
Specification Matching of Software
Components

AMY MOORMANN ZAREMSKI
Xerox Corporation
and
JEANNETTE M. WING
Carnegie Mellon University

Specification matching is a way to compare two software components, based on descriptions of
the component’s behaviors. In the context of software reuse and library retrieval, it can help
determine whether one component can be substituted for another or how one can be modified
to fit the requirements of the other. In the context of object-oriented programming, it can help
determine when one type is a behavioral subtype of another. We use formal specifications to
describe the behavior of software components and, hence, to determine whether two compo-
nents match. We give precise definitions of not just exact match, but, more relevantly, various
flavors of relaxed match. These definitions capture the notions of generalization, specializa-
tion, and substitutability of software components. Since our formal specifications are pre- and
postconditions written as predicates in first-order logic, we rely on theorem proving to
determine match and mismatch. We give examples from our implementation of specification
matching using the Larch Prover.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.2 [Software Engineering]: Tools and Techniques—software libraries; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—modules, packages; procedures,
functions, and subroutines; F.3.1 [Logics and Meanings of Programs]: Specifying and

This research was sponsored by the Wright Laboratory, Aeronautical Systems Center, Air
Force Materiel Command, USAF, and the Advanced Research Projects Agency (ARPA) under
grant number F33615-93-1-1330. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of Wright Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation thereon. This manuscript is
submitted for publication with the understanding that the U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes. This article is a revised and
extended version of a paper presented at the 3rd ACM SIGSOFT Symposium on the
Foundations of Software Engineering, October 1995, and is based on work done while the first
author was at Carnegie Mellon University.
Authors’ addresses: A. M. Zaremski, The Wilson Center for Research and Technology, Xerox
Corporation, 800 Phillips Road, 128-51E, Webster, NY 14580; email: zaremski@wrc.xerox.com;
J. M. Wing, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213; email: wing@cs.cmu.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1997 ACM 1049-331X/97/1000–0333 $03.50

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997, Pages 333–369.

Verifying and Reasoning about Programs—pre- and post-conditions; specification techniques;
H.3.3 [Information Storage and Retrieval]: Information Storage and Retrieval—retrieval
models; selection process

General Terms: Documentation, Standardization, Verification

Additional Key Words and Phrases: Component retrieval, pre-/postconditions, signature
matching, software components, software reuse, specification, specification matching, subtyp-
ing, theorem proving

1. MOTIVATION AND INTRODUCTION

Specification matching is a process of determining if two software compo-
nents are related. It underlies understanding this seemingly diverse set of
questions:

—Retrieval: How can I retrieve a component from a software library based
on its semantics, rather than on its syntactic structure?

—Reuse: How might I adapt a component from a software library to fit the
needs of a given subsystem?

—Substitution: When can I replace one software component with another
without affecting the observable behavior of the entire system?

—Subtype: When is an object of one type a subtype of another?

In retrieval, we search for all library components that satisfy a given
query. In reuse, we adapt a component to fit its environmental constraints,
based on how well the component meets our requirements. In substitution,
we expect the behavior of one component to be observably equivalent to the
other’s; a special case of substitution is when a subtype object is the
component substituting for the supertype object. Common to answering
these questions is deciding when one component matches another, where
matches generically stands for “satisfies,” “meets,” or “is equivalent to.”
Common to these kinds of matches is the need to characterize the dynamic
behavior, i.e., semantics, of each software component.

It is rarely the case that we would want one component to match the
other “exactly.” In retrieval, we want a close match; as in other information
retrieval contexts [Mauldin and Leavitt 1994; Olsen et al. 1993; Salton and
McGill 1983], we might be willing to sacrifice precision for recall. That is,
we would be willing to get some false positives as long as we do not miss
any (or too many) true positives. In determining substitutability, we do not
need the substituting component to have the exact same behavior as the
substituted, only the same behavior relative to the environment that
contains it.

In this article, we lay down a foundation for different kinds of semantic
matches. We explore not just exact match between components, but many
flavors of relaxed match. To be concrete and to narrow the focus of what
match could mean, we make the following assumptions:

334 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

—The software components in which we are interested are functions (e.g.,
C routines, Ada procedures, ML functions) and modules (roughly speak-
ing, sets of functions) written in some programming language. These
components might typically be stored in a program library, a shared
directory of files, or a software repository.

—Associated with each component, C, is a signature, Csig, and a specifica-
tion of its behavior, Cspec.

Whereas signatures describe a component’s type information (which is
usually statically checkable), specifications describe the component’s dy-
namic behavior. Specifications more precisely characterize the semantics of
a component, rather than just its signature. In this article, our specifica-
tions are formal, i.e., written in a formally defined assertion language.

Given two components, C 5 ^Csig, Cspec& and C9 5 ^C9sig, C9spec&, we define
a generic component match predicate, Match:

Definition 1 (Component Match).

Match: Component, Component 3 Bool.

Match~C, C9! 5 matchsig~Csig , C9sig!∧ matchspec~Cspec , C9spec!

Two components C and C9 match if (1) their signatures match, given some
definition of signature matching, and (2) their specifications match, given
some definition of specification match. Although we define match as a
conjunction, we can think of signature match as a “filter” that eliminates
the obvious nonmatches before trying the more expensive specification
match.

There are many possible definitions for the signature match predicate,
matchsig, which we thoroughly analyzed in a previous article [Zaremski and
Wing 1995]. For simplicity, we use the most basic signature match defini-
tions in the remainder of this article. For matchsig of functions, we use type
equivalence modulo variable renaming (“exact match” in Zaremski and
Wing [1995]), and for matchsig of modules, we use a partial mapping of
functions in the modules with exact signature match on the functions
(“generalized module match” in Zaremski and Wing [1995]).

In this article, we focus on the specification match predicate, matchspec.
We write pre-/postcondition specifications for each function, where asser-
tions are expressed in a first-order predicate logic. We determine a match
between two functions by some logical relationship, e.g., implication, be-
tween the two pre-/postcondition specifications. We modularly define match
between two modules in terms of some kind of match between correspond-
ing functions in the modules. Given our choice of formal specifications, we
exploit state-of-the-art theorem-proving technology as a way to implement
a specification match engine. All of the example matches in this article
have been proven using the Larch Prover (LP) [Garland and Guttag 1991].

Specification match goes a step beyond signature match. For functions,
signature match is based entirely on the functions’ types, e.g., int p int 3

Specification Matching of Software Components • 335

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

int, and not at all on their behavior. For example, integer addition and
subtraction both have the same signature, but completely opposite behav-
ior; the C library routines strcpy and strcat have the same signature, but
users would be unhappy if one were substituted for the other. Given a large
software library or a large software system, many functions will have
identical signatures, but very different behavior. For example, in the C
math library nearly two-thirds of the functions (31 out of 47) have the
signature double 3 double. Based on signature match alone, we cannot
know which of a large number of retrieved functions does what we want.
Since specification match takes into consideration more knowledge about
the components, it allows us to increase the precision with which we
determine when two components match.

For each kind of match we define, there is both a match name and a
match predicate symbol. For example, the strongest function specification
match is named exact pre/post match and has the predicate symbol
matchE-pre/post. For each match named M with the predicate symbol
matchM and components S and Q, if matchM (S, Q) holds, we say equiva-
lently that

—M match of S with Q,
—S matches with Q (under M), and
—Q is matched by S (under M).

It is important to distinguish between “matches with” and “is matched
by,” because not all matches are symmetric: matchM (S, Q) does not
necessarily imply that matchM (Q, S). For the matches that are symmetric,
we also say that “S and Q satisfy the match.”

In what follows, we first briefly describe the language with which we
write our formal specifications. We define exact and relaxed match for
functions (Section 3) and then for modules (Section 4). We discuss our
implementation of a specification matcher using LP in Section 5 and two
applications of specification match in the software engineering context in
Section 6. We close with related work and a summary.

2. LARCH/ML SPECIFICATIONS

We use Larch/ML [Wing et al. 1993], a Larch interface language for the ML
programming language, to specify ML functions and ML modules. Larch
provides a “two-tiered” approach to specification [Guttag and Horning
1993]. In one tier, the specifier writes traits in the Larch Shared Language
(LSL) to assert state-independent properties. Each trait introduces sorts
and operators and defines equality between terms composed of the opera-
tors (and variables of the appropriate sorts). Appendix A shows the Or-
deredContainer trait. Ordered containers are multisets that maintain an
ordering on elements based on time of insertion (i.e., there is a notion of a
first and last element). Elements are also ordered by a total order, ., on
their values, e.g., integral values. Counter to the Larch style of using
different traits for different theories, we chose to use the single trait

336 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

OrderedContainer in multiple ways in order to simplify the explanations of
our examples. The trait defines operators to generate containers (empty
and insert), to return the container resulting from deleting a particular
element (delete), to return the element or container resulting from deleting
the first, last, or maximum element of a container according to the total
ordering on elements (first, last, max, butFirst, butLast, and butMax), and
to return information about a container (size, isEmpty) or information
about a particular element (isIn, count).

In the second tier, the specifier writes interfaces in a Larch interface
language to describe state-dependent effects of a program (see Figure 1).
The Larch/ML interface language extends ML by adding specification
information in special comments delimited by (p 1 . . . 1 p). The using and
based on clauses link interfaces to LSL traits by specifying a correspon-
dence between (programming-language-specific) types and LSL sorts. For
polymorphic sorts, there must be an associated sort for both the polymor-
phic variable (e.g., a) and the type constructor (e.g., T) in the based on
clause. The specification for each function begins with a call pattern
consisting of the function name followed by a pattern for each parameter,
optionally followed by an equal sign (5) and a pattern for the result. In ML,
patterns are used in binding constructs to associate names to parts of
values (e.g., (x, y) names x as the first of a pair and y as the second of a
pair). The requires clause specifies the function’s precondition as a predi-
cate in terms of trait operators and names introduced by the call pattern.
Similarly, the ensures clause specifies the function’s postcondition. If a
function does not have an explicit requires clause, the default is requires
true. A function specification may also include a modifies clause, which
lists those objects whose values may change as a result of executing the
function. Larch/ML also includes rudimentary support for specifying
higher-order functions.

Fig. 1. Two Larch/ML specifications.

Specification Matching of Software Components • 337

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

Though the Larch/ML interface specifications of Figure 1 are simplistic,
for exposition purposes, we will use them as the “library” for our examples
of specification matching. It contains two module specifications: one for
Stack with the functions create, push, pop, and top; and one for Queue, with
the functions create, enq, rest, and deq. We specify each function’s pre- and
postconditions in terms of operators from the OrderedContainer trait
(shown in Appendix A).

3. FUNCTION MATCHING

For a function specification, S, we denote the pre- and postconditions as
Spre and Spost, respectively. Spred defines the interpretation of the function’s
specification as an implication between the two: Spred 5 Spre f Spost. This
interpretation means that if Spre holds when the function specified by S is
called, then Spost will hold after the function has executed (assuming the
function terminates). If Spre does not hold, there are no guarantees about
the behavior of the function. This interpretation of a pre- and postcondition
specification is the most common and natural for functions in a standard
programming model. For example, for the Stack top function in Figure 1

—the precondition toppre is not(isEmpty(s)),
—the postcondition toppost is e 5 last(s), and
—the specification predicate toppred is (not(isEmpty(s))) f (e 5 last(s)).

To be consistent in terminology with our signature matching work, we
present function specification matching in the context of a retrieval appli-
cation. Example matches are between a library specification S and a query
specification Q. We assume that variables in S and Q have been renamed
consistently.1 For example, if we compare the Stack pop function with the
Queue rest function, we must rename q to s and q2 to s2. The examples
presented in this section are intended primarily as illustrations of the
various match definitions. Additional examples of more practical applica-
tions appear in Section 6. In this section, we examine several definitions of
the specification match predicate (matchspec(S, Q)). We characterize defini-
tions as either grouping preconditions Spre and Qpre together and postcon-
ditions Spost and Qpost together, or relating predicates Spred and Qpred. Both
of these kinds of matches have a general form.

Definition 2 (Generic Pre/Post Match).

matchpre/post~S, Q! 5 ~Qpre 51 Spre!∧~Ŝ 52 Qpost!

Pre/post matches relate the preconditions of each component and the
postconditions of each component. Postconditions of related functions are
often similar, so we want to compare them directly to each other. For
example, postconditions may specify related properties of the return val-

1This renaming is easily provided by signature matching; we are assuming that the signatures
of S and Q match.

338 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

ues. Similarly, preconditions of related functions may specify related
bounds conditions of input values. In some cases, we may want to include
some information about the precondition in the postcondition clause. In
order to allow this flexibility, we let Ŝ be either Spost or Spre ∧ Spost in the
generic pre/post match definition. The relations 51 and 52 relate precondi-
tions and postconditions, respectively, and they are either equivalence (N)
or implication (f), but need not be the same. The matches may vary from
this form by dropping some of the terms. Table I summarizes how 51, 52,
and Ŝ are instantiated for each of the pre/post matches in Section 3.1. For
example, for plug-in match, 51 and 52 are both f, and Ŝ is Spost, so
matchplug-in is (Qpre f Spre) ∧ (Spost f Qpost). For matchplug-in-post and
matchguarded-post, 51 is not instantiated because its arguments are dropped.
For matchguarded-plug-in and matchguarded-post, Ŝ is Spre ∧ Spost. We do not
consider the case where 51 and 52 are N and Ŝ is Spre ∧ Spost, since
including Spre in Ŝ is only useful if 52 is f.

Definition 3 (Generic Predicate Match).

matchpred~S, Q! 5 Spred 5 Qpred

Predicate matches relate the specification predicates, Spred and Qpred, in
their entirety. Predicate matches are useful in cases where we need to
consider the relationship of the specifications as a whole rather than the
relationships of the parts, for example, when we need to assume something
from the precondition in order to reason about postconditions. Additionally,
these definitions apply for specifications of other forms (e.g., for specifica-
tions that do not have separate pre- and postconditions). The relation 5
between the specification predicates is equivalence (N) for the strictest
match, but may be relaxed to either implication (f) or reverse implication
(d). Table II summarizes how 5 is instantiated for each of the predicate
matches in Section 3.2.

It is important to look at both pre/post matches and predicate matches.
Which kind of match is appropriate may depend on the context in which the
match is being used or on the specifications being compared. We present
the pre/post matches in Section 3.1 and the predicate matches in Section
3.2. For each, we present a notion of exact match as well as relaxed
matches.

Table I. Instantiations of Generic Pre/Post Match ((Qpre 51 Spre) ∧ (Ŝ 52 Qpost))

Match Predicate Symbol 51 52 Ŝ

Exact pre/post matchE-pre/post N N Spost

Plug-in matchplug-in f f Spost

Plug-in post matchplug-in-post p f Spost

Guarded plug-in matchguarded-plug-in f f Spre ∧ Spost

Guarded post matchguarded-post p f Spre ∧ Spost

p : dropped

Specification Matching of Software Components • 339

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

3.1 Pre/Post Matches

Pre/post matches on specifications S and Q relate Spre to Qpre and Spost to
Qpost. Each match is an instantiation of the generic pre/post match (Defini-
tion 2). We consider five kinds of pre/post matches, beginning with the
strongest match and weakening the match by relaxing the relations 51 and
52 from N to f, by adding Spre to Ŝ, or by dropping the precondition term.
In each case, relaxing the match allows us to make comparisons between
less closely related components, but weakens the guarantees about the
relationship between the two components. For example, dropping the
precondition term would allow us to relate components that have the same
behavior for the subset of inputs that they handle, but that make different
assumptions about which inputs are valid (e.g., routines on arrays with
different bounds). However, since we are not comparing the preconditions
at all, we cannot guarantee that the components are behaviorally equiva-
lent for all inputs.

3.1.1 Exact Pre/Post Match. If exact pre/post match holds for two
specifications, the components are essentially equivalent and thus com-
pletely interchangeable. Anywhere that one component is used, it could be
replaced by the other with no change in observable behavior. Exact pre/post
match instantiates both 51 and 52 to N and Ŝ to Spost in the generic
pre/post match of Definition 2; two function specifications satisfy the exact
pre/post match if their preconditions are equivalent and their postcondi-
tions are equivalent.

Definition 4 (Exact Pre/Post Match).

matchE-pre/post~S, Q! 5 ~Qpre N Spre! ∧ ~Spost N Qpost!

Exact pre/post match is a strict relation, yet two different-looking specifi-
cations can still satisfy the match. Consider, for example, the following
query Q1, based on the OrderedContainer trait. Q1 specifies a function
that returns an ordered container whose size is zero, one way of specifying
a function to create a new ordered container:

signature Q1 5 sig (Q1)
(p1 using OrderedContainer 1p)
type a t (p1 based on OrderedContainer.E OrderedContainer.C 1p)
val qCreate : unit 3 a t
(p1 qCreate () 5 c

Table II. Instantiations of Generic Predicate Match (Spred 5 Qpred)

Match Predicate Symbol 5

Exact predicate matchE-pred N
Generalized matchgen-pred f
Specialized matchspcl-pred d

340 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

ensures size(c) 5 0 1p)
end

Under exact pre/post match, Q1 is matched by both the Stack and Queue
create functions of Figure 1. (The specifications of Stack and Queue create
are identical except for the name of the return value.)

Let us look in more detail at how the Stack create specification matches
with Q1. Let S be the specification for Stack create, and let Q1 be the query
specification with c renamed to s. Spre 5 true, and Spost 5 (s 5 empty).
Q1pre 5 true, and Q1post 5 (size(s) 5 0). Since both Spre and Q1pre are
true, showing matchE-pre/post(S, Q1) reduces to proving Spost N Q1post, or
(s 5 empty) N (size(s) 5 0). The “if” case ((s 5 empty) f (size(s) 5 0))
follows immediately from the axioms in the OrderedContainer trait about
size. Proving the “only-if” case ((size(s) 5 0) f (s 5 empty)) requires only
basic knowledge about integers and the fact that for any ordered container,
s, size(s) $ 0, which is provable from the OrderedContainer trait.

3.1.2 Plug-In Match. Equivalence is a strong requirement. Sometimes
a weaker match is “good enough.” For plug-in match, we relax both 51 and
52 from N to f in the generic pre/post match and keep Ŝ 5 Spost. Under
plug-in match, Q is matched by any specification S whose precondition is
weaker (to allow at least all of the conditions that Q allows) and whose
postcondition is stronger (to provide a guarantee at least as strong as Q).

Definition 5 (Plug-In Match).

matchplug-in~S, Q! 5 ~Qpre f Spre! ∧ ~Spost f Qpost!

Plug-in match2 captures the notion of being able to “plug-in” S for Q, as
illustrated in Figure 2. A specifier writes a query Q saying essentially,

I need a function such that if Qpre holds before the function executes then
Qpost holds after it executes (assuming the function terminates).

With plug-in match, if Qpre holds (the assumption made by the specifier)
then Spre holds (because of the first conjunct of plug-in match). Since we
interpret S to guarantee that Spre f Spost, we can assume that Spost will
hold after executing the plugged-in S. Finally, since Spost f Qpost from the
second conjunct of plug-in match, Qpost must hold, as the specifier desired.
We say that S is behaviorally equivalent to Q, since we can plug in S for Q
and have the same observable behavior, but this is not a true equivalence
because it is not symmetric: we cannot necessarily plug in Q for S and get
the same guarantees.

Consider the following query. Q2 is a fairly weak specification of an add
function. It requires that an input container has less than 50 elements, and
guarantees that the resulting container is one element larger than the
input container:

2This is similar to the notion of behavioral subtyping in object-oriented types; we discuss this
similarity in detail in Section 6.2.

Specification Matching of Software Components • 341

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

signature Q2 5 sig (Q2)
(p1 using OrderedContainer 1p)
type a t (p1 based on OrderedContainer.E OrderedContainer.C 1p)
val add : a t p a 3 a t
(p1 add (q1, e) 5 q2

requires size(q1) , 50
ensures size(q2) 5 (size(q1) 1 1) 1p)

end

Under exact pre/post match, Q2 is not matched by any function in the
library, since no function in the library has a precondition equivalent to
Q2’s. Under plug-in match, however, Q2 is matched by both the Stack push
and the Queue enq functions. Since push and enq are identical except for
their names and the names of the variables, the proof of the match is the
same for both.

The precondition requirement, Qpre f Spre, holds, since Spre 5 true. To
show that Spost f Qpost, we assume Spost (q2 5 insert(e, q)) and try to
show Qpost (size(q2) 5 size(q) 1 1). Substituting for q2 in Qpost, we have
size(insert(e, q)) 5 size(q) 1 1, which follows immediately from the
equations for size.

3.1.3 Plug-In Postmatch. Often, we are concerned with only the effects
of functions; thus, a useful relaxation of the plug-in match is to consider
only the postcondition part of the conjunction. Most preconditions could be
satisfied by adding an additional check before calling the function. Plug-in
postmatch is also an instance of generic pre/post match of Definition 2, with
52 instantiated to f and Ŝ instantiated to Spost but dropping Qpre and Spre.

Definition 6 (Plug-In Postmatch).

matchplug-in-post~S, Q! 5 ~Spost f Qpost!

Fig. 2. Idea behind plug-in match.

342 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

Consider the following query. Q3 is identical to Stack top except that Q3
has no requires clause:

signature Q3 5 sig (Q3)
(p1 using OrderedContainer 1p)
type a t (p1 based on OrderedContainer.E OrderedContainer.C 1p)
val delete : a t 3 a

(p1 delete c 5 e
ensures e 5 last(c) 1p)

end

Stack top does not match with Q3 under either exact pre/post or plug-in
match, because Q3’s precondition is weaker than Stack top’s precondition.
Since the postconditions are equivalent, Stack top does match with Q3
under plug-in postmatch.

3.1.4 Guarded Plug-In Match. In some cases, the postcondition rela-
tion, Spost f Qpost, only holds for values of the input allowed by the
precondition. For example, the butLast clause mentioned in the postcondi-
tion of Stack pop is not defined for the empty stack. The guarded plug-in
match adds Spre as an assumption (or “guard”) to the postcondition rela-
tion, to exclude such cases. We instantiate 51 and 52 to f in the generic
pre/post match, as with plug-in match, but we use Ŝ 5 Spre ∧ Spost rather
than Ŝ 5 Spost. We use Spre and not Qpre, since Spre is likely to be necessary
to limit the conditions under which we try to prove Spost f Qpost.

Definition 7 (Guarded Plug-In Match).

matchguarded-plug-in~S, Q! 5 ~Qpre f Spre!∧~~Spre ∧ Spost! f Qpost!

For example, suppose we wish to find a function to delete from an ordered
container using the following query Q4:

signature Q4 5 sig (Q4)
(p1 using OrderedContainer 1p)
type a t (p1 based on OrderedContainer.E OrderedContainer.C 1p)
val remainder : a t 3 a t
(p1 remainder c 5 c2

requires not(isEmpty(c))
ensures size(c2) 5 (size(c) 2 1) 1p)

end

Q4 describes a function that requires a nonempty container and returns
a container whose size is one less than the size of the input container. This
is a fairly weak way of describing deletion, since it does not specify which
element is removed. Even this weak specification match still gives us a big
gain in precision over signature matching, however. Q4 would not be
matched by other functions with the signature a t 3 a t, for example, a

Specification Matching of Software Components • 343

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

function that reverses or sorts the elements in the container or removes
duplicates.

While, intuitively, Q4 would seem related to Stack pop and Queue rest,
neither pop nor rest match with Q4 under either plug-in or plug-in
postmatch. Consider Stack pop (the reasoning is similar for Queue rest). We
cannot prove Spost f Qpost (i.e., (s2 5 butLast(s)) f (size(s2) 5 size(s) 2
1)) for the case where s 5 empty. However, by adding the assumption Spre
(not(isEmpty(s))), we are able to show that Stack pop matches with Q4
under guarded plug-in match. The first conjunct (Qpre f Spre) is trivial,
since the preconditions of Q4 and Stack pop are the same. Figure 3
sketches the proof of the second conjunct ((Spre ∧ Spost) f Qpost).

3.1.5 Guarded Postmatch. As with plug-in match, we define a more
relaxed guarded match by dropping the precondition relation term. Because
we do not have the precondition term, there is no guarantee that Spre
actually holds, so we may have to provide an additional “wrapper” in our
code to establish Spre before we call the function specified by S.

Definition 8 (Guarded Postmatch).

matchguarded-post~S, Q! 5 ~Spre ∧ Spost! f Qpost

For example, consider the following query, which is the same as Q4 but
without a requires clause:

signature Q5 5 sig (Q5)
(p1 using OrderedContainer 1p)
type a t (p1 based on OrderedContainer.E OrderedContainer.C 1p)
val remainder : a t 3 a t
(p1 remainder c 5 c2
ensures size(c2) 5 (size(c) 2 1) 1p)

end

Because this query has a stronger precondition, it is not matched by any
functions in the library under either plug-in or guarded plug-in match.
Plug-in postmatch does not work either because we need to assume Spre
(not(isEmpty(s))) to show Spost f Qpost. However, under guarded post-

Fig. 3. Proof sketch of second conjunct of matchguarded-plug-in (pop, Q4).

344 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

match, Q5 is matched by both Stack pop and Queue rest. The proofs are
very similar to that for Q4 in the guarded plug-in match (Figure 3).

3.2 Predicate Matches

Recall the generic predicate match (Definition 3)

matchpred~S, Q! 5 Spred 5 Qpred ,

where the relation 5 is either equivalence (N), implication (f), or reverse
implication (d). Note that this general form allows alternative definitions
of the specification predicates. One alternative is Spred 5 Spre ∧ Spost, which
is stronger than Spred 5 Spre f Spost. This interpretation is reasonable in
the context of state machines, where the precondition serves as a guard so
that a state transition occurs only if the precondition holds. For our
examples, we use Spred 5 Spre f Spost.

As we did with the generic pre/post match, we consider instantiations of
the generic predicate match including an exact match and various relax-
ations.

3.2.1 Exact Predicate Match. We begin with exact predicate match.
Two function specifications match exactly if their predicates are logically
equivalent (i.e., 5 is instantiated to N). This is less strict than exact
pre/post match (Definition 4), since there can be some interaction between
the pre- and postconditions (i.e., matchE-pre/post f matchE-pred). In fact, in
cases where Spre 5 Qpre 5 true, exact pre/post and exact predicate matches
are equivalent.

Definition 9 (Exact Predicate Match).

matchE-pred~S, Q! 5 Spred N Qpred

Our example Q1 is still matched by Stack and Queue create under exact
predicate match, since

Spred N Qpred 5 ~true f ~s 5 empty!! N ~true f ~size~s! 5 0!!

5 ~s 5 empty! N ~size~s! 5 0!,

which is exactly what we proved to show that Q1 is matched by Stack and
Queue create under exact pre/post match.

3.2.2 Generalized Match. Generalized match is an intuitive match in
the context of queries and libraries: specifications of library functions will
be detailed, describing the behavior of the functions completely, but queries
can be simple. The query can focus on just the aspect of the behavior that
we are most interested in or that we think is most likely to differentiate
among functions in the library. Generalized match allows the library
specification to be stronger (more general) than the query and, hence,
allows for simple queries; 5 in the generic predicate match is instantiated

Specification Matching of Software Components • 345

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

to f. Generalized match is a weaker match than plug-in match (i.e.,
matchplug-in f matchgen-pred).

Definition 10 (Generalized Match).

matchgen-pred~S, Q! 5 Spred f Qpred

For example, again consider Q4. Using the exact predicate match, neither
the Stack pop nor the Queue rest specifications match with this query.
However, under generalized match, Q4 is matched by both of these. The
proofs are very similar to that for Q4 in the guarded plug-in match (Figure
3).

Consider another example specifying a function that removes the most
recently inserted element of an ordered container. This query does not
require that the specifier knows the axiomatization of ordered containers,
since the query uses only the container constructor, insert. The postcondi-
tion specifies that the input container, c, is the result of inserting the
returned element, e, into another container c2. The existential quantifier
(there exists) is a way of being able to name c2.

signature Q6 5 sig (Q6)
(p1 using OrderedContainer 1p)
type a t (p1 based on OrderedContainer.E OrderedContainer.C 1p)
val delete : a t 3 a

(p1 delete c 5 e
requires not(isEmpty(c))
ensures there exists c2:OrderedContainer.C

(c 5 insert(e, c2)) 1p)
end

Under generalized match, the query is matched by the Stack top func-
tion, but not by Queue deq, since the query specifies that the most recently
inserted element is returned. To show matchgen(Stack.top, Q6), we consider
two cases: c 5 empty and c 5 insert(ec, cc). In the first case, the
preconditions for both top and delete are false, and thus, the match
predicate is vacuously true. In the second case, the preconditions are both
true, so we need to prove that Spost f Qpost. If we instantiate c2 to cc, the
proof goes through.

Q6 retrieves Stack top not only under generalized match, but also under
guarded plug-in and guarded postmatches using similar reasoning. Q6 does
not retrieve anything under any of the other matches, because the other
matches do not exclude the case of an empty stack by using the precondi-
tions.

3.2.3 Specialized Match. Specialized match is the converse of general-
ized match: matchspcl-pred(S, Q) 5 matchgen-pred(Q, S). A function whose
specification is weaker than the query might still be of interest as a base

346 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

from which to implement the desired function. Specialized match allows
the library specification to be weaker than the query; we instantiate 5 in
the generic predicate match to d.

Definition 11 (Specialized Match).

matchspcl-pred~S, Q! 5 Qpred f Spred

Consider again the query Q3, which is the same as Stack top but without
the precondition. Stack top is thus weaker than Q3, but we can show that
Q3 implies Stack top and, hence, that Q3 is matched by Stack top under
specialized match.

3.3 Relating the Function Matches

We relate all of our function specification match definitions in a lattice
(Figure 4). An arrow from a match M1 to another match M2 indicates that
M1 is stronger than M2 (i.e., M1(S, Q) f M2(S, Q) for all S, Q). We also
say that M2 is more relaxed than M1.

Table III summarizes which of the library functions match each of the six
example queries under each of the eight matches we have defined. For
example, under generalized match, Q4 is matched by both Queue.rest and

Fig. 4. Lattice of function specification matches.

Specification Matching of Software Components • 347

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

Stack.pop, but under plug-in postmatch, Q4 is not matched by any func-
tions in the library. Parentheses around a function indicate that the match
is implied by a stronger match (e.g., matchplug-in(Q2, Queue.enq) f match-
guarded-plug-in(Q2, Queue.enq)).

We define a variety of matches. Which match is most appropriate to use
will depend on the particular situation. First, the choice of match depends
on the context in which the match is used: how strong of a guarantee is
needed about the relation between the two specifications? If we want to
know that we can substitute one function for the other and still have the
same behavior, we would use plug-in match or an exact match. In contrast,
if we are only interested in whether the functions have the same effects and
are willing to check preconditions separately, we can use guarded post-
match. Which match is most appropriate also depends on the actual form of
the predicates. In some cases, pre/post matches will be easier to prove with
a theorem prover, since the pre/post matches relate preconditions to
preconditions and postconditions to postconditions, and since for two spec-
ifications, S and Q, it is likely that Spre and Qpre are related; hence, we can
reason about the relation (and similarly for Spost and Qpost). In other cases,
however, it is necessary to make some assumptions about the precondition
in order to prove a relation between the postconditions. In these cases, the
predicate matches are easier to prove.

4. MODULE MATCHING

Function matching addresses the problem of matching individual functions.
However, a programmer may need to compare collections of functions, for
example, ones that provide a set of operations on an abstract data type.
Modules, such as Ada packages or C11 classes, are a common language
feature of most modern programming languages and are typically used to
support explicitly the definition of abstract data types. Modules are also
often used just to group a set of related functions, like I/O routines. This
section addresses the problem of matching module specifications.

Table III. Summary of which Functions Match which Queries (where Q 5 Queue module
and S 5 Stack module)

Query
Exact

Pre/Post
Exact

Predicate Plug-In
Guarded
Plug-In

Plug-In
Post Specialized Generalized

Guarded
Post

Q1 Q.create (Q.create) (Q.create) (Q.create) (Q.create) (Q.create) (Q.create) (Q.create)
S.create (S.create) (S.create) (S.create) (S.create) (S.create) (S.create) (S.create)

Q2 — — Q.enq (Q.enq) (Q.enq) — (Q.enq) (Q.enq)
— — S.push (S.push) — (S.push) (S.push)

Q3 — — — — S.top S.top — (S.top)
Q4 — — — Q.rest — — (Q.rest) (Q.rest)

— — — S.pop — — (S.pop) (S.pop)
Q5 — — — — — — — Q.rest

— — — — — — — S.pop
Q6 — — — S.top — — (S.top) (S.top)

348 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

A module specification interface is a pair, (5 ^(T, (F&, where

—(T is a set of user-defined types and
—(F is a set of function abstracts.

(T introduces the names of user-defined type constructors that may
appear in (F. A function abstract is the function name together with the
function specification. We include the function name both as useful feed-
back to the user and to distinguish between abstracts that would otherwise
be the same (thus, (F is a set rather than a multiset). For example, the
Queue interface in Figure 1 has one user-defined type ((T 5 {a t}) and four
function abstracts in (F.

For a library interface, (L 5 ^(LT, (LF&, to match a query interface,
(Q 5 ^(QT, (QF&, there must be correspondences both between (LT and
(QT and between (LF and (QF.

In the module match definition we use here, the user-defined types and
function abstracts in the query interface are a subset of those in the library
interface. We consider other module match definitions elsewhere [Zaremski
1996]. We allow the query interface to be a subset of the library interface so
that the querier may specify exactly the functions of interest and match a
module that is more general in the sense that its set of functions may
properly contain the query’s set.

Definition 12 (Module Match).

M-match~(L, (Q, matchfn! 5 ' total functions,

UTC : UserOp~(QT!3 UserOp~(LT!

~with corresponding renaming TC!, and

UF : (QF 3 (LF

such that

(1) UTC and UF are one-to-one;
(2) @t [(QT, matchE(t, TC t); and
(3) @Q [(QF, matchfn(UF(Q), TC Q).

UTC and TC ensure that user-defined types are named consistently in
the two interfaces. For a set of user-defined types (T, UserOp((T) extracts
the set of type constructor variables in (T (e.g., for (T 5 {a T, int X},
UserOp((T) 5 {T, X}). The domain of function UTC is a set of type
constructor variables; from it we construct the type constructor renaming
sequence TC, which is applied to the signature of each function specifica-
tion in (QF. For each uq [UserOp((T), the renaming [UTC(uq)/uq]
appears in TC. To avoid potential naming conflicts, we assume that
UserOp((QT) and UserOp((LT) are disjoint (if they are not, we can easily
make them so).

Specification Matching of Software Components • 349

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

UF maps each query function abstract Q to a corresponding library
function abstract, UF(Q). Since any user-defined types in UF(Q) come from
(LT, we apply TC to Q to ensure consistent naming of type constructors.
The correspondence between each TC Q and UF(Q) is that they satisfy the
function match, matchfn. The library module may contain more functions
than the query module (i.e., u(LFu $ u(QFu, and (LF $ TC (QF, where TC
(QF is a shorthand for applying TC to each element of (QF). Section 6.2
contains an example of a module match, including a proof of the match
relation with LP. Currently, the user must supply the mappings UTC and
UF by hand.

Our definition of module match is highly parameterized and extensible.
The function match relation between the pairs of functions is completely
orthogonal to the module match definitions; we can instantiate matchfn
with any of the function specification matches defined in Section 3. In fact,
the module match definitions are completely independent of the fact that
we are matching specifications at the function level. If we use the same
definitions of module matching, but instantiate matchfn with a function
signature match, we have module signature matching [Zaremski and Wing
1995].

Most generally, a module interface consists of some global information
((T) and a set of functions ((F). This framework allows the potential to
extend the module interface to contain even more information. For exam-
ple, we could extend module specification interfaces to include information
about shared types or global invariants in (T. A new module match
definition including global invariants would be similar to Definition 12;
however, UTC would change, and point (2) of the definition would require
some kind of consistency between invariants.

5. IMPLEMENTATION

We use LP, the Larch Prover [Garland and Guttag 1991], to attempt to
prove that a match holds between two specifications. LP is a theorem
prover for a subset of multisorted first-order logic. We implemented tools to
translate Larch/ML specifications and to match predicates into LP input.
Each of the specification match examples given in Section 3 (i.e., all entries
in Table III) and in Section 6 have been specified in Larch/ML, translated
automatically to LP input, and proven using LP.

For each specification file (e.g., Stack.sig), we check the syntax of the
specification and then translate it into a form acceptable to LP. Namely, we
generate a corresponding .lp file (e.g., Stack.lp), which includes the axioms
from the appropriate LSL trait and contains the appropriate declarations of
variables, operators, and assertions (axioms) for the pre- and postcondi-
tions of each function specified. Each function foo generates two operators,
fooPre and fooPost; the axioms for fooPre and fooPost are the bodies of the
requires and ensures clauses of foo. Figure 5 shows Stack.lp and Q2.lp,
the result of translating the Stack specification from Figure 1 and the
query Q2 into LP format. The thaw OrderedContainer Axioms command

350 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

loads the state resulting from executing the commands in OrderedCon-
tainer Axioms.lp. We use the lsl tool to generate the file OrderedContainer-
Axioms.lp from the LSL trait OrderedContainer.lsl. We comment out the

thaw command in Q2.lp, since we assume that the query (Q2) uses the
same trait as the library specification (Stack). The command set name Q2
tells LP to use Q2 as the prefix for names of facts and conjectures.
Commands declare var and declare op declare variables and operators
that will be used in the axioms. In particular, Q2.lp declares the element
variable e, container variables q1 and q2, and operators addPre and
addPost. The input sorts (C, E, C) correspond to the types of the input
arguments and the result of add (a t p a 3 a t). The assert clause adds
axioms to the logical system for addPre and addPost, corresponding to the
requires and ensures clauses of add, respectively.

Given the names of two function specifications, their corresponding
specification files, and which match definition to use, we also automatically
generate the appropriate LP input to initiate an attempt to determine the
match between those two functions. For example, Figure 6 shows the LP
input to prove the plug-in match of Stack push with Q2. The input to LP for
the proof consists simply of commands to load the theories for the library
and query (execute Stack and execute Q2) and the proof statement
(prove . . .).

Fig. 5. LP input for Stack and Q2.

Specification Matching of Software Components • 351

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

We could alternatively have chosen to generate the LP axioms on a
per-query basis rather than generating axioms for each .sig file (i.e., given
a particular pair of functions, generate only the necessary axioms for that
particular pair). However, we assume that generating an .lp file from a .sig
file will happen only once and that there may be several queries on a
library specification or several match definitions for a particular query.
This approach enables us to consider module-level matches as well.

Although we have defined specification matches that are either true or
false, our implementation does not answer quite so succinctly. Since LP is
designed as a proof assistant, rather than as an automatic theorem prover,
some of the proofs require user assistance. Thus, a proof assertion submit-
ted to LP yields the result that either a proof was found (i.e., the match is
true) or a proof was not found (i.e., the match may or may not be true). In
the second case, user assistance is required either to complete the proof or
to determine that it cannot be completed. An extension to our implementa-
tion would be to also submit to the prover the negation of the match to
directly prove that a match is false.

Each of the 40 entries in Table III corresponds to a match that we have
used LP to prove. In characterizing how much assistance the proofs
require, we consider only the primary matches (the 11 entries in the table
that are not in parentheses), since proofs for all others follow automatically
from an entry to the left in the same row. Table IV summarizes the level of
user assistance required for the primary matches. “None” means the proof
went through with no user assistance; “guidance” means that the proof
required user input to apply the appropriate proof strategies; and “lemma”
means that the user had to prove additional lemmas to complete the proof.

Four of the proofs needed no assistance from the user: plug-in match of
Stack.push and Queue.enq with Q2 and plug-in postmatch and specialized
match of Stack.top with Q3. Plug-in match of Stack.push with Q2 is the
example shown in Figure 6; executing the statements in Figure 6 results in
the response from LP that the match conjecture was proved using the
default proof methods; no user assistance was required.

Guarded plug-in match of Stack.top with Q6 is an example of a match
that requires some user assistance to LP. Figure 7 shows an LP-annotated
script for this proof. The lines with boldface are user input; ^ & and [] are
proof notes from LP; and % is the comment character. The additional user
input resume by induction tells the prover to use the induction proof
strategy. This generates a base case (the container, c, is empty) and an
induction hypothesis (assumes the assertion is true for a container, cc, and

Fig. 6. LP input for plug-in match of Stack.push with Q2.

352 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

attempts to prove the assertion for the container insert(e, cc)). The prover
is able to prove the basis subgoal automatically, but needs further assis-
tance with the induction subgoal. The prover is able to simplify the
induction subgoal to ? c2 : insert(e, cc) 5 insert(e, c2). The user input
resume by specializing c2 to cc tells the prover to use cc as the value for
the existential variable c2, and the proof then goes through. The line []
conjecture indicates that LP completed the proof. We classify the user
assistance for this proof as simply guidance, telling LP what proof strategy
to use next in cases where the default strategies do not complete the proof.
A total of three proofs require guidance: guarded plug-in match of Stack.top
with Q6, guarded plug-in match of Stack.pop with Q4, and guarded
postmatch of Stack.pop with Q5.

The remainder of the proofs (exact pre/post match of Queue.create and
Stack.create with Q1, guarded plug-in match of Queue.rest with Q4, and
guarded postmatch of Queue.rest with Q5) required not only guidance but
also additional lemmas in order to prove the match. In all four cases, one of
the additional lemmas is ;(insert(e, q) 5 empty) (something that might

Table IV. Level of User Assistance Required for LP Proofs of Queries

Query Library Match User Assistance

Q1 Queue.create Exact pre/post Lemma
Q1 Stack.create Exact pre/post Lemma
Q2 Queue.enq Plug-in None
Q2 Stack.push Plug-in None
Q3 Stack.top Specialized None
Q3 Stack.top Plug-in post None
Q4 Queue.rest Guarded plug-in Lemma
Q4 Stack.pop Guarded plug-in Guidance
Q5 Queue.rest Guarded post Lemma
Q5 Stack.pop Guarded post Guidance
Q6 Stack.top Guarded plug-in Guidance

Fig. 7. Proof script of guarded plug-in match of Stack.top with Q6.

Specification Matching of Software Components • 353

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

reasonably be included in a more complete theory of containers). The proofs
for Queue.rest with Q4 and Q5 additionally need the lemma size(but-
First(insert(e, q))) 5 size(q), which falls out directly from the axioms for
Stack but not Queue. The proofs for Q1 need additional lemmas about the
sizes of containers. Figure 8 shows an LP-annotated script for the proof of
guarded postmatch of Queue.rest with Q5.

6. APPLICATIONS

As mentioned in Section 1, any problem that involves comparing the
behavior of two software components is a potential candidate for specifica-
tion matching. In particular, we focus on problems that center around
substituting one component for another. In this section, we examine two
such problems: retrieval for reuse and subtyping of object-oriented types.

6.1 Retrieval for Reuse

If we have a library of components with specifications, we can use specifi-
cation matching to retrieve components from the library. Formally, we
define the retrieval problem as follows:

Definition 13 (Retrieval).

Retrieve: Query Specification, Match Predicate, Component Library 3
Set of Components

Fig. 8. Proof script of guarded postmatch of Queue.rest with Q5.

354 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

Retrieve(Q, matchspec, L) 5 {C [L : matchspec(C, Q)}

Given a query specification Q, a specification match predicate matchspec,
and a library of component specifications L, Retrieve returns the set of
components in L that match with Q under the match predicate matchspec.
Note that the components can be either functions or modules, provided that
matchspec is instantiated with the appropriate match. Parameterizing the
definition by matchspec also gives the user the flexibility to choose the
degree of relaxation in the specification match. In practice, it is inefficient
to perform the specification match on every component in a library. A
practical implementation would use a more efficient match (e.g., signature
match) as a filter, perhaps even allowing the user to specify on a case-by-
case basis whether to attempt the specification match.

Using specification match as part of the retrieval process (or separately
on a given pair of components) gives us assurances about how appropriate a
component is for reuse. At the function level especially, the various
specification matches give us various assurances about the behavior of a
component we would like to use. We treat Q as the “standard” we expect a
component to meet, and S as the library component we would like to reuse.
If the exact pre/post match holds on S and Q, we know that S and Q are
behaviorally equivalent under all conditions; using S for Q should be
transparent. If the plug-in or guarded plug-in match holds, we know that S
can be substituted for Q, and the behavior specified by Q will still hold,
although we are not guaranteed the same behavior when Qpre is false. If the
guarded postmatch holds, we know that the specified behavior holds when
Spre is satisfied. Depending on the context, we may be able to ensure that
Spre holds and, hence, guarantee the behavior specified by Q.

For example, suppose that we are implementing a file cache manager.
Among many other things, we will need a function to replace a file in the
cache with a newly fetched file when the cache is full. We want to know
whether there are functions in the library to do this. Given that library
functions have specifications associated with them, we can use specification
matching to retrieve the functions we want. If we use a match definition
like guarded plug-in match, we can use a fairly weak specification like Q7
as our query:

signature Query 5 sig (Q7)
(p1 using OrderedContainer 1p)
type a fscache (p1 based on OrderedContainer.E OrderedCon-
tainer.C 1p)
val qReplace : a fscache p a 3 unit
(p1 qReplace (cache, file)

requires size (cache) 5 50
modifies cache
ensures isIn(file, cache9) and (size(cache9) 5 size(cache)) 1p)

end

Specification Matching of Software Components • 355

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

Q7 specifies a property that would hold for a destructive replacement
function, namely, that the size of the cache remains the same and that the
new file is in the cache in the final state. The query function takes as input
a file system cache (of type a fscache) and a file (of type a). The requires
clause indicates that the cache must be a particular size (i.e., we are
assuming that we are operating on a full cache). The modifies clause
indicates that the value of cache may be changed by the function. In the
ensures clauses, we use cache9 to stand for the value of the cache in the
final state and the unprimed cache to refer to the value in the initial state.

Suppose that the two functions listed in Figure 9 are in the library. Both
require that the cache be nonempty, and replace a current element of the
cache with the new file. The replaceFirst function in Component1 uses a
FIFO replacement strategy: the first file inserted is the one replaced (i.e.,
the file that has been in the cache the longest). The replaceMax function in
Component2 uses a priority-based replacement strategy: it replaces the
maximum element in the cache, for some (unspecified) total ordering on the
elements of the cache. This ordering could be based on the time since the
file was last referenced (i.e., an LRU replacement strategy) or on the
priority of the elements in the cache (e.g., hoard priorities).

Using guarded plug-in match, retrieval using the query Q7 returns both
of the library functions in Figure 9, since both replacement strategies
guarantee the properties specified in Q7’s postcondition. Proofs of guarded
plug-in match of both replaceFirst with Q7 and replaceMax with Q7 are
shown in Appendix B.

Thus, we could use both of these functions to experiment with the effects
of a particular replacement strategy on the performance of our cache
manager. We could also use a more specific query (e.g., the same as one of
the library components) to distinguish between the two library components.

This example also illustrates the importance of the precondition guard in
guarded plug-in match. If we used plug-in match rather than guarded

Fig. 9. Two library file replacement functions.

356 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

plug-in match, we would not retrieve either function, since it is necessary
to exclude the case of an empty cache when trying to prove that the sizes of
cache and cache9 are equal.

6.2 Subtyping

A second application of specification matching is determining when one
object is a subtype of another. In object-oriented programming languages,
an object type3 defines a collection of objects, which consist of data (state)
and methods that act on the data [America 1991; Cardelli 1989; Meyer
1988]. Intuitively, a type s is a subtype of another type t if an object of type
s can be substituted for an object of type t. Precise definitions of subtyping
vary in the strictness of this notion of substitutability from simply requir-
ing the methods’ signatures to match (signature subtyping) to requiring a
correspondence between the methods’ dynamic semantics (behavioral sub-
typing).

In order to relate subtyping to signature and specification matching, we
must first convert object types to our context. We base our definition of an
object type on that of Liskov and Wing [1994], but differ from their
definition in that we do not include invariants or constraints. We restrict
our focus here to relating methods, which is only one aspect of their
subtyping relation. We model an object type as a module interface, with a
type declaration for the object type (a description of the object type’s value
space), a global variable of the object type to hold the current state of the
object (an element of the value space), and a function signature (and
specification) for each method.

Let T represent the module interface of the supertype, and let S
represent the module interface of the subtype. Subtyping requires a corre-
spondence between each method in T and a method in S, but allows
additional methods in S. The correspondence between methods varies
among the subtype definitions but is always a function match definition.
There is also a correspondence between type declarations. These are
exactly the correspondences captured by the module match definition
(Definition 12). Thus, we define subtyping in terms of module match using
the following general form:

Definition 14 (Generic Subtype).

Subtype~S, T! 5 M-match~S, T, matchmethod!

S is a subtype of T if their modules match. The particular notion of
subtyping depends on matchmethod, the match used at the method (function)
level. We discuss other possible instantiations of matchmethod and the more
general relation between both signature and behavioral subtyping to signa-
ture and specification matching in more detail elsewhere [Zaremski 1996].

3These are usually simply called “types,” but we need to distinguish types of objects from types
in signatures.

Specification Matching of Software Components • 357

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

In the remainder of this section, we relate behavioral subtyping to specifi-
cation matching and illustrate how to use specification matching to show
that one object is a behavioral subtype of another with an example.

Figure 10 shows the module specifications for two objects (an example
similar to that in Liskov and Wing [1994]). The first is BagObj, a mutable
bag object with a global variable b and methods put, get, and card. The
second specification is of a stack object. StackObj is based on the same trait
as bag, but has a stricter specification for the method that removes an
object (pop top) and has an additional method, swap top. In keeping with
the Liskov and Wing approach, we assume that create methods are defined
elsewhere. Appendix A lists the OrderedContainer trait on which both
specifications are based.

The StackObj specification differs in several ways from the Stack specifi-
cation in Figure 1. First, in StackObj, stacks are mutable, whereas in
Stack, they are not. Because the Stack specification in Figure 1 specifies
the behavior of a typical implementation in a functional language, its
stacks are immutable. Here, however, we wish to model the specification of
a stack in the object-oriented paradigm, and hence, these stacks are
mutable. Second, Stack has separate functions for pop and top, whereas
StackObj combines these in pop top. Again, this is mainly a by-product of
the difference between a functional implementation and an object-oriented
one. Third, each specification has additional functions that the other does
not.

Fig. 10. Larch/ML specifications of bag and stack object types.

358 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

We now consider how to define the behavioral subtype relation between
two objects (modules). Behavioral subtyping attempts to capture the notion
that anywhere in a program that an object of type T is used we should be
able to substitute an object of type S, where S is a subtype of T, and still
have the same observable behavior of the program.

There are a number of definitions of behavioral subtyping that attempt to
capture this substitutability property [America 1991; Dhara and Leavens
1992; 1996; Leavens 1989; Leavens and Weihl 1990; Liskov and Wing 1994;
Meyer 1988]. There are subtle differences between all of these subtype
definitions, but common to all is the use of pre/postcondition specifications
both to describe the behavior of types and to determine whether one type is
a subtype of another. Let mT be a method of supertype T, and let mS be the
corresponding method of subtype S.

Behavioral subtyping requires that each method in the supertype T have
a corresponding method in the subtype S, but there may be additional
methods in S. We use the following rules for behavioral subtyping:

—Precondition Rule: mT.pre f mS.pre.
—Postcondition Rule: (mS.pre ∧ mS.post) f mT.post.

This is the same as our guarded plug-in match and is used for the same
reason: to show substitutability, making assumptions about the precondi-
tion when necessary. Thus, we define behavioral subtyping by instantiating
matchmethod in the generic subtype definition (Definition 14) with guarded
plug-in match (Definition 7). We assume that the signatures match.

Definition 15 (Behavioral Subtype).

Subtypebehav~S, T! 5 M-match~Sspec , Tspec , matchguarded-plug-in!

We can model other versions of behavioral subtyping by substituting other
function specification definitions for matchmethod. For example, substituting
plug-in match for matchmethod yields America’s [1991] subtype definition,
which is also the methods rule in Liskov and Wing’s [1994] subtype
definition. Substituting a conjunction of generalized match with the precon-
dition rule from plug-in match (i.e., matchmethod 5 (mT.pre f mS.pre) ∧
(mS.pred f mT.pred)) yields Dhara and Leaven’s [1996] method rule.

Consider the StackObj and BagObj specifications in Figure 10. If we
expect a bag object, we will not be surprised by the behavior of a stack
object (i.e., we should be able to substitute a stack for a bag). Stack push
adds an element to a container, just as bag put does, and stack height
returns the size of a container, just as bag card does. Bag get is nondeter-
ministic: it deletes and returns an element in a container. Stack pop top is
just more restrictive about which element it deletes. In contrast, if we
expect a stack object, we may be surprised by a bag object when we remove
an element, since the bag get method may remove an element other than
the top element. Thus, intuitively we would expect stack to be a subtype of
bag, but not vice versa. We would like to show that StackObj is a behavioral

Specification Matching of Software Components • 359

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

subtype of BagObj according to Definition 15. As the objects are specified,
we would not be able to show the subtype relation if we used plug-in match
as the method match, because we cannot prove matchplug-in(pop top, get)
(since we cannot reason about the case where the stack or bag is empty).
However, we can show that StackObj is a behavioral subtype of BagObj,
since our behavior subtype definition uses guarded plug-in match, which
specifically allows us to exclude the case where the stack or bag is empty.

To show Subtypebehav(StackObj, BagObj) (or, equivalently, M-match-
(StackObjspec, BagObjspec, matchguarded-plug-in)), we must define the map-
pings UF and UTC to satisfy the three requirements of module match in
Definition 12. There is only one user-defined type in both StackObj and
BagObj, and it is the same (i.e., UserOp((BagT) 5 UserOp((StackT) 5 t). So
UTC is the identity function (UTC(t) 5 t). We define UF as follows: UF(put) 5
push, UF(get) 5 pop top, and UF(card) 5 height. UTC and UF satisfy the three
requirements of module match:

(1) UTC and UF are both one-to-one total functions (UF is not onto, but
does not need to be)

(2) matchE(a t, a t)
(3) matchguarded-plug-in(push, put)

matchguarded-plug-in(pop top, get)
matchguarded-plug-in(height, card).

We translated our specifications of StackObj and BagObj into LP input
and were able to prove the guarded plug-in matches with very little user
guidance. Appendix C shows the LP proof script of guarded plug-in match
between each pair of methods. The proofs for matchguarded-plug-in(push, put)
and matchguarded-plug-in(height, card) are trivial, since the specifications are
identical modulo variable names. The proof for matchguarded-plug-in(pop top,
get) requires an additional lemma and some guidance.

Thus, not only have we shown how subtyping fits into our framework of
specification matching, but we can also use our specification matching tools
to automate checking our subtype relation. Other subtype definitions (e.g.,
Liskov and Wing [1994]) include additional global information, such as
invariants and constraints, which we do not model. It should be possible,
however, to add this in our framework by extending (T to include con-
straint specifications in addition to user-defined type declarations.

7. RELATED WORK

Other work on specification matching has focused on using one or two
particular match definitions for retrieval of software components (usually
functions). Rollins and Wing [1991] proposed the idea of function specifica-
tion matching and implemented a prototype system in lProlog using
plug-in match. lProlog does not use equational reasoning, and so the
search may miss some functions that match a query but that require the
use of equational reasoning to determine that they match. The VCR
retrieval system [Fischer et al. 1994] uses plug-in match with VDM as the

360 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

specification language. The focus of this work was on the efficiency of
proving match; the tool performs a series of filtering steps before doing
all-out match. Penix and Alexander [1995] used theorem proving to trans-
late specifications automatically into domain-specific feature sets (sets of
attribute-value pairs), which they then used to do a more efficient retrieval.
Such an approach depends on formulating the feature sets for each domain,
however. Perry’s [1989] Inscape system is a specification-based software
development environment. Its Inquire tool [Perry and Popovich 1993]
provides predicate-based retrieval in Inscape. Match can be either exact
pre/post match or a form of generalized match. The prototype system has a
simplified and, hence, fairly limited inference mechanism. In Inscape, the
user must provide specifications for each component anyway, so the query
for a retrieval will already be written. Jeng and Cheng [1992] used
order-sorted predicate logic specifications. They defined two matches, both
of which are instances of our generalized function match, but with the
additional property that they generate a series of substitutions to apply to
the library component to reuse in the desired context. Mili et al. [1994]
defined a specification as a binary relation. A specification S refines
another specification Q if S has information about more inputs and assigns
fewer images to each argument. This is like plug-in match except that the
match is in terms of relations rather than predicates. Goguen et al. [1996]
described retrieval of modules using a series of filtering matches that rank
the closeness of each candidate component to the query. One of their
matches is a form of module specification match. The module match
measures the intersection of matching query and candidate functions (as
opposed to requiring that the query functions be a subset of the candidate
functions, as we do). The function match is a weak form of generalized
match, checking only that ground equations in the query are satisfied by
the candidate. An advantage of the match is that the user can specify the
query by giving results of sample executions rather than by writing a
formal specification.

The PARIS system [Katz et al. 1987] maintains a library of partially
interpreted schemata. Each schema includes a specification of assertions
about the input and results of the schema and about how the abstract parts
of the schema can be instantiated. Matching corresponds to determining
whether a partial library schema could be instantiated to satisfy a query.
The system does some reasoning about the schemata but with a limited
logic. Katoh et al. [1986] used “ordered linear resolution” to match English-
like specifications that have been translated into first-order predicate logic
formulas. They allow some relaxations, but check only for equivalence and
do not verify that the subroutines match.

To summarize, our work on specification matching is more general than
the above in three ways: (1) we handle not just function match, but also
module match; (2) we have a framework, which is extremely modular (e.g.,
function match is a parameter to module match; specification match is one
conjunct of component match), within which we can express each of the
specific matches “hardwired” in the definitions used by others; and (3) we

Specification Matching of Software Components • 361

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

have a flexible prototype tool that lets us easily experiment with all of the
different matches. Finally, we are not wedded to just the software retrieval
application; we also apply specification match to other application areas.

Signature matching is a very restricted form of specification matching.
Most work in this area has focused on using the expressiveness and
theoretical properties of type systems to define various forms of relaxed
matches [Di Cosmo 1992; Rittri 1990; Runciman and Toyn 1989; Stringer-
Calvert 1994; Zaremski and Wing 1995]. Chen et al. [1993] described a
framework for both signature and specification matching, but only imple-
mented signature matching. Wileden et al. [1991] surveyed specification-
level interoperability. Most work thus far has focused on signature-based
interoperability and on how to convert types in a heterogeneous environ-
ment [Konstantas 1993; Thatté 1994; Yellin and Strom 1994].

Less closely related work, but relevant to our context of software library
retrieval, is divided into three categories. Text-based information retrieval
[Arnold and Stepoway 1987; Frakes and Nejmeh 1987; Maarek et al. 1991;
Prieto-Dı́az 1989] and AI-based semantic net classifications [Fischer et al.
1991; Ostertag et al. 1992] have the advantage that many efficient tools are
available to do the search and match in these structures. The disadvantage
is that a component’s behavior is described informally. A third class of
retrievals [Consens et al. 1992; Paul and Prakash 1994] allows queries over
a representation of the component’s actual code, for example, abstract
syntax trees. Such queries are useful mainly for determining structural
characteristics of a component, for example, nested loops or circular depen-
dencies.

8. SUMMARY AND FUTURE WORK

The work described in this article makes three specific contributions with
respect to specification matching: foundational definitions, a prototype tool,
and descriptions of applications. By providing precise definitions, we lay
the groundwork for understanding when two different software components
are related, in particular, when their specifications match. Although we
consider in detail functions and modules, exact and relaxed match, and
formal pre/postcondition specifications, the general idea behind specifica-
tion matching is to exploit as much information associated with the
description of software components as possible. By building a working
specification match engine, we have demonstrated the feasibility of our
ideas. With this tool, we can explore the pragmatic implications of our
definitions and apply specification matching to various applications. Al-
though our notion of specification match was originally motivated by the
software library retrieval application, it is more generally applicable to
other areas of software engineering, e.g., determining subtyping in design-
ing class hierarchies or showing that one component may be substituted for
another when upgrading a system.

362 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

Specification matching is “expensive” in two respects: (1) the nontrivial
overhead of writing the specifications and (2) the necessity of doing a proof
to show a match. However, many of our match definitions (plug-in matches
and generalized match) do not require a full specification of the query
component, which somewhat mitigates the first expense. For the second
expense, we can use theorem-proving technology to automate the match
process rather than prove the match by hand. Additional advances in the
field of theorem proving would improve this further. The overall expense is
further mitigated by doing the match selectively. For example, in the
retrieval domain, we use a less-expensive match, such as signature match-
ing, to initially prune the search space, and then select one or two potential
matches that we verify using specification matching.

Regardless of the cost, there are applications where other matches (e.g.,
text or signatures) are not descriptive enough and where we are willing to
expend a little extra effort to specify and prove that a match holds. For
example, if we want to replace a component in a safety-critical system with
an updated, verified library component, we would want to prove that we
could substitute the library component for the existing component.

Specification matching also has the potential to be extended to apply to
other problems such as interoperability. The heart of an interoperability
problem is that the interfaces of two or more systems do not match [Vernon
et al. 1994]. Thus, our work makes a step in the direction of detecting an
interoperability problem based on a system’s interface that specifies its
input-output (black-box) functional behavior. However, even if two compo-
nents’ specifications match according to our notion of interface specifica-
tion, they may still fail to interoperate. One reason is that they may differ
in the way they choose to communicate with their environment. One way to
extend our work is to add more information to interface specifications to
enable detection of other ways components interact with each other.
Toward this goal, Allen and Garlan [1994] used a subset of CSP to specify
“protocols” as a means to capture the way a component communicates with
its environment and to determine when components interoperate smoothly
with each other based on these protocol specifications. Hence, a more
complete interface would include protocol specifications as well as our kind
of functional specification; our notion of specification match could similarly
be extended to include a notion of protocol match. We deliberately set up
our framework to allow different notions of specification and different
notions of specification match, depending on one’s personal definition of
specification.

Finally, we can invert the notion of specification match: determining that
two components do not match is determining that they mismatch. Garlan et
al. [1995] took a step toward understanding this notion of mismatch at a
system’s architectural level. Hence, a promising direction of future work is
to extend our formal framework from the module level to the architectural
level by modeling the various kinds of architectural mismatch they describe
informally.

Specification Matching of Software Components • 363

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

APPENDIX

A. THE OrderedContainer TRAIT

OrderedContainer (E, C) : trait
includes Integer, TotalOrder(E)
introduces

empty: 3 C butFirst: C 3 C
insert: E, C 3 C butLast: C 3 C
delete: E, C 3 C butMax: C 3 C
first: C 3 E isEmpty: C 3 Bool
last: C 3 E isIn: E, C 3 Bool
max: C 3 E size: C 3 Int

count: E, C 3 Int

asserts
C generated by empty, insert
C partitioned by count
@ e, e1 : E, c : C

last(insert(e, c)) 55e
butLast(insert(e, c)) 55 c
first(insert(e, c)) 55 if c 5 empty then e else first(c)
butFirst(insert(e, c)) 55 if c 5 empty then empty

else insert(e, butFirst(c))
max(insert(e, c)) 55 if c 5 empty then e

else if e . max(c) then e else max(c)
butMax(insert(e, c)) 55 delete(max(c), c)
isEmpty(empty)
¬isEmpty(insert(e, c))
¬isIn(e, empty)
isIn(e, insert(e1, c)) 55 (e 5 e1) ∨ (isIn(e, c))
size(empty) 55 0
size(insert(e, c)) 55 size(c) 1 1
size(delete(e, c)) 55 if isIn(e, c) then size(c) 2 1 else size(c)
count(e, empty) 55 0
count(e, insert(e1, c)) 55 count(e, c) 1 (if e 5 e1 then 1 else 0)
count(e, delete(e1, c)) 55 if e 5 e1 then max(0, count(e, c) 2 1)

else count(e, c)

B. RETRIEVAL EXAMPLE PROOFS

%% Guarded plug-in match of replaceFirst with Q7

execute replace-fifo.lp
execute query7.lp

%% Guarded Plug-in match—precondition
prove (qReplacePre(cache, newobj) 5. replaceFirstPre(cache, newobj))

resume by induction on cache

364 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

%% Additional Lemmas
set name Lemma
prove ;(insert(newobj,cache) 5 empty) by contradiction

critical-pair *Hyp with Container

prove size(butFirst(insert(e,cache))) 5 size(cache) by induction on cache

%% Guarded Plug-in match—postcondition
set name Query
prove (replaceFirstPre(cache, newobj) ` replaceFirstPost(cache, cache9,

newobj)) 5.
qReplacePost(cache, cache9, newobj)

resume by induction on cache

%% Full Guarded Plug-in match
prove (qReplacePre(cache, newobj) 5. replaceFirstPre(cache, newobj)) `

((replaceFirstPre(cache, newobj) ` replaceFirstPost(cache,
cache9, newobj)) 5.
((qReplacePost(cache, cache9, newobj))

qed

%% Guarded plug-in match of replaceMax with Q7

execute replace-priority.lp
execute query7.lp

%% Guarded Plug-in match—precondition
prove (qReplacePre(cache, newobj) 5. replaceMaxPre(cache, newobj))

resume by induction on cache

%% Additional Lemmas
set name Lemma

prove ;(c5empty) 5. ;isEmpty(c)
resume by induction on c

prove ;(isEmpty(c)) 5. isIn(max(c),c)
resume by induction on c

resume by case cc 5 empty
resume by case max(cc) , e

instantiate c by cc in Lemma.1

prove ;(isEmpty(c)) 5. size(insert(e, delete(max(c), c))) 5 size(c)
resume by 5.

instantiate c by cc in Lemma.2

%% Guarded Plug-in match—postcondition
set name Query
prove (replaceMaxPre(cache, newobj) ` replaceMaxPost(cache, cache9, ne-

wobj)) 5.
qReplacePost(cache, cache9, newobj)

%% Full Guarded Plug-in match
prove (qReplacePre(cache, newobj) 5. replaceMaxPre(cache, newobj)) `

Specification Matching of Software Components • 365

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

(replaceMaxPre(cache, newobj) ` replaceMaxPost(cache, cache9,
newobj)) 5.
qReplacePost(cache, cache9, newobj)

qed

C. SCRIPT OF PROOF THAT STACK IS A BEHAVIORAL SUBTYPE OF
BAG

execute bagobj.lp
execute stackobj.lp

% guarded-plug-in(push, put)
prove (putPre 5. pushPre) ` ((pushPre ` pushPost(b, b9, e)) 5.

putPost(b, b9, e))
[] conjecture

% guarded-plug-in(height, card)
prove (cardPre 5. heightPre) ` ((heightPre ` heightPost(b, i)) 5.

cardPost(b, i))
[] conjecture

% Additional lemma
assert 0 ,5 count(e,s)
prove delete(e,insert(e,s)) 5 s

apply OrderedContainer.2 to conjecture
[] conjecture

% guarded-plug-in(pop_top, get)
prove

(getPre(b, e) 5. pop topPre(b, e)) `
((pop topPre(b,e) ` pop topPost(b, b9, e)) 5. getPost(b, b9,e))
. .
resume by induction on b

^ & basis subgoal
[] basis subgoal
^ & induction subgoal
[] induction subgoal

[] conjecture
qed

ACKNOWLEDGMENTS

We thank David Garlan and Stephen Garland for comments on earlier
versions of this work, and we also thank Stephen Garland for his assistance
in the details of using LP. The cache replacement strategy example was
initially suggested by Maria Ebling. We also thank the anonymous referees
for their valuable comments on the article.

REFERENCES

ALLEN, R. AND GARLAN, D. 1994. Formalizing architectural connection. In Proceedings of the
16th International Conference on Software Engineering (Sorrento, Italy, May). 71–80.

366 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

AMERICA, P. 1991. Designing an object-oriented programming language with behavioural
subtyping. In Foundations of Object-Oriented Languages, REX School/Workshop (June
1990), J. W. de Bakker, W. P. de Roever, and G. Rozenberg, Eds. Lecture Notes in Computer
Science, vol. 489. Springer-Verlag, New York, 60–90.

ARNOLD, S. P. AND STEPOWAY, S. L. 1987. The REUSE system: Cataloging and retrieval of
reusable software. In COMPCON Spring 87, 32nd IEEE Computer Society International
Conference (Feb.). IEEE Computer Society, Washington, D.C., 376–379.

CARDELLI, L. 1989. Typeful programming. Rep. 45, DEC Systems Research Center, Palo
Alto, Calif., May.

CHEN, P. S., HENNICKER, R., AND JARKE, M. 1993. On the retrieval of reusable software
components. In Proceedings of the 2nd International Workshop on Software Reusability
(Mar.). IEEE Computer Society Press, Los Alamitos, Calif., 99–108.

CONSENS, M., MENDELZON, A., AND RYMAN, A. 1992. Visualizing and querying software
structures. In Proceedings of the 14th International Conference on Software Engineering
(May). 138–156.

DHARA, K. K. AND LEAVENS, G. T. 1992. Subtyping for mutable types in object-oriented
programming languages. Tech. Rep. 92-36, Dept. of Computer Science, Iowa State Univ. of
Science and Technology, Ames, Iowa, Nov.

DHARA, K. K. AND LEAVENS, G. T. 1996. Forcing behavioral subtyping through specification
inheritance. In Proceedings of the 18th International Conference on Software Engineering
(Mar.).

DI COSMO, R. 1992. Type isomorphisms in a type-assignment framework. In Proceedings of
the 19th Annual POPL (Jan.). ACM, New York, 200–210.

FISCHER, B., KIEVERNAGEL, M., AND STRUCKMANN, W. 1994. VCR: A VDM-based software
component retrieval tool. Tech. Rep. 94-08, Technical Univ. of Braunschweig, Braunschweig,
Germany, Nov.

FISCHER, G., HENNINGER, S., AND REDMILES, D. 1991. Cognitive tools for locating and
comprehending software objects for reuse. In Proceedings of the 13th International Confer-
ence on Software Engineering (May). 318–328.

FRAKES, W. B. AND NEJMEH, B. A. 1987. Software reuse through information retrieval. In
The 20th Annual HICSS. Vol. 2, Software, B. D. Shriver, Ed. Western Periodicals Company,
530–535.

GARLAN, D., ALLEN, R., AND OCKERBLOOM, J. 1995. Architectural mismatch: Why reuse is so
hard. IEEE Softw. 12, 6 (Nov.), 17–26.

GARLAND, S. J. AND GUTTAG, J. V. 1991. A guide to LP, the Larch Prover. Rep. 82, DEC
Systems Research Center, Palo Alto, Calif., Dec.

GUTTAG, J. V. AND HORNING, J. J., Eds. 1993. Larch: Languages and Tools for Formal
Specification. Texts and Monographs in Computer Science. Springer-Verlag, New York.
(With contributions by S. J. Garland, K. D. Jones, A. Modet, and J. M. Wing.)

GOGUEN, J., NGUYEN, D., MESEGUER, J., DU ZHANG, L., AND BERZINS, V. 1996. Software
component search. J. Syst. Integration 6, 93–134.

JENG, J.-J. AND CHENG, B. H. C. 1992. Formal methods applied to reuse. In Proceedings of
the 5th Workshop in Software Reuse.

KATOH, H., YOSHIDA, H., AND SUGIMOTO, M. 1986. Logic-based retrieval and reuse of soft-
ware modules. In the 5th Annual International Phoenix Conference on Computers and
Communications (Mar.). 445–449.

KATZ, S., RICHTER, C. A., AND THE, K.-S. 1987. PARIS: A system for reusing partially
interpreted schemas. In Proceedings of the 9th International Conference on Software
Engineering. (Mar.). 377–385.

KONSTANTAS, D. 1993. Object-oriented interoperability. In ECOOP 93—7th European Con-
ference on Object-Oriented Programming, O. M. Nierstrasz, Ed. Lecture Notes in Computer
Science, vol. 707. Springer-Verlag, New York, 80–102.

LEAVENS, G. 1989. Verifying object-oriented programs that use subtypes. Ph.D. thesis and
Tech. Rep. 439, Laboratory for Computer Science, MIT, Cambridge, Mass., Feb.

LEAVENS, G. T. AND WEIHL, W. E. 1990. Reasoning about object-oriented programs that use
subtypes. In ECOOP/OOPSLA 90 Proceedings. ACM, New York.

Specification Matching of Software Components • 367

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

LISKOV, B. H. AND WING, J. M. 1994. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst. 16, 4 (Nov.), 1811–1841.

MAAREK, Y. S., BERRY, D. M., AND KAISER, G. E. 1991. An information retrieval approach for
automatically constructing software libraries. IEEE Trans. Softw. Eng. 8, 17 (Aug.),
800–813.

MAULDIN, M. AND LEAVITT, J. 1994. Web-agent related research at the CMT. In ACM Special
Interest Group on Networked Information Discovery and Retrieval (SIGNIDR-94) (Aug.).
ACM, New York.

MEYER, B. 1988. Object-Oriented Software Construction. Prentice-Hall, New York.
MILI, A., MILI, R., AND MITTERMEIR, R. 1994. Storing and retrieving software components: A

refinement-based approach. In Proceedings of the 16th International Conference on Software
Engineering (May). 91–100.

OLSEN, K. A., KORFHAGE, R. R., SOCHATS, K. M., SPRING, M. B., AND WILLIAMS, J. G. 1993.
Visualization of a document collection: The VIBE system. Inf. Process. Manage. 29, 1,
69–81.

OSTERTAG, E., HENDLER, J., PRIETO-Dı́AZ, R., AND BRAUN, C. 1992. Computing similarity in a
reuse library system: An AI-based approach. ACM Trans. Softw. Eng. Methodol. 1, 3 (July),
205–228.

PAUL, S. AND PRAKASH, A. 1994. A framework for source code search using program
patterns. IEEE Trans. Softw. Eng. 6, 20 (June), 463–475.

PENIX, J. AND ALEXANDER, P. 1995. Design representation for automating software compo-
nent reuse. In Proceedings of the 1st International Workshop on Knowledge-Based Systems
for the (Re)use of Program Libraries (June).

PERRY, D. E. 1989. The Inscape environment. In Proceedings of the 11th International
Conference on Software Engineering. 2–12.

PERRY, D. E. AND POPOVICH, S. S. 1993. Inquire: Predicate-based use and reuse. In Proceed-
ings of the 8th Knowledge-Based Software Engineering Conference (Sept.). 144–151.

PRIETO-Dı́AZ, R. 1989. Classification of reusable modules. In Software Reusability. Vol. 1,
Concepts and Models, T. J. Biggerstaff and A. J. Perlis, Eds. ACM Press, New York, 99–123.

RITTRI, M. 1990. Retrieving library identifiers via equational matching of types. Tech. Rep.
65, Programming Methodology Group, Dept. of Computer Sciences, Chalmers Univ. of
Technology and Univ. of Göteborg, Göteborg, Sweden, Jan. (Reprinted with corrections May
1992.)

ROLLINS, E. J. AND WING, J. M. 1991. Specifications as search keys for software libraries. In
Proceedings of the 8th International Conference on Logic Programming (June).

RUNCIMAN, C. AND TOYN, I. 1989. Retrieving re-usable software components by polymorphic
type. In Conference on Functional Programming Languages and Computer Architectures
(Sept.). 166–173.

SALTON, G. AND MCGILL, M. J. 1983. Introduction to Modern Information Retrieval.
McGraw-Hill, New York.

STRINGER-CALVERT, D. W. J. 1994. Signature matching for Ada software reuse. Master’s
thesis, Univ. of York, York, England, U.K.

THATTÉ, S. R. 1994. Automated synthesis of interface adapters for reusable classes. In
Proceedings of the 21st Annual Symposium on Principles of Programming Languages (Jan.).
ACM, New York, 174–187.

VERNON, M., LAZOWSKA, E., AND PERSONICK, S., Eds. 1994. R&D for the NII: Technical
Challenges. Interuniversity Communications Council (EDUCOM).

WILEDEN, J. C., WOLF, A. L., ROSENBLATT, W. R., AND TARR, P. L. 1991. Specification-level
interoperability. Commun. ACM 34, 5 (May), 72–87.

WING, J. M., ROLLINS, E., AND ZAREMSKI, A. M. 1993. Thoughts on a Larch/ML and a new
application for LP. In the 1st International Workshop on Larch, U. Martin and J. M. Wing,
Eds. Springer-Verlag, New York.

YELLIN, D. M. AND STROM, R. E. 1994. Interfaces, protocols, and the semi-automatic con-
struction of software adaptors. In OOPSLA Conference Proceedings. SIGPLAN Not. 29, 10
(Oct.), 176–190.

368 • Amy Moormann Zaremski and Jeannette M. Wing

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

ZAREMSKI, A. M. 1996. Signature and specification matching. Ph.D. thesis and Tech. Rep.
CMU-CS-96-103, School of Computer Science, Carnegie Mellon Univ., Pittsburgh, Pa., Jan.

ZAREMSKI, A. M. AND WING, J. M. 1995. Signature matching: A tool for using software
libraries. ACM Trans. Softw. Eng. Methodol. 4, 2 (Apr.), 146–170.

Received June 1996; revised January 1997; accepted May 1997

Specification Matching of Software Components • 369

ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4, October 1997.

