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ABSTRACT
We propose a compact noninvasive glucose monitoring system us-
ing polarized light, where a user simply needs to place her palm
on the device for measuring her current glucose concentration
level. The primary innovation of our system is the ability to min-
imize light scattering from the skin and extract weak changes in
light polarization to estimate glucose concentration, all using low-
cost hardware. Our system exploits multiple wavelengths and light
intensity levels to mitigate the effect of user diversity and confound-
ing factors (e.g., collagen and elastin in the dermis). It then infers
glucose concentration using a generic learning model, thus no ad-
ditional calibration is needed. We design and fabricate a compact
(17 cm × 10 cm × 5 cm) and low-cost (i.e., <$250) prototype using
off-the-shelf hardware. We evaluate our system with 41 diabetic
patients and 9 healthy participants. In comparison to a continuous
glucose monitor approved by U.S. Food and Drug Administration
(FDA), 89% of our results are within zone A (clinically accurate)
of the Clarke Error Grid. The absolute relative difference (ARD)
is 10% . The 𝑟 and 𝑝 values of the Pearson correlation coefficients
between our predicted glucose concentration and reference glucose
concentration are 0.91 and 1.6 × 10−143, respectively. These errors
are comparable with FDA-approved glucose sensors, which achieve
≈90% clinical accuracy with a 10% mean ARD.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Hardware→ Sensor devices and platforms.
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1 INTRODUCTION
Diabetes is a major medical concern that affects more than 9% of
the U.S. population [1]. The condition can affect body organs and
increase the risk of heart disease, stroke, blindness, kidney failure,
neuropathy, and congenital disabilities [67]. Currently, there is no
cure for diabetes and patients can effectivelymanage their condition
by monitoring the glucose concentration. A normal glucose concen-
tration should be between 70 and 140 mg/dL (or 3.9 – 7.8 mmol/L)
for non-diabetics. The glucose concentration is considered high if it
is above 140 mg/dl after at least 8 hours without eating or drinking,
or above 180 mg/dL after 2 hours without eating [45]. Clinical prac-
tice guidelines recommend that diabetic patients measure glucose
concentration level at least three times a day (up to ten times for
patients with Type 1 diabetes1 [21]). Frequent glucose monitoring
is crucial to maintaining their glucose concentration within the
normal range and mitigating the risk of diabetes complications.

The mainstream glucose monitoring is currently performed inva-
sively with enzymatic test strips measuring glucose concentration
directly from a small sample of blood [9]. Although the invasive
method is by far the most effective and accurate for monitoring
blood glucose concentration level, it leverages automatic lancet de-
vices to prick the fingertip and extract the blood sample. Using this
process, it is painful to measure glucose level multiple times (i.e., >3
times) a day. Due to the discomfort, many diabetic patients rely on
their symptoms and experiences to guess glucose concentration and
insulin administration, which significantly increases the possibility
of diabetic complications [71]. Alternatively, continuous glucose
monitoring (CGM) systems can estimate glucose concentration in
interstitial fluid (ISF) [31]. These minimally invasive devices rely on
subcutaneously implanted biosensors to estimate real-time glucose
concentration without the need of pricking the finger. However,
CGM systems are still invasive, entailing risks of microbial infec-
tion, high financial cost of periodical replacement of biosensors [18],
and the requirement of continuous calibration. Therefore, there is
a significant need for a noninvasive, accurate, and low-cost glucose
monitoring system.

1Type 1 diabetes is one of the two diabetes types, and it caused by genes and environ-
mental factors, such as viruses.
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(a) Prototype in use (b) Prototype design (c) Hardware components inside our prototype

Figure 1: An overview of the proposed system. The prototype contains a sensing box, an optics sensing unit, and a computation unit.

Existing noninvasive glucose monitoring systems still fall short
in achieving these goals. Common approaches include optical, trans-
dermal, and thermal techniques [31, 40, 49]. Optical techniques mea-
sure glucose concentration by analyzing the relationship between
glucose concentration and optical signal changes such as optical
rotation [13, 54] and light intensity [43, 63]). Due to the indirect
and often weak relationship between the change of measured signal
and glucose concentration, existing techniques are prone to low
accuracy across diverse user groups, and affected by confounding
factors and environmental changes like temperature. Transdermal
techniques are based on the measurement of glucose molecules
impedance [7, 70]. However, a limitation of this method is that low
electric current passing through the skin can cause irritation [31].
Thermal techniques measure thermal generation, blood flow rate,
hemoglobin, or oxyhemoglobin concentrations to estimate glucose
levels, but the accuracy of existing systems is significantly affected
by environmental factors like temperature and humidity.

In this paper, we propose a compact, low-cost, noninvasive glu-
cose monitoring system with accuracy comparable to existing FDA-
approved CGM sensors. Specifically, as shown in Figure 1(a), we
propose a novel optical polarimetry that measures optical rotation
related to the glucose concentration in ISF. At a high level, our
system emits light towards the palm and then extracts optical ro-
tation from the reflected light to estimate glucose concentration.
Although optical polarimetry has been explored in prior literature,
existing methods measure glucose concentration from either sam-
ple cells [10, 41] or transparent tissue in the body (eyes) [46, 54].
However, the former is still invasive, and the latter can cause photo-
thermal damage to eyes. A recent method designs an optical coher-
ence tomography to measure of glucose concentration on finger-
tips [13, 48, 51]. However, since these systems directly compute the
amount of depolarization, they rely on bulky and expensive optical
devices to measure small optical rotation. They also lack clinical
evaluations on diabetic patients.

Challenges We face three main challenges to realize noninvasive
blood glucose sensing using light. First, human skin is a highly
absorbing and scattering medium. The majority of light is either
absorbed or becomes depolarized due to tissue scattering, resulting
in a very small portion of reflected light carrying the optical rotation
associated with glucose concentration level. Thus, it is challenging
to extract the weak optical rotation from reflected light. Second,
other substances (e.g., collagen and elastin in the skin) in the body
along the signal path also contribute to an observed optical rotation.
These confounding factors can significantly reduce the accuracy of
a light-based system for glucose monitoring. Third, user diversity

presents an additional challenge. Our experiments show that skin
characteristics (e.g., skin tone, skin thickness) affect the correlation
between the observed signal and glucose concentration. Hence, a
light-based glucose monitoring system and algorithm need to be
robust against the aforementioned challenges.

Design We seek to address these challenges with three design
considerations. First, to deal with depolarization from tissue scat-
tering, we propose a novel methodology of depolarization cancel-
lation, which cancels out depolarized light using low-cost, small
hardware components. This sets a fundamental departure from
prior works [13, 48, 51] that directly model depolarization. Specif-
ically, our method leverages a low-cost LC and linear polarizer
films to orient the light polarization to two orthogonal directions
(parallel and perpendicular to scattering plane). Depolarization is
canceled out via subtracting the measurements in these two direc-
tions. Second, to mitigate the impact of confounding factors, we
exploit multiple wavelengths and intensity levels to control the
light penetration depth beneath the skin. Since both the interstitial
fluid and other confounding factors are not uniformly distributed
in the body, probing skin with different light wavelengths and in-
tensity levels allows the system to gather data at the penetration
depth with higher linear correlations between observed signals
and glucose concentration. Aggregating spatial features of reflected
light under different wavelengths and light intensity levels also im-
proves estimation of glucose level. Finally, to address the challenge
of user diversity, we build a generic model based on boosted trees
regression [75]. This generic model is trained with data from 50
participants. We then apply a resampling ensembles algorithm to
handle imbalanced training data.

Evaluation To examine the feasibility of our approach, we built
a compact (17 cm × 10 cm × 5 cm) and low-cost (<$250) prototype
using off-the-shelf hardware components (Figure 1(b)). The proto-
type consists of three laser diodes (at 450 nm, 520 nm, and 658 nm),
two linear polarizing films, a 50◦ circle pattern diffuser, an LC, and
a photodiode (Figure 1(c)). We designed and fabricated two printed
circuit boards (PCBs) to host the photodiode and three laser diodes.
The photodiode, laser diodes, and LC are connected to an Arduino
Due micro-controller. The micro-controller controls the orientation
of the LC and light intensity of laser diodes, samples the recorded
signal, generates features, and estimates glucose concentration in
real time. Figure 1(a) shows a system overview.

We evaluated the prototype by collecting data from a local hos-
pital and a university with 50 participants (31 male and 19 female,
18–81 years old), including 41 diabetic patients and 9 healthy sub-
jects. We summarize our findings as below:
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Figure 2: Glucose causes rotation of the plane of light polarization. Figure 3: Impact of light absorption and scattering on the skin.

• 89% of results are within zone A (i.e., < 20% error) of the Clarke
Error Grid [17], a common measure to examine glucose moni-
toring accuracy. The 𝑟 and 𝑝 values of the Pearson correlation
coefficients between predicted and reference glucose concentra-
tion are 0.91 and 1.6×10−143, respectively. The mean and median
absolute relative differences are 10% and 9%, respectively.

• Glucose increasing and decreasing trends are detected with a
precision of 88% and 87% and recall of 80% and 81% across all
participants, respectively.

• The system is robust under various ambient lighting conditions
(i.e., indoor and outdoor), body temperatures (e.g., 33◦𝐶 to 40◦𝐶),
and hand pressure (5 𝑁 to 50 𝑁 ).

• Our prototype received positive feedback from 41 diabetic pa-
tients for its noninvasive nature and low cost.

Contributions We make the following key contributions:
• We propose a novel optical polarimetry design capable of extract-
ing weak optical rotation signals related to glucose concentration
beneath the skin.

• We propose the concept of using multiple wavelengths and in-
tensity levels to mitigate the impact of confounding factors and
strengthen the correlation between observed optical rotation and
glucose concentration.

• We build a generic learning model for estimating glucose con-
centration without the need for calibration. This model is robust
across diverse users and more generalizable than personalized
models.

• We design and implement a compact and low-cost prototype to
estimate glucose concentration in real time using off-the-shelf
hardware components.

• We evaluate our system with diverse users with and without
diabetes and demonstrate system accuracy comparable to an
existing FDA-approved CGM.

2 BACKGROUND AND CHALLENGES
Glucose is a monosaccharide (or simple sugar) with the molecular
formula 𝐶6𝐻12𝑂6. More importantly, glucose is an optically active
molecule2 because its molecule has four chiral centers, which gives
24 = 16 possible stereoisomers [3]. Based on the optical activity of
glucose, polarimetric glucose sensing measures the linear polariza-
tion change to estimate glucose concentration. Linearly polarized
light can be decomposed into the superposition of left and right
circularly polarized light with equal amplitude. In an optically ac-
tive medium, the velocities of left and right circularly polarized

2Optical activity occurs if the molecules are one of two (or more) stereoisomers [66].

light are different [64]. Figure 2 shows that when linearly polarized
light propagates through a medium with glucose molecules, the
plane of light polarization at the output can be rotated [32]. In a
clear medium, the amount of optical rotation 𝛼 , which is linearly
proportional to the glucose concentration𝐶 , can be computed with
following equation [71]:

𝛼 = 𝑅(𝜆,𝑇 ) ·𝐶 · 𝐿, (1)

where 𝑅 is the rotatory power of glucose molecule at light wave-
length 𝜆 and temperature𝑇 , and 𝐿 is the optical path in the medium
that contains glucose.

Based on this simple linear relationship between 𝛼 and𝐶 , various
polarimetric glucose sensors have been developed [42, 54]. However,
existing methods require either extracting sample cells from the
body or polarimetric sensing devices that can measure millidegree
rotations to extract the weak polarized light. The former is painful
and uncomfortable as patients with diabetes are requires to check
their blood glucose multiple times (e.g. > 3 times) a day. The latter
systems tend to be bulky and expensive and typically require high
voltage for operation. Hence, there is still a critical need for a mobile,
affordable, and accurate noninvasive glucose monitoring system.

A fundamental challenge is that human skin is highly absorbing
and scatters incident light rays, thereby decreasing the signal-to-
noise (SNR) of the reflected light and reducing the polarization
change caused by the presence of glucose. The outermost layer of
the skin is the epidermis (about 0.1 mm thick), which provides a
waterproof barrier and creates a skin tone. Beneath the epidermis
is the dermis (about 2 mm thick), which contains connective tissues
and sweat glands. The deepest layer of the skin is the hypodermis
(about 2–7 mm thick), which is made of fat tissue that stores nutri-
ents and energy, insulates the body from cold temperatures, and
provides shock absorption. As shown in Figure 3, when linearly
polarized light illuminates skin surface, 53% of the light is absorbed
by the skin, and roughly 5% is directly reflected from skin surface
and therefore does not interact with glucose molecules below the
skin [30]. The rest of the light penetrates the skin and may inter-
act with glucose molecules before and while being reflected back.
However, the majority (>95%) of such light is depolarized due to
scattering from the tissue, which randomizes the orientation of
polarization [52]. It leaves approximately only 4% of light retain-
ing its polarization change because of its interaction with glucose
molecules. Directly extracting polarized light reflected by the skin is
not effective. Based on Mueller matrix decomposition, recent work
has applied optical coherence tomography (OCT) to extract linear or
circular polarized light in turbid media [27, 29, 39]. However, these
methods require strict measurement of optical pathlength, detec-
tion depth, and ISF volume underneath the skin. These parameters
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are hard to acquire in real-world settings. Besides, those methods
require high-end hardware devices (e.g., high-speed lock-in am-
plifiers, non-polarizing beam splitters, compensation dispersers),
which significantly increase both the size and cost of their systems.

Additionally, confounding molecules, as well as a chiral rotation
from tissue birefringence, can also affect the optical rotation, and
add noise to glucose estimations. For example, optically active
chiral species in tissue (e.g., proteins in epidermis and dermis)
and anisotropic tissue structures (e.g., collagen in the dermis) can
contribute to the observed optical rotation, hindering access to
specific glucose contribution.

Finally, user diversity presents an additional challenge for nonin-
vasive glucosemonitoring. Among different users, the optical path 𝐿
in Eq. (1) is difficult to quantify andmeasure, therebymaking it even
more difficult to accurately estimate glucose concentration. Skin
thickness and skin color both affect the ratio of absorbed/reflected
light. Existing systems often require calibration (e.g., a fingerstick
blood sample) to improve the estimation across different users.
However, such solutions sacrifice user experience.

3 SYSTEM DESIGN
We address the aforementioned challenges via three design ele-
ments described below.

3.1 Depolarization Cancellation
Our first design element is a novel hardware design that exploits the
use of LCs to cancel out randomly polarized light and extract weak
polarized light associated with glucose concentration. Specifically,
we apply different voltages on an LC to rotate the polarization of
linearly polarized light and sense the reflected light in two orienta-
tions. For polarized light, if the orientation is parallel/perpendicular
to a linear polarizing film, all/none of the light rays can pass through
the linear polarizing film. For randomly polarized light, half the
light rays can pass through a linear polarizing film, regardless of
the orientation status of LC. Thus, the difference between these
two measurements equals the intensity of polarized light.

Figure 4 shows the schematic of our system, which contains a
laser diode, a photodiode, an optical diffuser, two linear polarizing
films (crossed polarization), and an LC. After the optical diffuser
and the first linear polarizing film (𝑃1), light emitted from the laser
diode becomes linearly polarized light. It then reaches the skin sur-
face after propagating through the LC. To exclude direct reflection
from the skin surface, we place the laser diode on an axis that is
45◦ away from the photodiode’s direction, so that glare from the
skin surface reflects away from the photodiode. This allows both
polarized (𝐼𝑝𝑜𝑙 ) and randomly polarized (𝐼𝑟𝑎𝑛) light to reach the
second linear polarizing film (𝑃2) which is perpendicular to the
plane of 𝑃1. By changing the voltage on the LC, our system can
orient the optical rotation of the incident light to either parallel or
perpendicular to the orientation of 𝑃2 and measure the two corre-
sponding reflected light intensity values (𝐼𝑝𝑎𝑟 and 𝐼𝑝𝑒𝑟 ). These two
values can be computed as below:

𝐼𝑝𝑒𝑟 = 𝐼𝑝𝑜𝑙 · cos2 (𝛼 + 𝜋

2 ) +
𝐼𝑟𝑎𝑛

2 = 𝐼𝑝𝑜𝑙 · sin2 (𝛼) +
𝐼𝑟𝑎𝑛

2

𝐼𝑝𝑎𝑟 = 𝐼𝑝𝑜𝑙 · cos2 (𝛼) +
𝐼𝑟𝑎𝑛

2

(2)

We compute the difference of these twomeasurements as the feature
value 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 . Thus we have

𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 = 𝐼𝑝𝑒𝑟 − 𝐼𝑝𝑎𝑟 = −𝐼𝑝𝑜𝑙 · cos(2𝛼). (3)

Based on Eq. (1), 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 can be expanded as

𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 = −𝐼𝑝𝑜𝑙 · cos(2𝑅(𝜆,𝑇 ) ·𝐶 · 𝐿). (4)

Therefore, the glucose concentration 𝐶 can be derived as follows:

𝐶 =

arccos(− 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒
𝐼𝑝𝑜𝑙

)

2𝑅(𝜆,𝑇 ) · 𝐿 . (5)

Since 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 < 0 and −𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 < 𝐼𝑝𝑜𝑙 , there is a positive correla-
tion between𝐶 and 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 . In Sec. 3.3, we will describe estimating
𝐶 using 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 .

Experimental validation We validate the above rationale using
a bench-top experimental setup shown in Figure 5. The setup con-
sists of a 658nm (red) laser diode (∼ $60), a 50◦ circle pattern diffuser
(∼ $50), two linear polarizing films (∼ $1), a low-cost LC (∼ $1),
and an OPT101 photodiode (∼ $6). The hardware components were
aligned properly on an optical breadboard to match the schematic
of our system in Figure 4. We then evaluated the linear relationship
between 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 and the glucose concentration.

In the first experiment, a male user placed his right hand (facing
the photodiode) at the fixed location on the prototype for about 8
hours, and the system continuously sampled 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 every 5–15
minutes before and after the user drank 500 mL of sugar water
and had some food. Ground truth data was collected using a FDA-
approved Freestyle Libre CGM sensor [2] which also measures
glucose concentration from ISF. The experiment was conducted in
a dark room to minimize the impact of ambient light.

Figure 6 shows the correlation between the 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 and the glu-
cose concentration (mg/dl). The black box shows the time window
that the user drank sugar water and had a meal. The 𝑟 and 𝑝 values
of the Pearson correlation coefficients are 0.86 and 0.0000012, respec-
tively. The result demonstrates the correlation between 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 and
the glucose concentration, and it aligns with the linear relationship
in Eq. (4). Therefore, it is possible to estimate glucose concentration
simply by measuring the change of 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 .

The experiment was repeated on eight more users (6 males and
2 females, 18 to 33 years old), and we observed similar linear rela-
tionships across these users. However, the 𝑟 value of the Pearson
correlation coefficients can drop from 0.86 to 0.48 (last column in
Table 1) due to various skin properties (e.g, color, thickness) and
confounding factors. A low 𝑟 value of the Pearson correlation coef-
ficients means that the feature leads to a low signal-to-noise ratio
(SNR), which can degrade the sensing performance significantly.
This observation motivates our next two design elements.

3.2 Exploiting Multiple Wavelengths & Light
Intensity Levels

To boost our system’s sensing robustness under various confound-
ing factors and user diversity, our second design element exploits
the diversity in light wavelengths and intensity levels. Specifically,
it scans different skin layers using multiple wavelengths and inten-
sity levels to strengthen the correlation between 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 and the
glucose concentration in ISF. This sensing scheme has two benefits.
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Figure 4: Schematic of our system. It leverages one liquid-crystal shutter
and linearly polarizing film with proper alignment to extract weak polar-
ized light reflected by ISF below the skin.

Figure 5: Experimental setup for validating the proposed depolarization
cancellation methodology.

Figure 6: Linear relationship between our feature and the glucose concentration.
The black box shows the time window that the user drank sugar water and had
a meal.

Figure 7: Effect of wavelength on penetration depth in skin tissue.

First, it can search skin layers to minimize the impact of confound-
ing factors because ISF and confounding factors are not uniformly
distributed underneath the skin [34]. Second, since wavelengths
contribute to the optical rotation per Eq. (1), our system can gener-
ate multiple feature values at specific glucose concentration, which
can further improve the sensing granularity.

Our system leverages 𝑀 wavelengths within the visible light
spectrum (400–700 nm) and 𝑁 intensity levels (30–120 mW) to
scan from 0.5 mm to 2 mm below the skin surface. In our imple-
mentation, 𝑀 = 3 and 𝑁 = 7. We select these wavelengths and
intensity levels for two reasons. First, the wavelengths are safe
for users. Below 400 nm, continuously illuminated by ultraviolet
radiation can cause diseases like erythema, skin aging, and skin
cancer [5]. Above 700 nm, infrared radiation can create heat on the
skin and potentially increase skin temperature [16]. In our system,
we select three candidates (450 nm, 520 nm, and 658 nm) within the
visible light spectrum (400–700 nm) for continuous glucose sensing.
Second, the intensity levels are appropriate for glucose sensing.
ISF is mainly localized in the two outer layers of the skin, namely,
epidermis and dermis. The volume of ISF in the epidermis and the

Age Gender Racial/ethnic Highest 𝑟 value 𝑟 value (single
category out of 21 features wavelength)

31 Male Asian 0.86 (658 nm, intensity level=5) 0.86
23 Male Asian 0.83 (658 nm, intensity level=3) 0.64
18 Male Asian 0.78 (658 nm, intensity level=3) 0.6
24 Male Asian 0.81 (658 nm, intensity level=4) 0.63
23 Female Asian 0.74 (520 nm, intensity level=4) 0.65
23 Male White 0.75 (520 nm, intensity level=3) 0.71
25 Male African American 0.78 (450 nm, intensity level=6) 0.46
24 Male American Indian 0.74 (450 nm, intensity level=6) 0.51
33 Female Asian 0.75 (520 nm, intensity level=4) 0.48

Table 1: Participant information and the 𝑟 values of the Pearson correlation
coefficients using multiple light and intensity levels and a single wavelength.

dermis are 15%–35% and 35%–45%, respectively [28]. The deeper
layer (hypodermis) is made of fat and connective tissues (confound-
ing factor), and the volume of ISF is less than 20%. Therefore, the
dermis has higher ISF content and a lower ratio of confounding fac-
tors beneath the skin surface, therefore, we propose that it is ideal
for glucose sensing. Figure 7 shows that visible light penetrates
typical tissues to a depth of 0.5–3 mm in the skin [47]. We then
leverage a Monte Carlo simulation, which is one of the most widely
used stochastic methods for modeling light transport in human
skin, to control the penetration depth of these light rays from 0.5–2
mm [6]. The penetration depth of these light rays can vary from
0.2-2.5 mm for different users/skin types (e.g., tone, the thickness
of each layer). Therefore, our system was designed to scan layers in
the dermis to improve the correlation between 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 and glucose
concentration.

To validate this sensing approach, we designed and implemented
a prototype, which is described in Sec. 4. We then asked nine partic-
ipants (7 males and 2 females) to repeat the experiment in Sec. 3.1
using the new prototype. For each measurement, we scan their skin
𝑀 · 𝑁 · 2 times using𝑀 wavelengths and 𝑁 intensity levels, which
generates𝑀 · 𝑁 features per Eq. (4). We then compute the 𝑟 values
of the Pearson correlation coefficients between the features and the
glucose concentration.

Table 1 shows a summary of the highest 𝑟 value of the Pearson
correlation coefficients out of 𝑀 by 𝑁 features. Compared with
the system that uses a single wavelength and intensity level (the
last column in Table 1), the new design strengthens the correlation
between 𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 and the glucose concentration across users and
significantly reduces the impact of confounding factors (the second
last column in Table 1). We have two observations based on the
experimental results. First, the light intensity should fit for the
age. Skin thickness increases between 0 and 30 years of old and
no significant variation in thickness between 30 and 65 years of
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Figure 8: The five different measurement locations on the human arm.

old [69]. Thicker skin requires higher light intensity so that light
rays can penetrate deeply underneath the skin to interact with
more glucose molecules. However, overexposure can saturate the
light sensor, which even degrades the sensing granularity. Second,
people of different race/ethnic categories should select the proper
light wavelength for the best SNR. Racial/ethnic categories decide
skin color, which affects the light penetration depth underneath
the skin. Most lightly pigmented skin types have approximately
half as much epidermal melanin as the most darkly pigmented skin
types [4, 57]. Since epidermal melanin absorbs the full spectrum
range of visible light, the SNR of reflected light from dark skin is
lower than that from light skin. Therefore, a higher light intensity
is needed for dark skin users.

Figure 9 demonstrates the impact of wavelength on the 𝑟 value
of the Pearson correlation coefficients between the feature value
(𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ) and the glucose concentration for different racial/ethnic
categories. The red lines represent the fitted linear models using
linear regression. We observe that red (658 nm) or green (520 nm)
light works well on Asian or African Americans (Figure 9(a)), while
blue (450 nm) and red (658n m) light work well on White people
and African Americans, respectively (Figure 9(c) and 9(b)). The
epidermis thickness of African Americans is significantly higher
compared with White people [56]. Therefore, for African Amer-
icans, blue light cannot penetrate deep enough to interact with
glucose molecules within the dermis layers, introducing a low cor-
relation between sensor data and glucose concentration. For White
people, red light may penetrate too deep and interact with blood
cells, introducing high noise due to confounding factors.

Identification of optimal skin sites We evaluated various skin
sites for noninvasive glucose monitoring. As shown in Figure 8, we
repeated the experiment above on five candidate sites (fingers, palm,
wrist, lower arm, and upper arm). On each skin site, we collected
three-hour of sensor data with ground truth before and after the
user drank 500 ml sugar water. Although other sites like lips and
ear may be relevant, we did not evaluate these sites due to the form
factor of our prototype and potential discomfort to participants.
Table 2 shows that both the palm and wrist are the most suitable
sites for glucose monitoring using our prototype. The fingers were
not considered further because the sensing area on the fingers are
smaller than other sites. Lower arm and upper arm showed to be
bad sites for our approach and system, we suspect this is due to the
presence of a thick stratum corneum or other confounding factors.

3.3 Estimating Glucose Concentration
The last design element is to generate and select features and then
leverage the features to estimate glucose concentration. To address
user diversity, existing methods (e.g., Medtronic Guardian) require

Fingers Palm Wrist Lower arm Upper arm
Highest 𝑟 value 0.46 0.8 0.74 0.12 0.09out of 21 features

Table 2: Comparison of 𝑟 values of the Pearson correlation coefficients between
the feature value (𝐼𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ) and the glucose concentration on five skin sites.

additional calibrations (e.g., a fingerstick blood sample) to refine
their estimation, which sacrifices the user experience. We solve the
problem with supervised learning to train an offline generic model
mapping the sensing data to the glucose concentration. Specifi-
cally, we select gradient boosting decision trees, which capture
the relationship between features and predicted values as a set of
regression trees. This approach is beneficial for two reasons. First,
the computation overhead of offline training and online prediction
is low compared with feed-forward neural networks and SVM. Sec-
ond, the accuracy can be high for low-dimensional sets of features
and small datasets. After training the generic model, we use this
model in our system to predict glucose concentration in real-time
without need for calibration.

Feature generation Our system generates two kinds of features
(total = 27 features). Specifically, we extract 𝑀 · 𝑁 (i.e., 21 fea-
tures based on our implementation) sensing features using Eq. (3).
To reduce the impact of electrical noise (e.g., spike noise due to
frequently turning the laser diodes on and off), we collect 1-min
sensing data and calculate the median of this window to compute
sensing features. Then, we include demographic factors like age,
gender, race, skin tone, type of diabetes, and model of CGM as the
features in our learning model to account for user diversity and
variances among existing CGM devices. Since the mean absolute
relative error of CGM devices varies from 6–12% [58], the model of
CGM is only used to calibrate the labels in the learning model.

Feature selection We leverage boosted trees to select relevant
features in the learning model [75]. A benefit of using boosted trees
is that after the trees are constructed, it is straightforward to acquire
the importance scores of each feature. For a single tree, we can
compute the importance score of each feature by the amount that
the feature improves the performance measure. We then average
the score across all of the trees to compute the weighted score.
The more a feature is used to make significant decisions within the
model, the higher the weighted score becomes. In the experiment in
Section 3.1, we observe that more than half of the sensing features
do not have strong correlations with glucose concentration. Thus,
we use the weighted score to rank the 21 sensing features and
empirically select the top third of all sensing features, and then add
the six demographic features to train a generic model and estimate
glucose concentration.

Offline training We apply an Xgboost library [26] to construct
boosted trees. To train a generic model, we collect data from 41
diabetes patients (18–81 years old) in a local hospital and 9 healthy
participants (18–33 years old) in a university. Table 3 details the
participants’ information. Although users are relatively diverse, the
distribution of their glucose concentration is highly non-uniform in
the dataset. Most of the glucose concentration is within the normal
range (70–140 mg/dl), and less than 22% of glucose concentration
is high glucose (> 140 mg/dl). To handle the imbalanced dataset,
we apply a resampling ensemble algorithm to train 𝑛 (𝑛 = 5 in our
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Figure 9: Impact of wavelength on the 𝑟 value of the Pearson correlation coefficients for different racial/ethnic categories. The red lines represent the fitted linear model
using linear regression.

implement) tree ensembles [55]. Let 𝐷 denotes the training set that
has 𝑋 pairs of feature vector 𝑓 and glucose concentration 𝐶 . We
split 𝐷 into two datasets, namely, the samples that have high glu-
cose concentration (𝐷ℎ𝑖𝑔ℎ) and samples that have normal glucose
concentration (𝐷𝑛𝑜𝑟𝑚𝑎𝑙 ). As shown in Figure 10, each ensemble
is trained using all of the 𝑌 samples in 𝐷ℎ𝑖𝑔ℎ and 𝑋−𝑌

𝑛 random
samples in 𝐷𝑛𝑜𝑟𝑚𝑎𝑙 . Then, we leverage linear regression with ad-
ditional training samples to linearly combine the 𝑛 trained tree
ensembles. Let𝐶𝑖 denotes the predicted glucose concentration from
the 𝑖𝑡ℎ tree ensemble. The final estimation of glucose concentration
𝐶 is derived by 𝐶 =

∑𝑛
𝑖=1 𝑎𝑖 ·𝐶𝑖 . By using multiple tree ensembles

and balanced datasets, the learning model effectively maps feature
vector across a complete range of glucose concentration.

Online inference Users first need to input their age, gender,
race, skin tone, types of diabetes to the system. The model of CGM
is also used to calibrate the labels. No additional calibration is
needed for online inference. As sensing data arrives on the fly, our
system computes feature vectors and then leverage trained trees
ensembles to select features and estimate glucose concentration.
Each tree ensemble will generate a prediction score, and the linear
combination of all scores is the final estimation of the glucose
concentration.

4 PROTOTYPE
We designed and implemented a compact (17 cm × 10 cm × 5
cm) and low-cost (e.g., <$250) prototype (Figure 1) using off-the-
shelf hardware components. The prototype consists of three main

Figure 10: Dealing with imbalanced dataset, where𝑛 balanced datasets are gen-
erated by randomly sampling abundant dataset (𝐷𝑛𝑜𝑟𝑚𝑎𝑙 ) and samples of rare
dataset (𝐷ℎ𝑖𝑔ℎ). Then, the learning model leverages the 𝑛 balanced datasets to
train 𝑛 tree ensembles. The linear combination of the 𝑛 tree ensemble is derived
by linear regression.

components, namely a sensing box, an optical sensing unit, and a
computation unit.

Sensing box We cut acrylic plastic sheets (0.8 mm thickness)
using a laser cutter to build the sensing box, which hosts the optical
sensing unit and computation unit (Figure 1(b)). For debugging
and maintenance purposes, the sensing box can be opened on the
side (Figure 1(c)). Except for the sensing area (4.7 cm × 6.2 cm),
we stick two layers of black paper on the inner side of the sensing
box to block ambient light. We also place a small speaker inside
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(a) Transmitter (front and back) (b) Receiver
Figure 11: Circuit boards for the optical sensing
unit.

Figure 12: Experimental setup. A participant wears a ring and places the palm on the sensing area of our proto-
type.We leverage the readings from existing CGMsensors (e.g., Freestyle Libre, DexcomG6, orMedtronic Guardian)
as the ground truth.

the sensing box. Once the receiver detects ambient light due to the
displacement of the palm, the speaker will play a sound to notify
the user. Since users need to place their palms on top of the sensing
box, we stick a layer of tin foil sheet on the outer side of the sensing
box to share the ground between the sensing box and the palm.

Optical sensingunit Wedesigned and fabricated two PCB boards
(Figure 11) to host and control three (red, green, and blue) laser
diodes as the transmitters and one photodiode (OPT101) as the
receiver. On the receiver end, we increase the sensitivity of the
photodiode by customizing DC gain and bandwidth to 8 × 10 6 V/A
and 2 kHz, respectively (Figure 11(b)). The distance between the
photodiode and the skin surface is 5 cm, which is the closest dis-
tance to the hand while not capturing any emitting light rays leaked
from the laser diodes. In front of the photodiode, a linear polarizing
film (90 ◦ polarization) is hosted on an optic mounting holder. On
the transmitter end, we leverage an analog multiplexer (74HC4053)
as switches (Figure 11(a)) to control the three laser diodes (at 450
nm, 520 nm, and 658 nm). For each laser diode, we leverage a digi-
tally controlled potentiometer (X9C104) and a transistor (S9014) to
control the power output from 30 mW to 120 mW (seven intensity
levels). The pulse of the laser diode at each intensity level is about
250 𝜇𝑠 . We then place the laser diodes at the axis 45 ◦ away from
the photodiode axis to exclude specular reflection from the skin
surface. Due to the size of our LC, the distance between the laser
diodes and the skin surface is 7 cm to place the full transmitter
board inside the sensing box. In front of the laser diodes, we place
another linear polarizing film (0 ◦ polarization), a 50 ◦ circle pattern
diffuser, and an LC shutter on an optic mounting holder. Applying
a constant voltage on the LC can cause DC bias and damage the LC.
To solve the problem, we leverage an AC wave between the two
pins of the LC shutter. The two output pins are driven to opposite
polarity from each other, which creates a true AC waveform with
the Root Mean Square (RMS) voltage equal to the supply voltage.
The frequency of the AC waveform is 2 kHz.

Computation unit We use a micro-controller (Arduino Due) to
power the optical sensing unit, control laser diodes and LC shutter,
digitize analog signal from the photodiode, extract features, and
estimate glucose concentration in real time. Inference results are
stored in the micro-controller. They can also be transmitted to
other devices through a USB cable. A ring with a layer of tin foil is
connected to the ground of the micro-controller. Thus, when the
user wears the ring and places the palm on the sensing box, the
micro-controller, the palm, and the sensing box share the ground.

5 PROTOTYPE EXPERIMENTS
We conducted a three-month study in a local hospital and a univer-
sity to evaluate our prototype.3

5.1 Study Setup
In our study, we enrolled 50 participants (18–81 years old), includ-
ing 41 patients with diabetes (32 Type 1 diabetes and 9 Type 2
diabetes) and 9 healthy people. Table 3 summarizes participant
information. We recruited more patients than healthy participants
because diabetic patients are likely the major user group of the
system. Furthermore, the glucose level of diabetic patients has a
wider range and fluctuates more than that of healthy people[24]
and thus it presents a more challenging scenario for glucose mon-
itoring. We leverage FDA-approved CGM sensors (e.g., Freestyle
Libre, Dexcom G6, and Medtronic Guardian) to collect the ground
truth data since these sensors also measure glucose concentration
in ISF. Figure 12 shows the experiment setup, where a participant
wears a ring and places the palm on the sensing area. During the
experiment, a participant sits on a chair with a relaxing posture.
We collect data from each participant for roughly one to two min-
utes, which leads to approximately 300 measurements collected by
the prototype. We compute the median of these measurements to
compute feature values. If the palm did not cover the whole sensing
area or the photodiode inside the sensing box detected ambient
light, the speaker would notify the participant by playing a sound.

Data collection in a hospital We recruited 41 patients with di-
abetes who wore CGM sensors at Dartmouth-Hitchcock Medical
Center (DHMC). Participants were not included if they were preg-
nant or planning pregnancy, or were considered by the doctors
to be unsuitable to participate. Before and after an appointment
with doctors,4 we collected data from the patients, including the
sensing data from our prototype, the readings from patients’ CGM
sensors, and some survey questions. On average, we collect three
data points from each patients. About 60% of patients had meals
or drinks before visiting the doctor. Before collecting data from
patients, we cleaned our prototype using an alcohol pad and asked
patients to wash hands with hand sanitizers. This cleaning protocol
was required by the hospital to ensure that the device was cleaned
between participants. For patients with diabetes, 69% of data is in

3We obtained the IRB approval to conduct the study in both institutions.
4Each doctor’s appointment takes about 30–60 mins



Noninvasive Glucose Monitoring Using Polarized Light SenSys ’20, November 16–19, 2020, Virtual Event, Japan

Gender Racial and ethnic categories Age CGM devices Diabetic patients Healthy
M F AI A AA H/L NH W 18–30 30–50 >50 Freestyle Libre Dexcom G5/G6 Guardian Type 1 Type 2 participants

# of Users 31 19 2 14 4 3 3 24 16 15 19 37 10 3 32 9 9

Table 3: Participant information. AI: American Indian, A: Asian, AA: African American, H/L: Hispanic or Latino, NH: Native Hawaiian or Other Pacific Islander, W:
White.

the normal glucose range (70–140𝑚𝑔/𝑑𝑙 ) and 31% of data is in the
high glucose range (>140𝑚𝑔/𝑑𝑙).

Data collection in a university We enrolled one undergraduate
student, eight graduate students, and one professor at Dartmouth
College. Since all of the participants are healthy subjects, we gave
them new Freestyle Libre sensors, which leverage adhesive patches
to attach to the skin surface, to collect the ground truth. Partici-
pants were not included in the study if they had known allergies to
medical-grade adhesives, pregnant, or planning pregnancy. We col-
lect the sensing data from our device and readings from Freestyle
Libre sensors under two glucose conditions, namely before and
after a meal or a drink of 500 ml sugared water (e.g., Coke). The
interval between two adjacent samples is 30–60 mins. To balance
the training set, we collect at least 12 data points from each partici-
pants. No cleaning process was required in the study. For healthy
participants, 95% of data is in the normal glucose range, 5% of data
is in the high glucose range.

Data presentation and errormetric Researchers and clinicians
use Clarke error grid analysis (EGA) to assess the clinical accuracy
of glucose monitor systems. As shown in Figure 13, EGA shows
reference glucose values (ground truth) and the predicted glucose
concentration on the x-axis and the y-axis, respectively. EGA con-
tains five main zones, namely Zone A, B, C, D, and E. Zone A are
those predicted values, which diverge as of the reference values
by 20% or less, and is considered to be clinically accurate. Zone B
are those estimated values differ as of the reference values by more
than 20%, but are still clinically acceptable. However, Zone C leads
to unnecessary treatment; Zones D fails to detect hypoglycemia
or hyperglycemia; Zone E represents the erroneous results [17].
Therefore, researchers and clinicians look at two error metrics to
quantify the performance of a glucose monitoring system: (a) the
percentage of predicted glucose level which fall in Zone A or B and
(b) the Pearson correlation coefficients between the predicted and
reference glucose concentration [49]. In the experiment, we also
look at the absolute relative differences (ARD) computed as below
as an additional error metric to evaluate our system:

ARD =
|predicted glucose − reference glucose|

reference glucose . (6)

A predicted glucose concentration is considered as clinical accurate
if the ARD is less 20%[49].

5.2 Overall Performance
We begin with examining the overall performance of our system
with 50 participants (details in Table 3) by applying leave-one-
participant-out cross-validation. Each time we train a model, we
leave one user’s data out as testing data and then rotate the dataset.
Figure 13 shows the EGA. All predicted glucose concentration is
in either of Zone A or Zone B. 89% of the predicted data is clini-
cally accurate (Zone A), and 11% of the predicted data is clinically

Figure 13: Clarke error grid analysis. All of the our predicted glucose levels are
in either of Zone A and Zone B. 89% of the predicted data is clinical accurate
(Zone A), and 11% the predicted data is clinical acceptable (Zone B).

acceptable (Zone B). The 𝑟 and 𝑝 values of the Pearson correla-
tion coefficients are 0.91 and 1.6 × 10−143, respectively. The mean
and median of ARD are 10% and 9%, respectively. Compared with
recent work that leveraged optical coherence tomography to ex-
tract optical rotation [13], our system is low-cost and compact, and
the system requires no calibration. Compared with the existing
FDA approved CGM sensors (e.g., Freestyle Libre, Dexcom G6, or
Medtronic Guardian), our system has no needles and does not re-
quire sensor replacement. We also evaluated system performance
using a Support Vector Machine (SVM) [11] and a 10-layer feed-
forward neural network in Matlab. The mean of ARD are 13%, and
21%, respectively. These models do not outperform boosted trees
because our dataset is relatively small for neural networks. Run-
ning a large number of iteration can result in overfitting, which
significantly degrades the performance. We plan to collect more
data and re-evaluate these models in future work.

Figure 14 shows the CDF of the ARD for overall, high, and normal
glucose samples. The system can measure glucose concentration
with 89th percentile error less than 20% (clinical accurate), regard-
less of its glucose concentration. Since the distribution of glucose
concentration is highly non-uniform in our dataset, the results
demonstrate the robustness of our resampling ensemble algorithm.

The trends of glucose concentration is a health indicator and
correlate with physical activity. For example, in Type 1 diabetes,
glucose trends can be used to monitor the risk of diseases like
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Figure 14: CDF of ARD for all, high, and normal glucose concentration sample.
Regardless of glucose concentration, 89% of predicted glucose levels are clini-
cal accurate, which demonstrates the robustness of our resampling ensemble
algorithm.
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Figure 15: Impact of user diversity. AI: American Indian, A: Asian, AA: African
American, H/L: Hispanic or Latino, NH: Native Hawaiian or Other Pacific Is-
lander, W: White.

cardiovascular complications [74]. In the experiment, we define
that an "increasing" or "decreasing" trend happens if the glucose
concentration increases or decreases over 10% in 60 mins. Table 4
summarizes the results, where 77 "increasing trends" and 68 "de-
creasing trends" were collected from 50 participants in the study.
Therefore the performance of our system is sufficient for home care
monitoring devices and medicare applications.

Precision Recall
Increase trend 0.88 0.80
Decrease trend 0.87 0.81

Table 4: Precision and recall of detecting "increasing" and "decreasing" trends
from 50 participants.

Impact of user diversity Figure 15 shows the mean ARD and
90% confidence intervals for different genders, race and ethic cat-
egories, and age groups. Overall, the mean ARD is similar across
diverse participants. We make following observations. First, due
to the demographic distribution in the local area, there are fewer
participants from certain race and ethnic categories (e.g., AI, AA,
and H/L, see Table 3). Limited training data degrades the sensing
accuracy for these participants. For example, the largest error rates
(e.g., ARD > 30%) come from either AA or AI group, which only
have 4 and 2 participants, respectively. In future work, we plan
to recruit more diverse subjects and collect more representative
training data to mitigate this problem. Second, we observe some
large errors come from participants with palm smaller than our
sensing area. In this scenario, since users cannot place their palm
at the same location on the device, their hand placement offset
introduces noise to the system. To address this problem, we plan to
reduce prototype size with more compact hardware components.

5.3 Generic Model v.s. Personalized Model
We conducted a one-week experiment to demonstrate the effec-
tiveness of our generic model over the personalized model. In the
experiment, we collected data from two healthy participant every
30 mins before and after lunch/dinner. The new dataset contains
205 samples. Then, we leverage a different number of samples to
train personalized models. And the rest of the dataset is used as the
testing data for both personalized and generic models. Figure 16
shows that our generic model is better than personalized models
if the training data of personalized models is less than half of the
dataset. Once we build the generic model, the system does not re-
quire sampling data (calibration) from users. Therefore, the generic
model significantly improves the system’s usability and robustness.
In future work, we plan to recruit patients to further demonstrate
the effectiveness of our generic model over the personalized model.

5.4 Practical Considerations

Wavelengths and light intensity levels We downsampled the
features to evaluate the impact of wavelengths and light intensity
levels. Figure 17(a) and 17(b) plots the mean accuracy using different
wavelengths and light intensity levels. We also include error bars
covering 90% confidence intervals. In Figure 17(a), we observe that
the combination of red, green, and blue light outperforms any of
the individual wavelengths. In future work, we plan to add more
wavelengths within the visible light spectrum to further explore
the impact of wavelengths. In Figure 17(b), since the performance
converges with more than six light intensity levels, the seven light
intensity levels are optimal in our system.

Ambient light Our prototype can block the ambient light by
covering two layers of black paper except for the sensing area. In
the experiment, we turned all laser diodes off and collected the
photodiode reading under three ambient light conditions, namely,
0 lux (dark room), 600 lux (indoor), and 5000 lux (outdoor). For all
ambient light conditions, the photodiode readings were zero if the
user properly placed the palm on the sensing area. For inappropriate
placement of the palm, our system will notify the user by playing
sounds. We also built a wristband to evaluate the impact of ambient
light under wearable scenarios. A photodiode was placed in the
center of the wristband facing the skin’s surface. In this scenario, the
photodiode readings were still zero in all ambient light conditions.

Pressure and temperature We attached a 10 𝑐𝑚2 force sensing
resistor and a non-contact infrared temperature sensor to the pro-
totype to evaluate the impact of pressure and temperature on a
healthy subject. The subject was asked to gradually increase the
pressure on the sensing area from 5 to 50 𝑁 . To vary the temper-
ature of the palm, the subject held either of a cup of hot or ice
water before placing the palm on the sensing area. By changing
the duration of holding the hot/ice cup, the temperature of the
palm varied from 33◦𝐶 and 40◦𝐶 . Figure 18 summarizes the results.
We observed that neither pressure nor temperature introduced a
visible impact on the analog signal. Specifically, the difference in
the analog signal change between 5 𝑁 and 50 𝑁 pressure is less
than 1%, and the difference between 33◦𝐶 and 40◦𝐶 is less than
0.8%. Both differences are much lower than electrical noise (e.g.,
spike noise).
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Figure 17: The impact of wavelengths and light intensity levels to our system.
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Figure 18: Impact of pressure and temperature

5.5 User Experience Study
We conducted a user experience studywith 41 patients with diabetes
who had worn CGM devices in a hospital. In the study, we asked
the participants to list the pros and cons of their sensors and ours.
Except for one patient, all participants agreed that the existing
CGM sensors were much more convenient than the typical finger-
prick tests, and the sensors provided good accuracy to help them
monitor and manage diabetes. However, a third of the patients
complained about the unpleasant wearing experience of the sensors
since each sensor still had invasive needles. All of the participants
disliked the requirement of calibrating some sensors (e.g., Dexcom
G5 and Medtronic Guardian). Four participants reported that their
sensors suffered from significant (more 20%) accuracy dropswithout
calibrations. A third of the patients complained about the high price
of the sensors ($60 to $400 for each sensor) since these sensors need
to be replaced every 7 to 14 days. Compared with the existing
CGM sensors, all of the patients liked the low-cost, no calibration,
and the noninvasive benefits of our system. However, six patients
complained about the size of our prototype, which might be heavy
for them to carry around. In Section 6, we will discuss potential
miniaturization of the system.

6 DISCUSSION
We discuss the limitations of our study, the lessons we learned from
our study and implementation, and plans for future work.

Ground truth To acquire the ground truth of glucose concen-
tration, we leverage existing FDA-approved CGM devices (e.g.,
Freestyle Libre, Dexcom), which measure glucose concentration in
ISF rather than directly in the bloodstream. Since glucose moves
from blood vessels and capillaries first and then into ISF, there is a
5 to 10 minutes delay in ISF glucose response to changes in blood
glucose [8]. Recent work shows that the translation between ISF
and blood glucose concentration is not just a shift in time [19]. Also,
in our dataset, few patients have Type 2 diabetes because patients

with Type 2 diabetes take insulin less than 3 times a day and there-
fore would not meet criteria per their insurance company to qualify
for using a CGM sensor. Also, the mean absolute relative error of
CGM devices varies from 6–12%, higher than invasive methods like
finger-prick tests [58]. Therefore, we will consider using finger-
prick tests to acquire more accurate blood glucose concentration as
the ground truth and recruiting more patients with Type 2 diabetes.

Accuracy improvement The system’s current glucose monitor-
ing accuracy is constrained by three factors. First, the training data
set is still relatively small. The number of patients limits the per-
formance of our prototype. In our study, we only collected data
from patients who already had worn CGM devices and brought
their readers to the hospital because their CGM sensors can only be
read from their own readers. This requirement limits the number
of participants in our study. Second, due to the demographic distri-
bution in the local area, few patients with diabetes had dark skin,
which lowers the sensing performance of our prototype. Moving
forward, we plan to collect data from a more diverse set of partici-
pants over a longer term. We also plan to conduct a long-term user
study includes a quantitative survey carried on both patients and
doctors and investigate potential issues when the system is used
over a long period. Finally, our current learning model is based on
a coarse discretization of skin color (e.g., white, black, yellow) and
yet human skin tone is at a continuous scale. We plan to leverage
the Fitzpatrick scale [61] to investigate the impact of skin tone and
consider a real-number representation of skin tone as the feature
for the learning model.

User activities Participants reported to us that activities (e.g.,
running) could significantly affect the accuracy of their CGM sen-
sors. Due to the limitations of our study, we only evaluate our
system when users sit on a chair without doing any activities. In
our future work, we plan to design a separate study to evaluate the
performance of the prototype under various user activities.

Cost and size Compared with commercial CGM sensors, our
system does not require sensor replacement, much lower usage
cost in long-term usage. Also, it is possible to significantly reduce
the total cost of our prototype from $250 to less than $50. The main
cost of our prototype comes from three laser diodes ($150) and
the engineered diffuser ($50). We can replace laser diodes and the
engineered diffuser with LEDs (< $3) and a regular diffuser (< $10),
respectively. However, the downside is that the light intensity distri-
bution on the palm will be highly non-uniform (e.g., Gaussian-like
distribution). Thus, it is difficult to control the light penetration
depth at specific wavelengths within the sensing area. To address
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the problem, we can leverage a narrowband optical filter to filter
out the irrelevant spectrum. In addition, the size of our current
prototype limits the body locations we can test. We will explore
miniaturization of the system. Current bottleneck of miniaturiza-
tion is the size of LC. With smaller LCs available, the whole system
can be more compact, possibly integrated with wearable devices to
examine a wider set of body locations.

7 RELATEDWORK
In this section, we summarize the main technologies used for glu-
cose monitoring, including invasive, minimally invasive, and non-
invasive techniques.

Invasive techniques Hospitals employ invasive electrochemical
biosensors to measure blood glucose concentration. These biosen-
sors leverage automatic lancet devices to prick the finger for extract-
ing blood samples. By leveraging Faraday rotators [10], electro-optic
modulator [46], or liquid crystal [41], existing methods can mod-
ulate the polarization state of the light beam to infer the glucose
concentration from sample blood. Although recent work has made
efforts to reduced blood sample requirement to less than 1 𝜇𝐿 [68],
these methods are still painful since patients with diabetes have to
frequently measure (> 3 times) blood glucose every day. Our work
differs in that our system is noninvasive.

Minimally invasive techniques Minimally invasive approaches
leverage subcutaneous sensors to measure glucose concentration in
body fluids other than blood, e.g., sweat, saliva, and interstitial fluid.
These methods, known as continuous glucose monitoring (CGM),
can monitor glucose continuously and automatically. CGM sensors
leverage tiny electrode (invasive needles), which functionalised
with an enzyme film using an electropolymerisation method [62],
to measure glucose concentration in ISF. The overall measurement
error is approximately ±10% [60]. However, CGM sensors have
needles, and they require periodic replacement of sensors. Some
CGM sensors (Medtronic Guardian and Dexcom G5) require cali-
bration (e.g., fingerstick blood samples) for optimal sensor accuracy.
Our work differs in that our system has no needles, and it requires
neither of periodic sensors replacement nor calibration.

Non-invasive techniques The technologies used for noninva-
sive glucose monitoring include optical, transdermal, and thermal
techniques. Comprehensive reviews of recent noninvasive glucose
monitoring techniques can be found in [31, 40, 49, 52, 67].

Polarimetry and spectroscopy are the two typical optical tech-
niques for non-invasive glucose monitoring. Polarimetry is based
on the rotation of the linear polarization vector of light by the
glucose concentration [13, 46, 54]. However, existing methods mea-
sure glucose concentration from transparent tissue in the body
(i.e., eyes) [46, 54], which can cause photo-thermal damage to
eyes [22]. A recent method designs an optical coherence tomog-
raphy to measure glucose concentration on fingertips [13]. How-
ever, their systems requires expensive and bulky optical devices
to measure small optical rotation, and the sensing performance
suffers from interference of confounding optical rotations. Spec-
troscopy is the study of objects based on their wavelength spectrum
when they emit or absorb light [42]. Four spectroscopic techniques

that have been applied to non-invasive glucose monitoring: near-
infrared spectroscopy [37, 73], mid-infrared spectroscopy [12, 35,
36, 38], Raman spectroscopy [23, 25, 43, 63], and photoacoustic
spectroscopy [50, 59, 63]. However, environmental changes like
humidity, atmospheric pressure, and temperature can affect the
measured glucose values [20]. More importantly, existing systems
lack of comprehensive clinical evaluations on diabetic patients.
Small LEDs and photodiodes have been used to build compact pro-
totypes [44, 72]. However, all users are non-diabetic and young.
Our work differs in that our system entails a much simpler set up
with a low-cost liquid crystal and a photodiode, and we evaluate
our system on 50 participants, including 41 diabetic patients.

Transdermal techniques include reverse iontophoresis [7, 53, 65],
and impedance spectroscopy [70]. Reverse iontophoresis transports
glucose outward from the skin. The uncharged glucose molecules
present in the interstitial fluid are carried along with the ions across
the skin and collected at the cathode [7, 53, 65]. Impedance spec-
troscopy is based on the measurement of the impedance of a tis-
sue using alternating currents of known intensity [70]. However,
the low electric current passing through the skin can cause ir-
ritation [31]. Compare with transdermal techniques, our system
leverage visible light to estimate glucose concentration, which will
not cause skin irritations.

Thermal techniques involve measurements of thermal genera-
tion, blood flow rate, hemoglobin, and oxyhemoglobin concentra-
tions, which correspond to the blood glucose levels [14, 15, 33].
However, this technique has a strong probability of interfering with
the environmental conditions, such as temperature and pH. Our
work differs in that our system is based on the rotation of the lin-
ear polarization vector of light by glucose concentration, which is
unaffected by temperature and pH fluctuations.

8 CONCLUSION
We presented a noninvasive glucose monitoring system using polar-
ized light. We tackled the challenge of skin scattering by designing a
new liquid-crystal-based depolarization cancellation methodology.
We then leveraged multiple wavelengths and light intensity levels
and develop a generic learning model to address the challenge of
user diversity and confounding factors. Therefore, no calibration
or retraining is required in our proposed model. We built a com-
pact (17 cm × 10 cm × 5 cm) and low-cost (e.g., <$250) prototype
using off-the-shelf hardware components, and we evaluate the sys-
tem through a study with 41 patients with diabetes and 9 healthy
subjects. Experimental results show that our system achieves 89%
clinical accuracy, and the mean absolute relative differences is 10%.
We plan to expand our training data with larger-scale user studies
across the hospitals in the U.S. to further improve system accuracy.
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