matthias Bethge
ICLR, 2019.
LanczosNet: Multi-scale deep graph convolutional networks
Renjie Liao, Zhizhen Zhao, Raquel Urtasun, Richard Zemel
ICLR, 2019.
Fairness through causal awareness: Learning causal latent-variable models for biased data.
David Madras, Elliot Creager, Toni Pitassi, Richard Zemel
FAccT, 2019.
Neural guided constraint logic programming for program synthesis
Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William Byrd, Matthew Might, Raquel Urtasun, Richard Zemel.
NeurIPS, 2018.
Predict responsibly: improving fairness and accuracy by learning to defer
David Madras, Toni Pitassi, Richard Zemel
NeurIPS, 2018.
Learning latent subspaces in variational autoencoders
Jack Klys, Jake Snell, Richard Zemel
NeurIPS, 2018.
Neural relational inference for interacting systems
Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, Richard Zemel
ICML, 2018.
Adversarial distillation of Bayesian neural network posteriors
Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger Grosse, Richard Zemel
ICML, 2018.
Learning adversarially fair and transferable representations
David Madras, Elliot Creager, Toniann Pitassi, Richard Zemel
ICML, 2018.
Reviving and improving recurrent back-propagation
Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Zachary Pitkow, Raquel Urtasun, Richard Zemel
ICML, 2018.
The elephant in the room
Amir Rosenfeld, Richard Zemel, John K. Tsotsos
Arxiv, 2018.
Few-shot learning through an information retrieval lens
Eleni Triantafillou, Richard Zemel, Raquel Urtasun
NeurIPS, 2017.
Dualing GANs
Yujia Li, Alexander Schwing, Kuan-Chieh Wang, Richard Zemel
NeurIPS, 2017.
Causal effect inference with deep latent-variable models
Christos Louizos, Uri Shalit, Joris Mooij, David Sontag, Richard Zemel, Max Welling
NeurIPS, 2017.
Deep spectral clustering learning
Marc Law, Raquel Urtasun, Richard Zemel
ICML, 2017.
Efficient multiple instance metric learning using weakly supervised data
Marc Law, Yaoling Yu, Raquel Urtasun, Richard Zemel, Eric Xing
CVPR, 2017.
Prototypical networks for few-shot learning
Jake Snell, Kevin Swersky, Richard Zemel
NeurIPS, 2017.
Stochastic segmentation trees
Jake Snell, Richard Zemel
UAI, 2017.
Learning to generate images with perceptual similarity metrics
Jake Snell, Karl Ridgeway, Renjie Liao, Brett Roads, Michael Mozer & Richard Zemel
ICIP, 2017.
Normalizing the normalizers: Comparing and extending network normalization schemes
Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian Sinz, Richard Zemel
ICLR, 2017.
End-to-end instance segmentation with recurrent attention
Mengye Ren and Richard Zemel
CVPR, 2017.
Towards generalizable sentence embeddings
Eleni Triantafillou, Jamie Ryan Kiros, Raquel Urtasun, Richard Zemel
ACL Workshop on Representation Learning for NLP, 2017.
The variational fair autoencoder
Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, Richard Zemel
ICLR, 2016.
Gated graph sequence neural networks
Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel
ICLR, 2016.
Training deep neural networks via direct loss minimization
Yang Song, Alex Schwing, Richard Zemel, Raquel Urtasun
ICLR, 2016.
Classifying NBA offensive plays using neural networks
Kuan-Chieh Wang, Richard Zemel
Sloan Sports Analytics Conference, 2016.
Understanding the effective receptive field in deep convolutional neural networks
Wenjie Luo, Yujia Li, Raquel Urtasun, Richard Zemel
NeurIPS, 2016.
Learning deep parsimonious representations
Renjie Liao, Alexander Schwing, Richard Zemel, Raquel Urtasun
NeurIPS, 2016.