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Abstract

Specification matching is a way to compare two soft-

ware components. In the cent ext of software reuse

and library retrieval, it can help determine whether

one component can be substituted for another or how

one can be modified to fit the requirements of the

other. In the context of object-oriented program-

ming, it can help determine when one type is a be-

havioral subtype of another. In the context of system

interoperability, it can help determine whether the

interfaces of two components mismatch.

We use formal specifications to describe the behav-

ior of software components, and hence, to determine

whether two components mat ch. We give precise

definitions of not just exact match, but more rele-

vantly, various flavors of relaxed match. These defini-

tions capture the notions of generalization, specializa-

tion, substitutability, subtyping, and interoperability

of software components.

We write our formal specifications of components

in terms of pre- and post-condition predicates. Thus,

we rely on theorem proving to determine match and

mismatch. We give examples from our implement a-

tion of specification matching using the Larch Prover.

1 Motivation and Introduction

Specification matching is a process of determining if

two software components are related. It underlies un-

derstanding this seemingly diverse set of questions:

● Retrievai. How can I retrieve a component from

a software library based on its semantics, rather

than syntactic structure?

Permission to make digitahlmrd copies of all or part of this material with-
out fee is granted provided that the copies are not made or distributed
for profit or cammeroial advantage, the ACM eepyrightlsewer
notice, the title of the publication and its date appear, and notice is given
that cop right is by permission of the Association for Computing Machinery,

bInc. (AC ). To copy otherwise? to republish, to post on servers or to
redistribute to lists, requires prior speeific permission and/or a fee.

SIGSOFT ’95 Washington, D.C., USA
01995 ACM 0-89791 -716-2/95/0010...$3.50

e

●

●

●

Reuse. How might I adapt a component from a

software library to fit the needs of a given sub-

system?

Substitution. When can I replace one software

component with another without affecting the

observable behavior of the entire system?

Subtype. When is an object of one type a subtype

of another?

Interoperation. Why is it so difficult to make

two independently developed components work

together?

In retrieval, we search for all library components

that satisfy a given query. In reuse, we adapt a com-

ponent to fit its environmental constraints, based on

how well the component meets our requirements. In

substitution, we expect the behavior of one compo-

nent to be observably equivalent to the other’s; a spe-

cial case of substitution is when a subtype object is

the component substituting for the supertype object.

In interoperation, we want one component to interact

properly with the other. Common to answering these

questions is deciding when one component matches

another, where “mat ches” generically stands for “sat-

isfies ,“ ‘<meets, “ “is equivalent to,” or “interacts prop-

erly with.” Common to these kinds of matches is the

need to characterize the dynamic behavior, i.e., se-

mantics, of each software component.

It is rarely the case that we would want one com-

ponent to match the other ‘<exactly.” In retrieval, we

want a close match; as in other information retrieval

contexts [27, 17, 20], we might be willing to sacrifice

precision for recall. That is, we would be willing to

get some false positives as long as we do not miss any

(or too many) true positives. In determining substi-

tutability, we do not need the substituting component

to have the exact same behavior as the substituted,

only the same behavior relative to the environment

that contains it.
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In this paper we lay down a foundation for different

kinds of semantic matches. We explore not just exact

match between components, but many flavors of re-

[azed match. To be concrete and to narrow the focus

of what match could mean, we make the following

assumptions:

The software components in which we are inter-

ested are functzons (e.g., C routines, Ada pro-

cedures, ML functions) and modules (roughly

speaking, sets of functions) written in some pro-

gramming language. These components might

typically be stored in a program library, shared

directory of files, or software repository.

Associated with each component, C, is a signa-

ture, Csig, and a specification of its behavior,

c spec.

Whereas signatures describe a component’s type

information (which is usually statically-checkable),

specifications describe the component’s dynamic be-

havior. Specifications more precisely characterize the

semantics of a component than just its signature. In

this paper, our specifications are formal, i.e., written

in a formally defined assertion language.

Given two components, C’ = (C8i~, C8pec) and Cl =

(C:ig! C:pe. ,) we define a generic component match

predicate, Match:

Definition 1.1 (Component Match).

Match: Component, Component + Bool

Match(C, C’) =

matchSig(CSig, C~ig ) A rnatCh~P.~(L’.P.., c$~~)

Two components C and C’ match if 1) their sig-

natures mat ch, given some definition of signature

matching (match~;g), and 2) their specifications

mat ch, given some definition of specification match

(match.pee). Although we define match as a conjunc-

tion, we can think of signature match as a “filter” that

eliminates the obvious non-matches before trying the

more expensive specification mat ch.

There are many possible definitions for the signa-

ture match predicate, rnatch,ig, which we thoroughly

analyzed in a previous paper [32]. In the remain-

der of this paper, for match~i~, we use for functions

type equivalence modulo variable renaming (“exact

mat ch” in [32]), and for modules, a partial map-

ping of functions in the modules with exact signature

match on the functions ( “generalized module match”

in [32]).

In this paper, we focus on the specification match

predicate, match .P,C. We write pre-/post-condition

specifications for each function, where assert ions are

expressed in a first-order predicate logic. Match

between two functions is then determined by some

logical relationship, e.g., implication, between the

two pre-/post-condition specifications. We can then

modularlyl define match between two modules in

terms of some kind of match between corresponding

functions in the modules. Given our choice of formal

specifications, we can exploit state-of-the-art theorem

proving technology as a way to implement a specifi-

cation match engine.

Specification match goes a step beyond signature

mat ch. For functions, signature match is based en-

tirely on the functions’ types, e.g., ant+ a’nt --+ int, and

not at all on their behavior. For example, integer ad-

dition and subtraction both have the same signature,

but completely opposite behavior; the C library rou-

tines strcpy and strcat have the same signature but

users would be unhappy if one were substituted for

the other. Given a large software library or a large

software system, many functions will have identical

signatures but very different behavior. For example,

in the C math library nearly two-thirds of the func-

tions (31 out of 47) have signature double + double.

Based on signature match alone, we cannot know if we

are interoperating with a function properly or know

which of a large number of retrieved functions does

what we want. Since specification match takes into

consideration more knowledge about the components

it allows us to increase the precision with which we

determine when two components match.

In what follows, we first briefly describe the lan-

guage with which we write our formal specifications.

We define exact and relaxed match for functions (Sec-

tion 3) and then for modules (Section 4). We discuss

in more detail applications of specification match in

the software engineering context in Section 5 and our

implementation of a specification matcher using the

Larch Prover in Section 6. We close with related work

and a summary.

2 Larch/ML Specifications

We use Larch/ML [31], a Larch interface language

for the ML programming language, to specify ML

functions and ML modules. Larch provides a “two-

tiered” approach to specification [8]. In one tier, the

specifier writes traits in the Larch Shared Language

(LSL) to assert state-independent properties of a pro-

gram. Each trait introduces sorts and operators and

defines equality between terms composed of the op-

erators (and variables of the appropriate sorts). Ap-

pendix A shows the Seq trait, which defines opera-

tors to generate sequences (empty and insert), to re-

turn the element or sequence resulting from deleting

1Pun intended.
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signature Stack = sig

(*+ using Seq +*)

type a t (*+ based on Seq.E Seq.S +*)

val create : unit ~ a t

(*+ create ( ) = s

ensures s = empty +*)

valpush:at*cx~at

(*+ push (s, e) = S2

ensures S2 = insert (e, s) +*)

val pop : Cyt+at

(*+ pop s = S2

requires not ( zsEmpt y (s))

ensures S2 = MI’2rst(s) +*)

valtop:at~a

(*+ fop s = e

requires not ( istlmpty (s))

ensures e = jirst (s) +*)

end

signature Queue = sig

(*+ using Seq +*)

type a t (*+ based on Seq.E Seq.S +*)

val create : unit -+ CYt

(*+ create ( ) = q

ensures q = empty +*)

valenq:at *~-at

(*+enq(q, e)=q2

ensures q2 = insert (e, q ) +*)

valrest:atdat

(*+ rest q = q2

requires not ( isEmpt y (q))

ensures q2 = butLast (q) +*)

valdeq:at~a

(*+ deq q = e

requires not (isEmpty (q))

ensures e = last (q) +*)

end

Figure 1: Two Larch/ML Specifications

an element from the beginning (or end) (first (last)

and butFirst ( but~ast)), and to return the length of

a sequence (length) or whether a sequence is empty

(isEmpty).

In the second tier, the specifier writes interfaces

in a Larch interface language to describe state-

dependent effects of a program (see Figure 1). The

Larch/ML interface language extends ML by adding

specification information in special comments delim-

ited by (*+. ..+*). The using and based on clauses

link interfaces to LSL traits by specifying a corre-

spondence between (programming-language specific)

types and LSL sorts. The specification for each func-

tion begins with a call pattern consisting of the func-

tion name followed by a pattern for each parameter,

optionally followed by an equal sign (=) and a pat-

tern for the result. In ML, patterns are used in bind-

ing constructs to associate names to parts of values

(e.g., (’~, y) names z as the first of a pair and y as

the second). The requires clause specifies the func-

tion’s pre-condition as a predicate in terms of trait

operators and names introduced by the call pattern.

Similarly, the ensures clause specifies the function’s

post-condition. If a function does not have an explicit

requires clause, the default is requires true.

We will use the Larch/ML interface specifications

of Figure 1 as the “library” for our examples of spec-

ification matching. It contains module specifications

for Stack and Queuej specifying the functions create,

push, pop, and top on stacks, and create, enq, rest,

and deq on queues. We specify each function’s pre-

and post-conditions in terms of operators from the

Seq trait.

3 Function Matching

For a function specification, S, we denote the pre-

and post-condition as SPT= and SPo3t, respectively.

Spred defines the interpretation of the function’s spec-

ification as an implication between the two: SPT~d =

SPr, * SPO,t. Intuitively, this interpretation means

that if SP,e holds when the function specified by S

is called, SPOSt will hold after the function has ex-

ecuted (assuming the function terminates). If SP.e

does not hold, there are no guarantees about the be-

havior of the function. This interpretation of a pre-

and post-condition specification is the most common

and natural for functions in the standard program-

ming model,

For example, for the Stack top function in Fig-

ure 1, the pre-condition, topPre, is not ( isEmpty (s));

the post-condition, topPO~t, is e = first (s); and the

specification predicate, topp~ed, is (not ( isEmpfy (s)))

* (e = jirst (s)).

To be consistent in terminology with our signa-

ture matching work, we present function specification

matching in the context of a retrieval application. Ex-

ample matches are between a library specification S

and a query specification Q. We assume that vari-
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ables in S and Q have been renamed consistently.

For example, if we compare the Stack pop function

with the Queue rest function, we must rename q to

s and q2 to s2. In this section we examine sev-

eral definitions of the specification match predicate

(match .Pec(S, Q)). We characterize definitions as ei-

ther grouping pre-conditions SP,. and QP.e together

and post-conditions SPOSt and QP~~t together, or re-

lating predicates Sped and QPred. Both of these kinds

of matches have a general form.

Definition 3.1 (Generic Pre/Post Match).

rnatchP,~lP~st(5’, Q) =

(Q~re RI fbre) %2 (Swt ~3 Qwt)

Pre/post matches relate the pre-conditions of each

component and the post-conditions of each compo-

nent. The relations 7?1 and 7?3 are either equivalence

(e) or implication (4), but need not be the same.

722 is usually conjunction (A) but may also be impli-

cation (~). The matches may vary from this form

by dropping some of the terms.

Definition 3.2 (Generic Predicate Match).

match preci(s, Q) = spre~ ~ Qpred

Predicate matches relate the entire specification pred-

icates of the two components, SP~~d and Qpveci. The

relation 7? is either equivalence (~), implication (~),

or reverse implication (-@).

It is important to look at both kinds of match.

Which kind of match is appropriate may depend on

the context in which the match is being used or on

the specifications being compared. We present the

pre/post matches in Section 3.1 and the predicate

matches in Section 3.2. For each, we present a notion

of exact match as well as relaxed matches.

3.1 Pre/Post Matches

Pre/post matches on specifications S and Q re-

late Sp,e to QP~~ and SPO,t to QpO,t. We con-

sider four kinds of pre/post matches, beginning with

the strongest match and progressively weakening the

match by either relaxing the relations X?l and R3

from ~ to ~, relaxing 72-2 from A to *, or dropping

one or more terms.

Exact Pre/Post Match

We begin by instantiating both 7?1 and ‘R3 to ~

and 722 to A in the generic pre/post match of Defini-

tion 3.1. Two function specifications satisfy the exact

pre/post match if their pre-conditions are equivalent

and their post-conditions are equivalent.

2This renaming is easily provided by the signature matcher,

and we are assuming that the signatures of S and Q match.

Definition 3.1.1 (Exact Pre/Post Match).

matchE_Pveip.st(S, Q) =
(Qve + fk-e) A (fks~ ~ QpOst)

Exact pre/post match is a strict relation, yet two

different-looking specifications can still satisfy the

match. Consider for example the following query Q1,

based on the Seq trait. Q1 specifies a function that

returns a sequence whose size is O, one way of speci-

fying a function to create a new sequence.

signature Q1 = sig (Ql)

(*+ using Seq +*)

type a t based on Seq.E Seq.S +*)

val qCreate : untt -+ a t

(*+ qCreate ( ) = s

ensures length (s) = O +*)

end

Exact pre/post match holds for Q1 with both the

Stack and Queue create functions of Figure 1. (The

specifications of Stack and Queue crea~e are identical

except for the name of the return value. )

Let us look in more detail at how Q1 would match

the Stack create specification. Let S be the specifi-

cation for Stack create and Q 1 be the query speci-

fication. SPre = true, Sp.,t = (S = empty). Qlpre

= true, QIPo,t = (length(s) = O). Since both Sp,e

and QIPre are true, showing matchE–p.e/p.st(s, Ql)

reduces to proving SpO$t ~ QlpO,t, or (s = empty) ~

(iength(s) = O). The “if” case ((s = empty) s

(length(s) = O)) follows immediately from the axioms

in the Seq trait about length. Proving the “only-if”

case ((iength(s) = O) +- (s = empty)) requires only

basic knowledge about integers and the fact that for

any sequence, s, length(s) z O, which is provable from

the Seq trait.

Plug-in Match

Equivalence is a strong requirement. For plug-in

match, we relax both 7?1 and ‘R3 to ~ and keep

7?2 as A in the generic pre/post match. Under plug-

in match, Q matches any specification S whose pre-

condition is weaker (to allow at least all the conditions

that Q allows) and whose post-condition is stronger

(to provide a guarantee at least as strong as Q).

Definition 3.1.2 (Plug-in Match).

matchp/uf._,n(S, Q) =

(QPTC ~ Spre) ~ (Spost + QPOS~)

Plug-in match captures the notion of being able to

“plug-in” S for Q. A specifier writes a query Q saying

essentially:



I need a function such that if QPV= holds signature Q3 = sig

before the function executes, then QPO.t (*+ using Seq +*)

holds after it executes (assuming the func- type a t based on Seq.E Seq.S +*)

tion terminates). valq Top: at~a

With plug-in match, if QPT. holds (the assumption

made by the specifier) then SPre holds (because of the

first conjunct of plug-in match). Since we interpret

S to guarantee that SPre ~ SPO,t, we can assume

that SPo~t will hold after executing the plugged-in S’.

Finally, since SPO.~ ~ QPo~t from the second conjunct

of plug-in match, we are assured of the guarantee the

specifier desired.

For example, consider the following query for an in-

sert function:

signature Q2 = sig (Q2)

(*+ using Seq +*)

type a t based on Seq,E Seq.S +*)

val qEnq : cYt*cl!-+at

(*+ qllnq (ql, e) = q2

requires length (ql) <50

ensures length (q2) = (length (ql) +1) +*)

end

This query specification requires that an input se-

quence has fewer than 50 elements, and guarantees

that the resulting sequence is one element longer than

the input sequence. This is a fairly weak specifica-

tion, Q2 does not satisfy exact pre/post match with

any function in the library, but plug-in match holds

for Q2 with both the Stack pash and the Queue enq

functions. Since push and enq are identical except for

their names and the names of the variables, the proof

of the match is the same for both.

The pre-condition requirement, QP,e +- SP,e,

holds, since SP,e = true. To show that Spo,t + Qpo.t,

we assume SPOSt (q2 = inserf(e, q)), and try to

show QPO.t (length(q2) = length(q) + 1), Substi-

tuting for q2 in QPO,,, we have iength(insert(e, q)) =

iength(q) + 1, which follows immediately from the

equations for length.

Plug-in Post Match

Often we are concerned with only the effects of

functions, thus a useful relaxation of the plug-in

match is to consider only the post-condition part of

the conjunction. Most pre-conditions could be satis-

fied by adding an additional check before calling the

function. Plug-in post match is also an instance of

generic pre/post match, with 7?3 instantiated to +-

but dropping Qp,. and Sp,e.

Definition 3.1.3 (Plug-in Post Match ).

matchprug-tn-post(s, Q)= (Spot = Qpost)

Consider the following query. Q3 is identical to Stack

top except that Q3 haa no requires clause.

(Q3)

(*+ qTop s = e

ensures e = jirst (s) +*)

end

Q3 does not satisfy exact pre/post or plug-in match

with Stack top since Q3’s pre-condition is weaker than

Stack top’s. Since the post-conditions are equivalent,

Q3 does satisfy plug-in post match with Stack top.

Weak Post Mat ch

Finally, consider this even weaker match, weak post

match. We instantiate 7?3 to ~, as with the plug-in

matches, but relax 7?2 to + and drop QpT~.

Definition 3.1.4 ( Weak Post Match ).

matchweak-post(s, Q) = $.. =- (sPost+ Qpost)

A more intuitive, equivalent, predicate is (SPT. A

Spost) + Qpost. Sometimes assuming the pre-

condition of S helps in proving the relationship be-

tween SPo,t and QPoSt. We use Sp~, and not Qpre

since Spre is likely to be necessary to limit the con-

ditions under which we try to prove SPoSt * Qpo,t.

The additional assumption also means that we will

have to provide an additional “wrapper” in our code

to guarantee spre before we call the function specified

by S.

For example, suppose we wish to find a function to

delete from a sequence using the following query Q4:

signature Q4 = sig (Q4)

(*+ using Seq +*)

type a t based on Seq.E Seq.S +*)

valqRest:crt~cxt

(*+ qRest s = S2

ensures length (s2) = (length (s) –1) +*)

end

Q4 describes a function that returns a sequence

whose size is one less than the size of the input

sequence. This is a fairly weak way of describing

deletion, since it does not specify which element

is removed.3 While intuitively, it would seem re-

lated to Stack pop and Queue rest, neither plug-in

nor plug-in post match holds in either case. Con-

sider Stack pop (the reasoning is similar for Queue

rest). We cannot prove SpO,t + Qpo.t (i.e., (s2 =

Zmtl%st(s)) ~ (length(s2) = length(s) - 1)) for the

case where s = empty. By adding the assumption

Sp.e (not(isEmpty(s))), we are able to complete the

proof, aa we see in the proof sketch in Figure 2.

3 But it still gives us a big gain in precision over signature

matchhg; Q4 would not match other functions with the signa-

ture a t+ a t,for example, a function that reverses or sorts

the elements in the sequence, or removes duplicates.
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Assume not(islhnpty(s))

Assume S2 = butFirst(s)

length(s2) = length(s) – 1

iength(butFirst( s)) = length(s) – 1

Let s = inseri(ec, SC)

iength(butFirst( insert(ec, SC))) = length(insert(ec, SC)) – 1

length(sc) = length(insert(ec, SC)) – 1

length(sc) = (length(sc) + 1) – 1

Ierzgth(sc) = lengih(sc)

Figure2: Proof Sketch ofrnatchW,

3.2 Predicate Matches

Recall the generic predicate match (Definition 3.2):

match PA(S, Q) = Spred ~ Qpred

where the relation 7? is either equivalence (~), im-

plication (+), or reverse implication (~).

Note that this general form allows alternative def-

initions of the specification predicates. One alterna-

tive is s~red = SPre ASPO.t J which is stronger than

Spred = S’pre * Spost. This interpretation is reason-

able in the context of state machines, where the pre-

condition serves as a guard so that a state transition

occurs only if the pre-condition holds.

As we did with the generic pre/post match, we con-

sider instantiations of the generic predicate match be-

ginning with the strictest.

Exact Predicate Mat ch

We begin with exact predicate match. Two func-

tion specifications match exactly if their predicates

are logically equivalent (i.e., 7? is instantiated to ~).

This is less strict than exact pre/post match (Sec-

tion 3.1), since there can be some interaction between

the pre- and post-conditions.

Definition 3.2.1 (Exact Predicate Match).

matchE_P~~d(S, Q) = Spred @ Qpred

Our example Q 1 still matches with Stack and Queue

create. In fact, in cases where SPr~ = QPT~ = true,

the exact pre/post and exact predicate matches are

equivalent.

Generalized Match

For generalized match, we relax 7? in the generic

predicate match to ~. Generalized match is an in-

tuitive mat ch in the context of queries and libraries:

specifications of library functions will be detailed, de-

scribing the behavior of the functions completely, but

we would like to be able to write simple queries that

focus only on the aspect of the behavior that we are

most interested in or that we think is most likely to

Assume SPre

Assume SpO$t

Attempt to prove Qp.st

Apply (2) to (3)

Since s is not empty (l), and

s generated by empty and insert

Substitute (5) for s in (4)

Axioms for butFirst

Axioms for length

Axioms for +, –

eak-post(p~p, Q4)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

differentiate among functions in the library. Gener-

alized match allows the library specification to be

stronger (more general) than the query. Note that

generalized match is a weaker match than plug-in

mat ch. Also, if we drop the pre-condit ions in gen-

eralized match, we get plug-in post match.

Definition 3.2.2 (Generalized Match).

matchgen (S, Q) = Spred ~ Qpred

For example, consider the following query, which is

the same as Q4 but with a requires clause.

signature Q5 = sig (Q5)
(*+ using Seq +*)

type a t based on Seq.E Seq.S +*)

valqRest:cvt *at

(*+ qRest s = S2

requires not (isEmpty (s))

ensures iength (s2) = (length (s) –1) +*)

end

Using the exact predicate match, neither the Stack

pop nor the Queue rest specifications satisfy this

query. Plug-in match does not work either because

we need to assume QPr. (not(isEmpty(s))) to show

SPO,t ~ QpO.t. However, the generalized match with

Q5 does hold for both of these. The proofs are very

similar to that for Q4 in the weak post match (Fig-

ure 2).

Consider another example specifying a function

that removes the most recently inserted element of a

sequence. This query does not require that the speci-

fier knows the axiomatization of sequences, since the

query uses only the sequence constructor, insert. The

post-condition specifies that the input sequence, s, is

the result of inserting an element ee into another se-

quence SS, and that the element returned, e, is the

most recently inserted element (ee). The existential

quantifier (there exists) is a way of being able to

name ee and SS.
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signature Q6 = sig (Q6)

(*+ using Seq +*)

type a t based on Seq.E Seq.S +*)

valq Top: at-+a

(*+ qTop s = e

requires not (isErnptg (s))

ensures there exists ee:Seq. E, ss:Seq .S

((s = Znsert(ee, SS)) and (e= ee)) +*)

end

Again, neither the exact nor plug-in matches holds.

Generalized match holds for the query with the Stack

top function, but not Queue deq, since the query spec-

ifies that the most recently inserted element is re-

turned. To show the generalized match, we consider

two cases: s =empty, and s =ansert(ec, se). In the

first case, the pre-condition for both top and qTop

are false, and thus the match predicate is vacuously

true. In the second case, the pre-conditions are both

true, and so we need to prove that SPO,t > QPOst. If

we instantiate ee to ec and ss to SC, the proof goes

through.

Specialized Match
For specialized match, we instantiate %? in the

generic predicate match to ~. Specialized match is

the converse of generalized match: match,P~[(S, Q) =

match ,~~(Q, S). A function whose specification is

weaker than the query might still be of interest as

a base from which to implement the desired function.

Specialized match allows the library specification to

be weaker than the query.

Definition 3.2.3 (Specialized Match).

match ,P.~(S, Q) = Qpmi a Spreri

Consider again the query Q3, which is the same as

Stack top but without the pre-condition. Stack top

is thus weaker than Q3, but we can show that Q3

implies Stack top and hence specialized match holds.

3.3 Relating the Function Matches

We relate all our function specification match def-

initions in a lattice (Figure 3). An arrow from a

mat ch A41 to another match A42 indicates that M 1 is

stronger than i142 (All ~ J42). We also say that Lf2

is more relaxed than Al 1. The rightmost path in the

lattice shows the pre/post matches; the remainder of

the matches are predicate matches.

The chart in Figure 3 summarizes the matches we

have presented in this section, along with their predi-

cate symbols and whether the match is an instance of

the generic pre/post match or the generic predicate

match.

Table 1 summarizes which of the library functions

match each of the example queries for four of the

matches we have defined (Exact Pre/Post, Plug-in,

Generalized, Weak Post).

Exact PrelPost

/\
Exact Predicate Plrrg-nr

/\/\
Specialized Generalized Plug-in Post

Name of match medicate svmbol kind of match

I Exact Pre/Post matchE_P,elPO,, pre/post.
Plug-in matchPIUg_, ~ pre/post

Plug-in Post matchpl~~–t~—p~,t pre/post

Weak Post match Weak -POst pre/post

Exact Predicate WldCh E_pred predicate

Generalized matchaen predicate

Specialized matchsp~l predicate

Figure 3: Lattice of Function Specification Matches

Exact Plug-in Gener- Weak Post

Pre/Post alized

QI Q.create Q.create Q.create Q.create

S.create S. create S.create S.create

Q2 – Q.enq Q.enq Q.enq
— S.push S.push S.pwh

Q3 —– s. top

Q41 – Q.re.st I

Table 1: Which Ones Match What

(where Q = Queue module and S = Stack module)



4 Module Matching

Function matching addresses the problem of match-

ing particular functions. However, a programmer

may need to compare collections of functions, e.g,.

ones that provide a set of operations on an abstract

data type. Most modern programming languages ex-

plicitly support the definition of abstract data types

through a separate modules facility, e.g., Ada pack-

ages or C++ classes. Modules are also often used

just to group a set of related functions, like 1/0 rou-

tines. This section addresses the problem of matching

module specifications.

A specification of a module is an interface, I =

(ZT, IF), where ZT is a multiset of user-defined types

and IF is a multiset of function specifications. For a

library interface, IL = (T~~, ~L~), to match a query

interface, ZQ = (zQT, ZQF), there must be a corre-

spondence bet ween ZLF and TQF. This corresp on-

dence varies for exact and relaxed module match.

4.1 Exact Match

Definition 4.1.1 (Ezaci Module Match).

M-matchE(~L, ~Q, matchfn) =

3 a total function UF : ZQF -+ ZLF such that

UF is one-to-one and onto, and

V Q E ZQF, match~n(UF(Q), Q)

UF maps each query function specification Q to a

corresponding library function specification, UF (Q).

Since UF is one-to-one and onto, the number of func-

tions in the two interfaces must be the same (i.e.,

IZLFI = [TQFI). The correspondence between each Q

and UF (Q) is that they satisfy the function match,

matchfn. The match parameter (match~n ) gives us a

great deal of flexibility, allowing any of the function

matches defined in Section 3 to be used in match-

ing the individual function specifications in a module

interface.

4.2 Generalized Match

Should a querier really have to specify all the func-

tions provided in ‘a module in order to find the mod-

ule? A more reasonable alternative is to allow the

querier to specify a set of exactly the functions of in-

terest and match a module that is more general in the

sense that its set of functions may properly contain

the query’s set.

Definition 4.2.1 ( Genera/zzed Module Match).

M-match ~en(~~, IQ, match~n) is the same as

M-matchE(~L, ~Q, matchfn) except UF

need not be onto.

Thus whereas with M-matchE (XL, ~Q, mat chj~ ),

IZLFI = l~QFl, with M-matCh~en(~L, IQ, match~~),

l~LF I > l~QFl, and ~LF ~ ZQF under the appro-

priate renamings,

What these definitions make clear in a concise and

precise manner is the orthogonality between func-

tion match and module match. In fact, the module

match definitions are completely independent of the

fact that we are matching specifications at the func-

tion level. If we use the same definitions of module

matching, but instantiate matchfn with a function

signature match, we have module signature match-

ing [32].

5 Applications

As mentioned in Section 1, any problem that involves

comparing the behavior of two software components

is a potential candidate for specification matching.

We examine three such problems: retrieval for reuse,

substitution for subtyping, and determining interop-

erability.

5.1 Retrieval for Reuse

If we have a library of components with specifica-

tions, we can use specification matching to retrieve

components from the library. Formally, we define the

retrieval problem as follows:

Definition 5.1.1 (Retrieval).

Retrieve: Query Specification, Match Predicate,

Component Library - Set of Components

Retrieve(Q, matchSP~C, L) =

{C E L : match.Pe=(C, Q)}

Given a query specification Q, a specification match

predicate match ,Pe,, and a library of component spec-

ifications L, Retrieve returns the set of components

in L that match with Q under the match predicate

match ~PeC. Note that the components can be either

functions or modules, provided that match ~PeC is in-

stantiated with the appropriate match. Parametrizi-

ng the definition by matchSP~e also gives the user the

flexibility to choose the degree of relaxation in the

specification match.

Using specification match as part of the retrieval

process (or separately on a given pair of components)

gives us assurances about how appropriate a compo-

nent is for reuse. At the function level especially, the

various specification matches give us various assur-

ances about the behavior of a component we would

like to use. We treat Q as the “standard” we expect

a component to meet, and S as the library compo-

nent we would like to reuse. If exact pre/post matck
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holds on S and Q, we know that S and Q are behav-

iorally equivalent under all conditions; using S for Q

should be transparent. If the exact predicate or plug-

in match holds, we know that S can be substituted

for Q and the behavior specified by Q will still hold,

although we are not guaranteed the same behavior

when QP~~ is false. If the weak post match holds, we

know that the specified behavior holds when SPre is

satisfied, which we may be able to guarantee given

the specific context in which we use that component.

5.2 Subtyping

Liskov defined the substitution property for subtypes

in her OOPSLA ’87 keynote address:

If for each object 01 of type S there is an ob-

ject 02 of type T such that for all programs

P defined in terms of T, the behavior of P

is unchanged when 01 is substituted for 02,

then S is a subtype of T. [14].

Behavioral notions of subtyping that attempt to

capture this substitutability property have since been

defined by many, including America [1], Leavens and

his colleagues [12, 13, 3], Meyer [18], and Liskov and

Wing [15]. There are subtle differences between all

these subtype definitions, but common to all is the use

of pre-/post-condition specifications (1) to describe

the behavior of types and (2) to determine whether

one type is a subtype of another. Let mT be a method

of supertype T, and ms be the corresponding method

of subtype S. Then America, for example, defines

subtype in terms of the following pre-/post-condition

rules4 for each method of the supertype:

● Pre-condition ‘rule: mT .pre w ms .pre.

. Post-condition rule: ms post W mT post

which is just our plug-in match. Further, subtyping

requires that each method in the supertype T have

a corresponding method in the subtype S, but there

may be additional methods in S. This corresponds

exactly to our generalized module match. More for-

mall y,

Definition 5.2.1 (America) Subtype.

Subtype: Type, Type * Bool

Subtype(S, T) =

M-matchge. (S~~,~, T~P~~, match~l~g-i~)

The definitions of subtype suggested by the other

researchers can also be cast in terms of specifica-

tion match in a straightforward way where either or

both of M-matchgen and matchPIUg_in is appropri-

ately changed. In short, the behavioral notion of sub-

typing is just an instance of our more general notion

of specification match.

4We omit the abstraction function for simplicity.

5.3 Interoperability

A report on the National Information Infrastructure

(NII) states:

Interoperability is the ability to combine two or

more systems into a single acceptably seamless

and acceptably efficient system [29].

and argues that demand for interoperability of inde-

pendently developed systems will grow on an unprece-

dented scale, in terms of sheer volume, heterogeneity,

and complexity of individual systems.

The heart of an interoperability problem is that the

interfaces of the two or more systems do not match.

Specification match is a way of determining whether

two system interfaces match and hence whether the

systems can interoperate. We can also learn some-

thing about components and their relationships when

a match does not occur, i.e., when there is a mis-

match. It might be possible to resolve mismatches

between two components if we know why they do not

match (the more typical scenario).

Suppose we have two components, C and S, that

agree to communicate using a remote procedure call

protocol. The client C wants to use a service, op,

provided by S. To interoperate with S, C must at

least match the signature of op (passing in the right

number and types of arguments) and its specification

(e.g., establish op’s pre-condition).

Even if their signatures and pre-/post-condition

specifications match, however, components may still

not interoperate. For example, suppose we do not as-

sume that C and S agree on which protocol to use to

communicate with each other, If C wants to commu-

nicate using non-blocking send, but S wants to com-

municate through remote procedure call (alternating

blocking receives and sends), then a “protocol mis-

match” can occur. For a protocol match, we might

require that each one of C’s sends “lines up” with

each one of S’s receives and vice versa. However, us-

ing CSP-like notation to specify C’s and S’s protocols,

we have:

C = send -+ (receive -+ C[send + C)

S = receive * send -+ S

C might do four sends in a row and then do a re-

ceive; meanwhile, S deadlocks after doing its first re-

ceive since it wants to do a send next, corresponding

to a receive by C, but conflicting with C’s second

send. That is, the following message sequences do

not match:

(C) send send send send receive

(S) receive send receive send receive

14



If a protocol specification is included in a component’s

interface specification (i.e., not just signature infor-

mation and pre-/post-conditions), then we can use a

richer notion of specification match to detect this kind

of protocol mismatch. We simply extend our notion

of match to include additional sub-match predicates,

e.g., ma fchpvotocol.Match is from Definition 1.1.

Definition 5.3.1 (Interoperates).

Interoperates: Component, Component + Bool

Interoperates(C, C’) = Match(C’, C’) A

matchPTOtOCOl (Cprotocd, C;ro,oco,)

6 Implementation

Each of the examples given in this paper have been

specified in Larch/ML, translated automatically to

LP input, and proven using LP.

For each specification file (e.g., Stack. sig), we

check the syntax of the specification and then trans-

late it into a form acceptable to LP. Namely, we gen-

erate a corresponding . lp file (e.g., Stack. lp), which

contains the appropriate declarations of variables and

operators and assertions (axioms) for the pre- and

post-conditions of each function specified. Each func-

tion foo generates two operators, fooPre and fooPost;

the axioms for fooPre and fooPost are the body of the

requires and ensures clauses of foo.

We also generate the appropriate LP input to show

a given match between two functions. For example,

the LP input to prove the plug-in match between the

Stack push function and query Q2 is as follows. The

thaw Stack command loads the state resulting from

executing the commands in Stack.lp.

%% PlugIn-Q2-Stack.lp

thaw Stack

thaw Q2

prove (qEnqPre(s, e, s2) => pushPre) /\

(pushPost(s, e, s2) => qEnqPost(s, e, s2))

Since LP is designed as a proof assistant, rather

than an automatic theorem prover, some of the proofs

require user assist ante. The example above does not

require any assistance from the user; executing the

statements results ultimately in the response from

LP: C] conjecture, indicating that LP successfully

proved the match conjecture. Generalized match of

Stack pop with Q6 requires some assistance to tell the

prover to use induction in the proof, and then how to

instantiate the existential variables. Figure 4 shows

LP’s output script of this proof execution. The lines

with boldface are user input; <> and [ ] are proof

notes from LP; and YO is the comment character.

%% exec M-Gen-Q6-Stack

thaw Stack

thaw Q6

prove (topPre(s, e) => topPost(s, e))

=> (qTopPre(s, e) => qTopPost(s, e))

resume by induction

<> basis subgoal

[ ] basis subgoal

<> induction subgoal

resume by specializing ss to sc

<> specialization subgoal

[ ] specialization subgoal

[ ] induction subgoal

[ ] conjecture

%% End of input from file ‘Gen-Q6-Stack.lp’.

Figure 4: LP output for generalized match of Stacl

pop with Q6

7 Related Work

Other work on specification matching has focused

on using a particular match definition for retrieval

of software components (usually functions). Rollins

and Wing proposed the idea of function specifica-

tion matching and implemented a prototype system

in AProlog using plug-in match [25]. A Prolog does not

use equational reasoning, and so the search may miss

some functions that match a query but require the

use of equational reasoning to determine that they

mat ch. The VCR retrieval system [5] uses plug-in

match with VDM as the specification language. The

focus of this work is on efficiency of proving match;

the tool performs a series of filtering steps before

doing all-out match. Perry’s Inscape system [22] is

a specification-based software development environ-

ment. Its Inquire tool provides predicate-based re-

trieval in Inscape. Match is either exact pre/post

or a form of generalized match. The prototype sys-

tem has a simplified and hence fairly limited inference

mechanism. Also, since specifications must already

be provided for software development in Inscape, the

user need not write a separate query specification.

Jeng and Cheng [9] use order-sorted predicate logic

specifications. Their match is similar to our general-

ized function match, but has the additional property

that it generates a series of substitutions to apply to

the library component to reuse in the desired context.

Mili, Mili and Mittermeir [19] define a specification as

a binary relation. Specification match is based on the

refines ordering on relations, somewhat like our gen-

eralized match. The PARIS system [11] maintains a

library of partially interpreted schernas. Each schema
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includes a specification of assertions about the input

and results of the schema and about how the abstract

parts of the schema can be instantiated. Match-

ing corresponds to determining whether a partial li-

brary schema could be instantiated to satisfy a query,

The system does some reasoning about the schemas

but with a limited logic. Katoh, Yoshida and Sug-

imoto [10] use “ordered linear resolution” to match

English-like specifications that have been translated

into first-order predicate logic formulas. They allow

some relaxations but check only for equivalence and

do not verify that the subroutines match.

To summarize, our work on specification matching

is more general than the above in three ways: We

handle not just function match, but module match;

we have a framework, which is extremely modular

(e.g., function match is a parameter to module match;

specification match is one conjunct of component

match), within which we can express each of the spe-

cific matches ‘(hardwired” in the definitions used by

others; and we have a flexible prototype tool that lets

us easily experiment with all the different mat&es.

Finally, we are not wedded to just the software re-

trieval application; we also apply specification match

to other application areas.

Signature matching is a very restricted form of

specification matching. Most work in this area has

focused on using the expressiveness and theoretical

properties of type systems to define various forms of

relaxed matches [32, 4, 24, 26, 28]. Wileden et. al. [30]

define specification-level interoperabi!ity, which is a

form of module signature match, since their proto-

type specifications use only signature information.

Less closely related work, but relevant to our con-

text of software library retrieval, divides into two cat-

egories: text-based information retrieval [7, 2, 23, 16]

and AI-based semantic net classifications [21, 6]. The

advantage to these approaches is that many efficient

tools are available to do the search and match in these

structures. The disadvantage is that a component’s

behavior is described informally.

8 Summary

This paper makes three specific contributions with

respect to specification matching: foundational defi-

nitions, descriptions of applications, and a report on

a prototype tool.

By providing precise definitions, this paper lays

the groundwork for understanding when two differ-

ent software components are related, in particular

when their specifications match. Though we consider

in detail functions and modules, exact and relaxed

match, and formal pre-/post-condition specifications,

the general idea behind specification matching is to

exploit as much information associated with the de-

scription of software components as possible.

Though our notion of specification match was orig-

inally motivated by the software library retrieval ap-

plication, it is more generally applicable to other ar-

eas of software engineering, for example, determining

subtyping in designing class hierarchies, or detecting

an interoperability problem in a heterogeneous dis-

tributed system.

Finally, by building a working specification match

engine, we demonstrated the feasibility of our ideas.

With this tool, we are now in the position to explore

their pragmatic implications.
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The Seg Trait

Seq(E, S) : trait
includes Integer

int reduces

empt~ :+ S butFirst : S ~ S

insert : E, S h S butLast : S 4 S

first:S*E is Empty : S * Bool

last:Sb E length : S h Int

asserts

S generated by empty, insert

S partitioned by isEmpty, length

b’e:E, s:S

fkst(insert(e, s)) == e

bedFirst(insert(e, s)) == s

last(insert(e, 9)) ==

ifs = empty then e else last(s)

butLast(insert(e, s)) ==

ifs = empty then empty

else insert(e, k%ast(s))

islhnpty(empt~)
7isEmpty(insert(e, s))

Zength(empty) == O

Zength(insert(e, s)) == length(s)+ 1
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