eBay in the Sky: StrategyProof Wireless Spectrum Auctions

Xia Zhou, Sorabh Gandhi, Subhash Suri, Heather Zheng

Department of Computer Science

University of California, Santa Barbara

IUSTITIA (Goddess of Justice)

VERITAS (Goddess of Truth)

Need for On-Demand Spectrum Auctions

- Explosion in the number of wireless devices
- FCC: static long term licenses -> artificial scarcity
- Solution:
 - Dynamic spectrum redistributions
 - Exploit spatial reusability

Need for On-Demand Spectrum Auctions

- Explosion in the number of wireless devices
- FCC: static long term licenses -> artificial scarcity
- Solution:
 - Dynamic spectrum redistributions
 - Exploit spatial reusability

Need for On-Demand Spectrum Auctions

- Explosion in the number of wireless devices
- FCC: static long term licenses -> artificial scarcity
- Solution:
 - Dynamic spectrum redistributions
 - Exploit spatial reusability
- Auctions widely used to distribute scarce resources
 - Fair and open
 - Economic Efficiency

Need for Truthful Mechanisms

- Selfish Bidders lead to challenges and overheads
 - Auction: Game among strategic players
 - Goal: Maximize individual utility
 - Utility = (True Value Price Paid)
 - Players strategize over others
 - Counter productive for the auctioneer
- Truthful Auctions help overcome these challenges
 and overheads
 - Truthful auction: Every bidder maximizes its utility by bidding its true value

Vickery: A Classical Truthful Auction

- Consider an auction for single item
- Vickery (Nobel Prize Winner)
 - Bidders submit bids in sealed envelopes
 - Auctioneer
 - Awards the item to the highest bidder
 - Charges winner the bid of the second highest bidder

Truthful Spectrum Auctions

a

a₄

- Items: Channels (k)
- Interference Graph
 - Nodes: Bidders
 - Edges: Interference Constraints

Truthful Spectrum Auctions

- Items: Channels (k)
- Interference Graph
 - Nodes: Bidders
 - Edges: Interference Constraints
- Assumptions
 - Interference Graph is given
 - Static nodes
 - No collusion among bidders
 - Every bidder is bidding for one (any) channel

Possible Solution 1: Extending Vickery

- Algorithm (For allocating k channels)
 - Allocate channels to k highest bidders
 - Price: Bid of (k+1)th highest bidder

of channels = 2

Inefficient spectrum utilization: spatial reuse not exploited

Possible solution 2: VCG

- Optimal Spectrum utilization : NP-Hard
 - VCG is truthful but not polynomial time
- Relax Optimality constraint
 - Pareto Optimal solution: Cannot allocate any more channels without de-allocating at least one bidder
- Given an interference graph G, set of bids B, available number of channels k, design a truthful auction mechanism which run in polynomial time, results in pareto optimal allocations and has a nontrivial pricing scheme

Possible Solution 3: Extending Secondary Price Auctions

- Sort and Greedily allocate channels

 Allocate lowest available index
- Charge every winning bidder the bid of the highest unallocated neighbor VIOLATES

Veritas: Truthful and Efficient Spectrum Auctions

- Greedy Allocation
 - Best known polynomial time channel allocation schemes are greedy
- Veritas-Pricing:
 - Charge every winner i, the bid of its critical neighbor C(i)
 - Finding Critical Neighbor for i
 - run allocations on {B/b_i} (B: set of bids)
 - Critical Neighbor:The neighbor which makes the number of channels available for i go 0

Veritas Toy Example

of channels = 2

Proof of Veritas's truthfulness

- Theorem: Veritas spectrum auction is truthful, achieves pareto optimal allocations, and runs in polynomial time O(n³k)
- Proof sketch
 - Critical Value: Given a bid-set B, unique critical value exists for every allocated bidder.
 - Monotonicity of allocations: If a bidder bids greater its critical value, it is always allocated.
 - Truthfulness: If we charge every bidder by its critical value, no bidder has an incentive to lie.

Simulations

- Compare revenue and spectrum utilization of Veritas with other truthful and non-truthful designs.
- Synthetic Data
 - Nodes placed randomly in 1 X 1 square
 - Unit disk interference graph with radius = 0.1
 - Bids are randomly picked from the interval (0, 1]
- All results are averaged over multiple seeds

Spectrum Utilization: Best-Greedy vs Veritas

- Best Greedy: best known polynomial time spectrum allocation scheme (non-truthful)
- Veritas: Achieves truthfulness yet comparable spectrum utilization

Veritas Revenue

- Revenue curve not monotonically increasing when # of channels is increased
 - Effect of truthful pricing scheme
 - Requires sufficient competition

VERITAS ALGORITHM

Veritas Revenue

- Revenue curve not monotonically increasing when # of channels is increased
 - Effect of truthful pricing scheme
 - Requires sufficient competition
- Important to choose the right # of channels

VERITAS ALGORITHM

Veritas Extensions

- Objective functions: Veritas allocation scheme can sort on broad class of functions of bids
 - Useful for choosing objective function
- Bidding Formats:
 - Range Format: Every bidder i specifies parameter d_i, and requests any number of channels in the range (0, d_i)
 - Contiguous Format: Bidder requests the channels allocations to be contiguous

Conclusion

- We propose Veritas: a polynomial time truthful mechanism for dynamic channel allocation (pareto optimal allocations)
- Related work: VERITAS differs from conventional spectrum allocation/auction designs by achieving both truthfulness and spectrum efficiency (spatial reuse)
- We show that the Veritas mechanism is highly flexible can be extended for many objective functions and bidding formats

Thanks for listening

• Questions ???