JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 17, 164-182 (1993)

Testing and Verifying Concurrent Objects

JEANNETTE M. WING

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

AND

CHUN GONG*

Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

A concurrent object is a data structure shared by concurrent
processes. We present a two-pronged approach for establishing
the correctness of implementations of concurrent objects. Qur ap-
proach is based on a notion of correctness called linearizability:
each concurrent object has a sequential specification, which de-
scribes how it behaves in sequential executions. Each concurrent
execution is required to be equivalent to some sequential execu-
tion. We advocate using both testing and verification as comple-
mentary approaches for showing a concurrent object is lineariza-
ble. We first describe a simulation environment for simulating,
testing, and analyzing implementations of concurrent objects. We
can use the simulator to gain assurance that an implementation is
correct or to detect errors in an incorrect one. The simulator
provides a systematic way to testing implementations of any data
type. Whereas testing is useful in practice, verification is more
definitive. We provide a library of verified concurrent objects;
specifically, we give the specifications, implementations, and
proofs of correctness for the FIFO queue, semiqueue, and stutter-
ing queue data types. Implementors of objects of other data types
can use our library by following the patterns of design and proof
that we give; at the same time, clients of our library need not
reimplement commonly used abstractions from scratch and are

freed from the tedium of their verification. © 1993 Academic Press, Inc.

1. INTRODUCTION

A concurrent system is a collection of sequential
threads of control called processes that communicate
through shared data structures called concurrent objects.
A concurrent object provides a finite set of primitive op-
erations that are the only means to manipulate the object.
Since an object’s operations can be invoked by concur-
rent processes it is necessary to give meaning to possible
interleavings of operation executions. Hence, given this
model of concurrency, a fundamental question that arises
is

* Work done while visiting Carnegie Mellon.

0734-7315/93 $5.00
Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

» What is a reasonable notion of correctness for a system
composed of concurrent objects?

While there is no general agreement on an answer to
this question, we choose the correctness condition called
linearizability, which has recently captured the attention
of the research community. Linearizability, first coined
in Herlihy and Wing’s 1987 POPL paper [15], generalizes
correctness notions that had previously been defined for
specific data structures like atomic registers [23] and
FIFO queues [8]. Informally, an execution in a concur-
rent system is linearizable if it is ‘‘equivalent,” in a sense
formally defined in Section 2, to a legal sequential execu-
tion. Linearizability implies that processes appear to be
interleaved at the granularity of complete operations, and
that the order of nonoverlapping operations is preserved
[13].

Unlike alternative correctness conditions such as se-
quential consistency [19] and serializability [24], linear-
izability enjoys other properties like locality, which sim-
plify the proof method. The locality property means that
an entire system composed of individual linearizable ob-
jects is itself linearizable. The task of implementing a
“‘correct’” system is then simplified to that of implement-
ing individual objects correctly.

A simple approach to implementing a concurrent ob-
ject and guaranteeing that it is linearizable is to use criti-
cal regions [9], letting only a single process access the
object at a time. However, critical regions unnecessarily
limit the degree of concurrency possible when the type
semantics of the object are ignored [15]. For example,
multiple processes wishing to insert elements into a
multiset should be permitted to go on concurrently with-
out one blocking any of the others. Moreover, critical
regions are ill-suited for asynchronous, fault-tolerant sys-
tems: if a faulty process halts in a critical region, non-
faulty processes will also be unable to progress [12].

Recently, other approaches for implementing lineariza-
ble objects have been proposed [14, 15, 3, 18-20, 22, 4,

164






TESTING AND VERIFYING CONCURRENT OBJECTS

7]. These approaches do not necessarily rely on using
mutual exclusion locks to ensure the global consistency
of a system composed of concurrent objects. However,
because multiple processes can be simultaneously ac-
cessing an object, these implementations are typically
tricky to reason about and hard to ‘‘get right.”” Thus, we
are faced with a methodological problem:

« Given some notion of correctness, how can we show a
given implementation is correct?

In particular, given linearizability as our notion of cor-
rectness, how can we show an implementation that does
not rely on critical regions is correct?

We advocate using the complementary techniques of
testing and verification. Rather than insist on using one
technique to the exclusion of the other, we recognize the
practical and formal benefits from using both validation
techniques. Testing can help users detect when an imple-
mentation is incorrect and gain some additional assur-
ance that an implementation is correct. Testing is espe-
cially useful in the debugging process while developing a
correct implementation. Whereas testing is useful, verifi-
cation is more definitive. ‘‘Program testing can be used to
show the presence of bugs, but never to show their ab-
sences (Dijkstra [6]).”” In principle, a verified implemen-
tation is guaranteed to work in general rather than on a
finite set of test cases. Verification, however, is often a
tedious and difficult task.

Testing complements verification since verification of-
ten makes assumptions about the environment in which
an implementation runs; testing helps to validate those
assumptions. On the other hand, verification comple-
ments testing since it shows that an implementation is
correct for any value of each its parameters, not just a
finite number of values. Given our two-pronged approach
to the methodological problem of showing correctness,
the purpose of this paper is to report on the following new
results:

1. A simulator useful for testing implementations of
concurrent objects. More specifically, we describe the
structure and use of a simulation environment in Section
3 and then the key algorithm that performs the simulation
analysis in Section 4.

2. A library of verified concurrent objects. More spe-
cifically, we present the specifications, implementations,
and proofs of correctness of some of the more interesting
objects in our library: FIFO queues in Section 6, semi-
queues in Section 7, and stuttering queues in Section 8.

The availability of both the simulator and library has
pragmatic consequences for implementors and clients of
linearizable objects. The simulator is a general-purpose
testing tool. It is parameterized over the type of the data
object that has been implemented and being tested. The

165

simulator can automatically generate a set of test cases,
saving the implementor from having to build a set of test
cases for each implementation being tested. At the same,
it also lets clients test out user-specified histories.

Proving linearizability of a data object can be a nontri-
vial task. In [20], the proof of a simple concurrent set
consists of five propositions, one lemma, and one theo-
rem. All our proofs are structured similarly. Thus, imple-
mentors of objects of data types other than those we
provide in our library can reuse the patterns of design and
proof that we give for our implementations. At the same
time, people can use our library of objects without regard
to their implementation and with the assurance that they
are correct. Clients of our library are thus freed from
having to design, implement, and verify commonly used
abstractions from scratch. Indeed, one of our side goals
is to encourage code reuse through program libraries.

First we begin in Section 2 to define our terminology,
in particular the definition of linearizability. We adopt the
notations and definitions as defined in [16], which con-
tains a lengthier discussion of linearizability and motivat-
ing examples.

2. CONCURRENT OBJECTS AND LINEARIZABILITY

2.1. Model of Computation

Recall that a concurrent system is a collection of pro-
cesses that communicate through shared data structures
called concurrent objects, each providing a set of opera-
tions. Processes are sequential: each process applies a
sequence of operations to objects, alternately issuing an
invocation and receiving the associated response. Sev-
eral processes might issue an invocation to the same ob-
ject concurrently.

Formally, we model an execution of a concurrent sys-
tem by a history, which is a finite sequence of operation
invocation and response events. An operation invocation
event is written as x op(args*) A, where x is an object
name, op is an operation name, args* is a sequence of
argument values, and A is a process name. The response
to an operation invocation is written as x term(res*) A,
where term is the (normal or exceptional) termination
condition and res* is a sequence of result values. We use
““Ok” for normal termination. A response matches an
invocation if their object names agree and their process
names agree. An invocation is pending in a history if no
matching response follows the invocation. If H is a his-
tory, complete(H) is the maximal subsequence of H con-
sisting only of invocation and matching responses. An
operation, e, in a history is a pair consisting of an invoca-
tion, inv(e), and the next matching response, res(e). An
operation ¢ lies within another operation e, in H if inv(e;)
precedes inv(ey) and res(eg) precedes res(e;). Operations
of different processes may be interleaved.



166

A history H is sequential if (1) the first event of H is an
invocation, and (2) each invocation, except possibly the
jast. is immediately followed by a matching response. In
other words, except for possibly the last event, a sequen-
tial history is a sequence of operations, i.e., pairs of invo-
cation and matching response events. A process subhis-
tory, H\P (H at P), of a history H is the subsequence of
all events in H whose process names are P. An object
subhistory, H|x, is similarly defined for an object x. Two
histories H and H' are equivalent if for every process P,
H|P = H'|P. A history H is well-formed if each process
subhistory H|P of H is sequential.

A history H induces an irreflexive partial order <; on
operations:

ey <y e if res(ey) precedes inv(e;) in H.

Informally, <y captures the “real-time’” precedence or-
dering of operations in H. Operations unrelated by <y
are said to be concurrent. If H is sequential, <y is a total
order.

A set S of histories is prefix-closed if, whenever H is in
S. every prefix of Hisalsoin S. A single-object history is
one in which all events are associated with the same ob-
ject. A sequential specification for an object is a prefix-
closed set of single-object histories for that object. A se-
quential history H is legal if each object subhistory H|x
belongs to the sequential specification for x. Many con-
ventional techniques exist for defining sequential specifi-
cations. We use the axiomatic style of Larch [11] and
defer its description till after we define linearizability.

2.2. Definition of Linearizability

A history H is linearizable if it can be extended (by
appending zero or more response events) to some history
H' such that

L1: complete(H') is equivalent to some legal sequential
history S. and
L2: <y C <s.

Extending H to H' captures the notion that some pend-
ing invocations may have taken effect even though their
responses have not yet been returned to the caller. Re-
stricting attention to complete(H') captures the notion
that the remaining pending invocations have not yet had
an effect. L1 states that processes act as if they were
interleaved at the granularity of complete operations. L2
states that this apparent sequential interleaving respects
the real-time precedence ordering of operations.

2.3. Specification Language

We use the Larch Specification Language [1 1] to spec-
ify the sequential behavior of an object. We use a Larch
trait to specify its set of values and Larch interfaces to

WING AND GONG

FifoQ: trait
introduces
emp: — Q
ins: Q,E—Q
first: Q — E
rest: Q — Q
isEmp: Q — Bool
asserts
Q generated by (emp, ins)
for all (b: B, e, el: E)
first(ins(q, e)) = if isEmp(q) then e else first(q)
rest(ins(q, e)) = if isEmp(q) then emp else ins(rest{q), e)
isEmp(emp) = true
isEmp(ins(q, e)) = false

void Enq(queue q, elt ) {
modifies q
ensures q' = ins(q, €)

}

elt Deq(queue q) {
requires - isEmp(q)
modifies g
ensures q’ = rest(q) A result = first(q)

}

FIG. 1. FIFO queue trait and interfaces.

specify its set of operations. In a trait, the set of opera-
tors and their signatures, shown following the keyword
introduces, defines a vocabulary of terms to denote val-
ues. For example, from the FifoQ trait of Fig. 1, emp and
ins(emp,5) denote two different queue values. The set of
equational axioms following the asserts clause defines a
meaning for the terms, more precisely, an equivalence
relation on the terms, and hence on the values they
denote. For example, from FifoQ, we can prove that
rest(ins(ins(ins(emp,fi),4),3)) = ins(ins(emp,4),3). The
generated by clause of FifoQ asserts that emp and ins are
sufficient operators to generate all values of queues.
We use Larch/C interfaces [10] to describe an object’s
set of operations since all our implementations are in C.
For example, interfaces for the Eng and Deq operations
for FIFO queues are shown in Fig. 1. For an operation op
of the object x of type T, an interface’s header, like a C
function header, is of the form RT op(T x, args*) where
RT is the type of the returned value of op and args* is the
list op’s arguments in addition to x. A requires clause
states the precondition that must hold when an operation
is invoked. An omitted requires clause is interpreted as
equivalent to ‘‘requires true.”’ A modifies clause lists
those objects whose values are allowed to change as a
side effect of executing the operation. An omitted modi-
fies clause means no objects may change in value. An
ensures clause states the postcondition that the operation
must establish upon termination. An unprimed argument
formal, e.g., g, in a predicate stands for the value of the
object when the operation begins. A primed argument
formal, e.g., g, stands for the value of the object at the
end of the operation. The special reserved word result



TESTING AND VERIFYING CONCURRENT OBJECTS

denotes the value returned when op completes. We use
the vocabulary of traits to write the assertions in the pre-
and postconditions of an object’s operations; we use the
meaning of equality to reason about its values. Hence,
the meanings of ins and = in the Engq interface are given
by the FifoQ trait.

2.4. Two Simple Examples
The history

q Enq(5) A
q Enq(7) B
q Ok() A

q OkO B

q Deq() C
q Ok(7) C

is linearizable because it is equivalent to the sequential
history in which B enqueues 7 before A enqueues 5;
hence C correctly dequeues the first element (7). The
history

q Enq(5) A
q Ok A

q Enq(7) B
q Ok() B

q Deq() C
q Ok(7) C

is not linearizable because the A enqueues 5 before B
enqueues 7, but 7 is dequeued before 5. In these two
examples, we rely on the FIFO semantics of queues. If q
were a set and Enq and Deq had the standard semantics
of ““insert’” and “‘remove’’ operations on sets, then the
second history would be linearizable since insertion order
on sets does not matter.

2.5. Implementation Issues: Definition of Correctness,
Implementation Language

An implementation is a set of histories in which events
of two objects. a representation object Rep and an ab-
stract object Abs are interleaved in a constrained way:
for each history H in the implementation, (1) the subhis-
tories H|Rep and H|Abs satisty the usual well-formed-
ness conditions; and (2) for each process P, each repre-
sentation operation in H|P lies within an abstract
operation in H|P. Informally, an abstract operation is
implemented by the sequence of representation opera-
tions that occur within it.

An implementation is correct with respect to the speci-
fication of Abs if for every history H in the implementa-
tion, H|Abs is linearizable.

In this paper we implement each object’s abstract oper-
ation in terms of atomic instructions, i.e., representation

167

operations that are indivisible. These are the only repre-
sentation operations of interest in our proofs of correct-
ness. We use all uppercase letters for names of atomic
instructions, e.g., FETCH_AND_ADD. The execution
of each abstract-level operation corresponds to the se-
quential execution of these representation-level atomic
instructions. For example, we might implement the en-
queue operation at the abstract level as the sequence
atomic instructions, FETCH_AND_ADD and READ, at
the representation level. This implementation technique
allows us at the representation-level to avoid using mu-
tual exclusion locks, thereby permitting more concur-
rency at the abstract level.

All code for the simulation environment and our library
of objects is written in C using a C-Threads package [5],
which provides primitives to fork new processes and
implement (at a lower level) atomic instructions like
FETCH_AND_ADD. We used C primarily because we
could use the C-Threads package to test our code on
multiprocessors in our local computing environment.
Though we could present the algorithms in a more per-
spicuous, abstract language, we rather present the actual
working code. Moreover, we can present their formal
specifications using the Larch/C interface language.

3. STRUCTURE AND USE OF THE SIMULATION
ENVIRONMENT

3.1. The Simulation Package

Figure 2 shows the logical structure of the simulation
package, where we use ovals to represent data and rec-
tangles for procedures. Solid lines show control flow;
dotted lines show data flow. The simulation package con-
sists of several C functions stored in separate files. It uses
C-Thread’s fork primitive to create a user-specifiable
number of threads to simulate a MIMD system.

There are three basic modules: simulate, test, and ana-
lyze. Simulate is the user’s interface to the simulator; its
main function is, in response to the user’s request, to test
whether a given implementation, ConcObj, exhibits only
linearizable behavior with respect to a given specifica-
tion, SeqObj. The user can specify various test condi-
tions for the simulation, e.g., the number, N, of pro-
cesses to run, how long (in number of operations or time)
to run each process, and whether to use an input file of
test cases (in the form of histories of events) or to gener-
ate a random set of test cases. Each test case corre-
sponds to an object history of finite length. Test creates N
processes, and invokes concurrently on their behalf a
finite number of operations on ConcObj. After all N pro-
cesses terminate, the simulator stores the resulting finite
concurrent history in an event list, History, and then calls
the analyze function to determine the linearizability of
History. If an input file of (a finite number of) test cases is



168

User

{

WING AND GONG

simulate
test  |.ooeee.. ConcObj
SeqOb3j (implementation)
(specification) :
T

|

FIG. 2.

not given, fest loops, thereby generating, upon the user’s
request, either an infinite or a finite number of finite histo-
ries to test on a given implementation; it stops if a history
is found not to be linearizable. We have run the simulator
on both single and multiprocessor architectures.

3.2. Example Uses of the Simulator
3.2.1. Simulating a Correct Implementation

Let us start with a concrete example, that of a FIFO
queue whose specification is shown in Fig. 1. Below is an
implementation where we store the elements of the queue
in a list with head and tail pointers, head and tail, and
keep track of the next free slot in the list in back (initial-
1zed to 1).

typedef struct elts {
elt item;
/* an element in the queue */
struct elts *next;
/* pointer to the next element */
} *slotpt;

typedef slotpt slot;

typedef struct {
slot head, tail;
/* first and last slots in queue */
int back;
/* number of slots in queue */
} reptype;
/* queue representation*/

reptype queue;

Is History linearizable?

Simulation package.

Our FIFO queue implementation makes use of the fol-
lowing atomic instructions, whose behavior we specify
below.

slot FETCH_AND_ADD (reptype Q, slot s) {
modifies Q.tail, Q.back
ensures result = s /\ fresh(*(Q.tail’))
A (*(Q.tail’)).item = NULL
A Q.tail’ = (*(Q.tail)).next’
/\ Q.back’ = Q.back + 1
t

FETCH_AND_ADD returns the slot s. It allocates a
new, empty slot (with item = NULL), appends it to the
list of elements in the original queue, and increases
Q.back by 1. In Larch/C fresh(x) indicates that new stor-
age, not aliased to any objects in the calling state, is
allocated for object x.

void STOREC(slot s, elt x) {
modifies *s
ensures (*s)’.item = X

}

STORE puts an element x in a slot s.

int READ(int *x) {
ensures result = (¥x)

}



TESTING AND VERIFYING CONCURRENT OBJECTS

READ returns the integer value pointed to by x.

elt SWAP(slot s, elt x) {
modifies *s
ensures result = (*s).item A (¥s)’.item = X

}

SWAP puts an element x in the slot s and returns the old
value of the item stored in s.

Given these atomic instructions, we implement the
Eng and Deq operations for the FIFO queue as follows:

void Eng(queue g, elt x) {
slot current;
current = FETCH_AND_ADD (&g, q.tail);
/* get an empty slot */
STORE (current, x); /* store x in slot */

}

An Eng execution occurs in two distinct steps: a slot is
atomically allocated (back is also increased) and the new
element is stored as the item of the allocated slot.

elt Deg(queue q) {
int i, range;
elt ch;
slot current;

while (true) { /* keep trying till
non-NULL value is found */
current = ¢.head;
/* starting from the first slot */
range = READ (& (gq. back)) — 1;
/* search up to back-1 slots*/

4 for (i = 1; i <= range; i++) {
it ¢ i> 1 |
current = current—>next;
}
ch = SWAP (current, NULL);

/* put a NULL value in ith slot */

if (ch '= NULL) {
/* if non-NULL value */
return(ch); /* return it */

Deq traverses the list of slots, starting at the first slot.
For each slot, it atomically swaps NULL with the cur-
rent item. If the value returned is not equal to NULL,
Deg returns that value, otherwise it tries the next slot. If
it has searched back-1 slots without encountering a non-
NULL item, the operation tries again. Deg does not
return until a non-NULL item is found.

To show a simple use of the simulator, here is a sample
script of a simulation for the above FIFO queue. Our
added comments to the script below are prefixed by *.
Format of simulator output is the same as for input and

169

matches our notation for histories given in Section 2. We
use the notation [x{, ..., XmI{¥1, --., Ya) to denote the
queue that contains in order the elements, x;, ..., Xu,
which are then followed in any order by zero or more of
the elements, y;, ..., Ya.

% simulate -cqueue-unbound -squeue -ooutput (CR)
set up simulation conditions here ...

/% This is simulation number 1 */
% ipitially, the queue is empty: Q = [] {}

Q Eng(e) P2 x P1, P2, P3 begin enqueueing.
Q Enq(g) P1
Q@ Enq(a) P3 *Q =[] {e, & a
Q ok () P2
Q Ok () Pl
Q Deq () Pl
Q Ok (e) P1 * P1 removes first element, e,
Q Enqg (e) P1 * and starts enqueueing e.
Q ok () P3 * P3 finishes its enqueue of a,
Q Deq () P3 * gtarts to dequeue,
Q Ok (g) P3 * and removes g.
Q Ok() P1 * Q= [] {e, a}, 1i.e.,
* Q = [e, a] or Q = [a, €]

/* This history is linearizable! */

Here we see that three processes, P1, P2, and P3 exe-
cute concurrently on queue object Q. The three pro-
cesses all start to enqueue items with P2’s enqueue of e
finishing first and then P1’s enqueue of g. When P1 then
dequeues an item it sees what P2 enqueued, thus induc-
ing an ordering of e before g in Q. P1 then starts to
enqueue another e. P3 finally finishes its enqueue of a
and then dequeues the g that P1 had enqueued. Finally,
P1’s enqueue of e finishes, leaving O containing both ¢
and a, but from the outside observer’s viewpoint in either
order since those two items were enqueued concurrently.

3.2.2. Detecting that an Implementation is Incorrect

We intentionally inject an error in the implementation
of the queue example and then simulate it. We modify the
Degq operation so that a process could possibly dequeue
an element that was inserted after the current “‘first”
element in the queue.

elt Deq(queue q) {
int i, range;
elt ch;
slot current;

while (true) {
current =
i = 1;
range = READ (&(q.back)) — 1;
while (i <= range) {
/* search up to back-1 slots*/
if (1 > 1)
current =

q. head;

current—>next;



170

ch = SWAP (current, NULL);
if (ch '= NULL) {
return{ch) ;

}

1++;

range = READ (&(q.back)) — 1;

/**% modify current search range *xk [
/*** queue.back could have been ok k
/##*% changed by some other process ***/

}

Running this version of the FIFO queue through our
simulator yielded the following nonlinearizable history:

/* This 1s simulation number 10%*/
the queue 1s empty

* initially,

Q Deqi) P1

Q Deqgt() P2

Q Deqi) P3

Q Enqgif) P4

Q 0k () P4 *Q = [f1 {}

Q Engiy) P4

Q Ok(fy Pl *Q = (1 {y}

Q@ Ok P4 *Q = [v] {t

Q Enqg(t) P4

Q Eng (e} P1

Q Okn P4 * Q= [y) {t. e

Q Engio) P4

Q Ok P1 * Q= [y] {t, e, o},

Q Deqg () Pl * though t must precede o.
Q Ok (e P2 * Wrong' e cannot be the first
Q Eng(cy P2 * element of Q.

Q 0k tv) P1

Q Ok ) P2

Q Oktc P3

Q Ok 1) P4

/x This history is not linearizable! */

P2 should not be able to dequeue e since y is the first
element in the queue. The first element is ¥ because the
response event of P4’s enqueue of y precedes the invoca-
tion event of P1’s enqueue of e.

Considering the details of the implementation, the or-
der in which the (relevant) atomic instructions occur is

« P4 does a FETCH_AND_ADD, reserving a slot for
Vi

« P2 does a READ, setting its range; when it does a
SWAP. scanning the slot for y it finds a NULL value;

« P4 does its STORE of y;

« PI reserves a slot for ¢ and stores ¢ in it (FETCH_
AND_ADD and STORE);

. P2 increases its search range by re-READing Q.back
(which has been changed) and continues scanning to the
next slot, that containing e:

- P2 gets e.

WING AND GONG

In short, P4’s STORE occurs after P2 scans the slot
reserved for y. Since subsequent pending, concurrent en-
queues modify g.back, P2’s search range increases, SO
P2 continues searching, encountering e, which Pl en-
queues before P2’s next SWAP. In the correct version,
P2 would instead exit that iteration of the search loop
(because range would be fixed) and start a new scan of
the queue from the first slot. We argue in Section 6.3.1 in
general why the modified Deq operation is incorrect.

4. THE LINEARIZABILITY ANALYSIS ALGORITHM

For a given data type T, to effectively test linearizabil-
ity of a concurrent implementation, ConcObj, against a
sequential specification, SeqObj, we use a sequential im-
plementation of T as a specification. In this sense, our
sequential implementation serves as an “‘operational’’ or
““executable’” specification. We assume that the sequen-
tial implementation (e.g., expressed in C) satisfies the
object’s sequential specification (e.g., expressed in
Larch).

The essence of the analysis algorithm is as follows:
given a history H of a concurrent object, ConcObj, we try
every possible sequential order of H's concurrent opera-
tions while preserving its real-time order relation <y . We
check if each sequential history H; is linearizable by exe-
cuting the operations on SeqObj. 1f every possible order-
ing of H fails, by the definition of linearizability, the his-
tory H is nonlinearizable.

4.1. Data Structures and Algorithm

A history H is stored in a doubly linked list of events,

typedef struct ev {
char item;
char op;
char name[10];
struct ev *match,
} event;

*next. *prev;

where item is the argument for the operation op and
name is the name of the process that invoked op. Next
and prev are two pointers pointing to the previous and
next events in H, respectively. For an invocation event,
match points to its matching response event. We use the
special NULL event as a sentinel and put it at the end of
the history. Figure 3 depicts a snapshot of a history
represented as a list of events.

DEFINITION. A section of a history H is an invoca-
tion event, its matching response event, and all events in
between them.

Sections of a history H can be ordered by the positions
of their first events in H. Figure 3 shows three sections in
the history H.



TESTING AND VERIFYING CONCURRENT OBJECTS

171

'

inv res

Pl

inv

1

i

res
null

section 3 i

sentinel

section 2 )

section 1

FIG. 3.

Analyze (recall from Fig. 2) calls the procedure search
to search iteratively over events.

bool analyze(event *history) {
bool linearizable;
event *p.

linearizable ((p = searchthistory))
NULL) ;
return (linearizable);

}

The heart of the simulator is the search procedure. If a
history H is linearizable, search returns a linearization of
H: otherwise it returns with an empty list of events. The
search function uses a stack to keep track of the portion
of H that is linearizable so far. Conceptually, the stack
clements are operations (both invocation and response
events per operation); actually, the stack elements are
pointers to the operations’ events in H (see Fig. 4).

typedef struct {

Snapshot of a history.

typedef struct {
elt_stack value [STACK_LENGTH] ;
int in;
} stacktype;

We use pi and pr to locate the first section of the sub-
history that has not yet been checked; inv and resp to
locate the operation that we select as the first operation
of the subhistory; item, op, result to remember this oper-
ation.

We implemented the stack procedures, push, pop, top,
and isempty, with their usual semantics, and also the
following auxiliary procedures on event lists: p_copy
makes a local copy of an operation; lift temporarily “‘re-
moves’’ the invocation and response events of an opera-
tion from the history (Fig. 5); unlift puts the invocation
and response events back in their original positions in the
history-needed if we later backtrack in our search proce-
dure; linearization links the operations stored in the
stack, creating and returning a linearization of the his-
tory.

event *pi, *pr, *1inv, *resp; .
char item. op. result; Informally, search always looks for the next operation
} elt_stack; in H that could happen (but not conflict with the partial
H
> - > ..
inv E iy [0 inv res res res
null
Pl P2 P3 P1 g - | B3 P2 |
i \ section 1 H
. \ 5 sentinel
\
pi inv pr
pi inv pr
pi inv pr
stack

FIG. 4. Top of the stack tracks current section and operation.



WING AND GONG

inv inv

PIP\

res

[\

res res

_./ p1

|4 . P3

|
pi inv pr

pi inv pr

pi inv pr

stack

FIG. 5.

order relation <) from the current section and tries to
form a legal history. Once it decides that an operation
could happen. it conceptually pushes the operation onto
the stack and lifts the events of this operation from the
history: it repeats this procedure on the remaining history
until the remaining history is empty. During this proce-
dure of rearranging the operations of a history, we might
need to undo some operations on SeqObj if we find that a
tentative reordering of a subhistory of H is nonlineariza-
ble. 7
More specifically, we sketch below the gist of the
search procedure, given in the Appendix in its entirety:

1. Initialize the stack.

7 Locate the current section of H by the pi and pr
pointers of current if there is one (see Fig. 4); otherwise
return a pointer to the linearized history.

3. From the current section, select an operation and
store it locally in current.

4. Simulate this selected operation on the sequential
implementation of the object by calling operation, corre-
sponding to the selection operation.

5. (a) If operation returns true, meaning those events
checked so far consists of a linearizable subhistory, then
push this operation onto the stack, lift this operation from
the history H and go back to 2.

(b) Otherwise:

(i) If in the current section there is still some unse-
lected operation whose invocation event is not preceded
by any response event, then select one and go back to 4.

(ii) At this point, every operation in the current
section has been tried without success. So we have to
backtrack to the previous section to try another arrange-
ment. If the stack is empty, meaning that the history is

null
P3 cee P2

sentinel

Lifting an operation in a history.

not linearizable, then return a NULL value. Otherwise,
(1) get the top element of the stack, which contains all
information about the previous section and selected oper-
ation, by an auxiliary pointer (called tmp in the code of
the Appendix), and pop the stack; (2) undo the previous
operation and put it back to the history (see Fig. 6); (3)
set current’s pointers to the previous section and opera-
tion; and then finally (4) go to 5(b)i.

If the history is linearizable, then this procedure returns a
pointer to the first event of the history, otherwise it re-
turns a NULL value.

4.2. The Correctness of the Search Algorithm

We give an informal correctness argument for the
search algorithm. For a given history H, and a lineariza-
ble subhistory H, of H, we maintain the following invari-
ants:

I;: If top = i, then the operations pointed by the
pointers inv and resp in stack[1], stack[2], ..., stackli — 1]
form a linearizable subhistory H, of H and <4 C <u.

I,: The pointers pi and pr in stack[top) identify the first
section of the subhistory H — H, (H with those operations
of H, removed), and inv and resp in stackltop] identify an
operation whose invocation event is in the first section.

I;: The auxiliary pointer tmp always points to the head
of the first section in H — H,.

We claim that search returns a non-NULL value if and
only if H is linearizable, and argue inductively as follows:

1. Search can return a non-NULL value only at Step 2
and only under the condition that the remaining history is
empty. At this point, we have processed the entire his-



TESTING AND VERIFYING CONCURRENT OBJECTS

173

inv res

P1

inv

P2 P3

J

'

res
null
P3

f section 1 ,
// A//

pi inv pr

pi inv pr

pi inv pr
stack

FIG. 6. Select

tory successfully, identifying a linearization of H opera-
tions stored from stack[1]1, ..., stack[top].

2. Suppose the history H is linearizable, then there
must be a sequential H’ such that H' is legal and <yC <y
(definition). According to the definition of the relation
<4, the first operation of H' must be in the first section of
H and cannot be preceded by any response event (Step
5(b)i). Search will eventually select this operation as the
first operation of the remaining subhistory H — H,, re-
move it from H (Step 5), and check the remaining history
H,. If H; denotes the history H' with its first operation
removed, then we have <y C<y;. Using similar reason-
ing, we can prove that search will arrange H in the same
order as in H’. Since H' is legal, i.e., it is linearizable,
search will return a non-NULL value.

4.3. Runtime Performance

There exists simple data types and histories for which
testing linearizability is NP-complete. Thus, since we in-
tentionally built the simulation environment to work in
general, i.c., for any data type, our analysis algorithm is
exponential in time. This means that analyzing a long
history (say, 1 million operations) is impractical; how-
ever, analyzing many short (100 operations) histories is
tractable. Thus, a typical way to use our simulator is to
generate and analyze short histories over a long period of
time, e.g., days or even months (if desired). Space is not
a limiting factor since the simulator discards each history
it determines is linearizable.

For a concrete idea of how the simulator performs in
practice, testing a history of 60 FIFO queue operations
takes the simulator about 2 s; a history of 100 operations,
about 1 min. For a concurrent set example, it is even
faster: a history of 200 operations takes 2 min.

sentinel

another operation.

For detecting an incorrect history, we also have a bet-
ter chance of finding a nonlinearizable history by testing
many short histories rather than testing one long one. For
the queue example, we generated and tested about 100
histories, each of 50 operations, before we encountered a
nonlinearizable history; for the set example, we gener-
ated about 70 histories, each of 60 operations.

5. VERIFYING CONCURRENT OBJECTS

5.1. Library of Concurrent Objects

We have implemented, simulated, and verified concur-
rent versions of the following data objects:

+ unbounded FIFO queues,
bounded FIFO queues,

» unbounded priority queues,
» bounded priority queues,

» semiqueues,

 stuttering queues,

. sets,

« “multiple’’ sets,

» read/write registers, and

» B-trees.

In the next three sections we present the specifica-
tions, implementations, and proofs of correctness for
FIFO queues (unbounded and bounded versions), semi-
queues, and stuttering queues. Why queues? Queues are
prevalent in most operating systems, programming lan-
guages, and application software. They are needed for
task scheduling, resource management, message buf-
fering, and event handling. They can be the cause of
performance bottlenecks since multiple processes need
to access them. An implementation using more tradi-



174

tional approaches, e.g., mutex locks, would block out all
other processes if some enqueueing or dequeueing pro-
cess currently has access to the shared queue. Using li-
nearizability as the correctness condition permits en-
queuers to proceed concurrently, and enqueuers and
dequeuers to proceed concurrently when the queue is
nonempty. Hence, we permit higher degrees of concur-
rency than normally provided by a more traditional im-
plementation.

We also choose to focus here on these three types of
queue-like structures since related work covers the rele-
vant aspects of the other kinds of objects. In particular,
the designs and proofs of correctness of the implementa-
tion for the semiqueue and stuttering queue are new con-
tributions of this paper. The designs and proofs of cor-
rectness of the implementations of bounded and
unbounded versions of linearizable priority queues are
new too. but similar enough to those of the bounded and
unbounded versions of the FIFO queue not to warrant a
detailed presentation.

Finally, others have designed implementations of the
nonqueue data types listed above: Lamport’s atomic reg-
isters [18], Lanin and Shasha’s sets [20], Lehman and
Yao's B-trees [21], and Weihl and Wang’s extensions to
B-trees for multiversion memory [25]. These implemen-
tations all satisfy the linearizability property. Their
proofs of correctness can be found in the original refer-
ences.

5.2. Remarks on Our Proofs and Proof Method

Consider again the FIFO queue. Its sequential specifi-
cation as expressed in Larch makes sense only when
there is a total order relation between the items in queue,
so as to know which is the first item in the queue. If we
perform Eng and Deq operations sequentially, we get a
natural total order relation on the queue’s items. Suppose
now we do multiple Eng operations concurrently. What
ordering relation can we define that will still give meaning
to first?

The answer in general is that the implementor of a
concurrent object needs to define an ordering relation.
This ordering (typically a partial order) is defined in terms
of the representation operations (typically the atomic in-
structions) used to implement the abstract operations of
the concurrent object. A proof of correctness amounts to
showing that the implementation maintains the consis-
tency of this ordering.

As mentioned in the introduction, proving the correct-
ness of an implementation can be a daunting task. In this
paper we follow no formal proof method in the sense of
writing a syntax-directed proof or a machine-checkable
proof. Rather, we focus on providing the key insight, the
ordering information, needed for performing any proof of
correctness. In other words, we are verifying the correct-

WING AND GONG

ness of the algorithms, not the program text that ex-
presses them.! In the following examples, the reader
should find evident reusable patterns in the proofs’ struc-
ture.

Linearizability is only a safety property. We make no
claims about our implementations satisfying any liveness
properties, e.g., that they are wait-free [12]. Herlihy pro-
poses a method for implementing non-blocking and wait-

free concurrent objects [13] and thus addresses liveness

directly. In order to guarantee progress is made, we as-
sume a nonmalicious and fair scheduler as part of the
environment of our concurrent systems.

6. FIFO QUEUES

6.1. Specification

Given the specification for FIFO queues (Fig. 1), we
provide two different implementations, one using an un-
bounded amount of storage and another using a bounded
amount. We provide the unbounded version first because
its implementation and corresponding proof of correct-
ness are simpler to understand. The implementation and
proof also both provide a reusable general framework for
the implementations and proofs for the semiqueue and
stuttering queue examples.

6.2. Implementation for the Unbounded Version

The implementation is given in the beginning of Sec-
tion 3.2.1.

6.3. Proof of Correctness for the Unbounded Version

Given a well-formed history H, we use the following
notation:

+ H,is the ith event in H. We assume that an invocation
event of an abstract operation is associated with the exe-
cution of the first instruction of the operation and a re-
sponse event associated with the execution of the last
instruction.

« If H: = e then label(e) = i.

« |H| is the length of H.

« [H]] is the subhistory of H consisting of the first i
events in H.

« If the operation Enq(x)/Ok() is in H, we use eng(x)
and eok(x) to refer to its invocation and response event; if
the operation Deq()/Ok(x) is in H, we use deq(x) and
dok(x) to refer to its invocation and response event. For
simplicity, but without loss of generality, we assume that
no two items are equal.

I A formal proof of correctness of C code would be difficult to do
without a formal semantics of C.



TESTING AND VERIFYING CONCURRENT OBJECTS

o enqueue(H) ={x | Both eng(x) and eok(x) are in H}.
Note this is a partially ordered set with the relation <,
(see below) and we define the concept of chain as usual.

« dequeue(H) = {y | Both eok(y) and deg(y) are in H,
and if dok(y) is in H, then label(eok(y)) < label(dok(y))}.

o left(H) = enqueue(H) — dequeue(H).

We define a partial order relation <; on the items in the
list

x <, y iff the STORE for x precedes
the FETCH_AND_ADD for y.

We will be interested in any total order relation consis-
tent with <,.
We observe that

1. Several Eng’s operations can occur concurrently.

2. If the gueue is not empty, a Deg can execute with
several Engs concurrently and several Degs can also oc-
cur concurrently. Only one Deg can get the first item.

3. In Deg we limit the search range in terms of the
current value of queue.back and then search from 1 to
range. While one process is searching within the range,
some other process might do an Eng, increasing the value
of queue.back. For example, if we replace range in line 4
(see code in Section 3.2.1) by queue.back, we would get
incorrect behavior since doing so would allow a process
to delete an item that would not be the first one by any
total order relation defined above.

LEMMA 1.1. An item in the queue can be deleted at

most once.

Proof. The only way to remove an item from queue is
to execute the atomic instruction SWAP. Since SWAP is
atomic and places NULL in the slot no other process
may delete the item. W

LEMMA 1.2,
bounded FIFO queue, then for all i, 1 =1 = |H
queue(|[H;]) C enqueue([H}).

If H is a history accepted by the un-
, de-

Proof. If not, there must be an integer i > 0 and an
item x such that label(dok(x)) = i and label(eok(x)) = j >
i. which means that x is deleted before it had been stored,
a contradiction. H

LEMMA 1.3. If H is a history accepted by the un-
bounded FIFO queue. H; = eng(x) and H; = eok(x) with
i < j. then x is a maximal element in enqueue(|H;]).

Proof. Suppose not. Then there must be ay € en-
queune([H;]) and x <, y. According to the definition of <,
the FETCH_AND_ADD instruction for y must be exe-
cuted after the execution of the STORE instruction for x,
which implies that label(eok(x)) = j < label(eng(y)). So,
eng(y) cannot be an event in [H,], let alone y be n en-
queune({H;]). A

175

LEMMA 1.4. Suppose H is a history accepted by the
unbounded FIFO queue, eok(x) and eok(y) are in H. If x
and y are stored in the mth slots and the nth slots, respec-
tively, then label(eng(x)) < label(enq(y)) © m < n.

Proof. By the semantics of F ETCH_AND_ADD and
Q.back monotonically increases. W

LEMMA 1.5. When a process P swaps out an item x
from the mth slot (by executing SWAP), x must be the
minimal element with respect to the relation <. in the set
S = {x | x is stored in some slot between the first and mth
slots, inclusive.}

Proof. Observe that once the value of range is
changed, P searches the list from the first slot and m <
range. Suppose P swaps x from the mth slot, then the
value of range must be the same as when P starts search-
ing from the first slot, so for any item y stored between
the first slot and the slot m — 1, label(eng(y)) < la-
bel(deq(x)). For any two items, X, and x,,, stored in the /th
and nth slots, where 1 <[ <n <m, it is impossible that
x, <, X, by Lemma 1.4. If x, <; xp, then label(eok(x,)) <
label(eng(x,)) < label(deq(x)), i.e., when P searches the
Ith slot, x, must have been already stored there; hence P
would get the item x, (if it is still there). B

TueoREM 1. If H is a complete history accepted by
the unbounded FIFO queue implementation, then H is
linearizable.

Proof. We prove the linearizability of H by induction
on the number of operations in H. For H with 0 opera-
tions, it is trivial that Theorem 1 holds. Assume that for
any complete H with [ operations the theorem is true. We
need to show that for any complete H with [ + 1 opera-
tions it is also true. Note that |H| = 2(/ + 1). Since His a
complete history, the last event of H must be a response
event. There are two possibilities:

(1) The last event is Hyy1) = eok() and its matching
invocation event is H; = eng(x) for some x and 1 =j <
2(/ + 1). We use H,y4 to denote H with the two matching
events H;and Hy., deleted. Since x cannot be dequeued
in Hyq, Hoq is also a complete history accepted by the
unbounded FIFO queue and so it is linearizable, equiva-
lent to a legal sequential history H'. By Lemma 1.3,
H'H;Hy;. ) is a legal sequential history and equivalent to
H. So H is linearizable.

(2) The last event is Ha11) = dok(x) for some x and its
matching invocation event is H; = deq(), 1 =j < 200+ 1).
The same arguments as above applies with Lemma 1.3
replaced by Lemma 1.5. H

6.3.1. Revisiting the Incorrect Implementation

Our proof of correctness relies on the Eng and Deg
operations preserving the following two properties of our
partial order <,:



176

1. An Eng adds an item x that is maximal with respect
to <;.

2. A Deg removes and returns an item x that is mini-
mal with respect to <;.

Our incorrect implementation of the queue given in
Section 3.2.2 still preserves the first property (enqueue-
ing a maximal element), but not the second. A process
executing a Deg operation could dequeue an element that
is not minimal with respect to <;. Suppose process Alisin
the middle of performing an Eng(x) on an empty queue
and just finished FETCH_AND_ADD (back = 2). Now
process B starts a Deq, finding nothing in its first iteration
(since A has not finished its STORE). 1t is possible that
before B rereads back, A finishes its STORE (x is in
position 1) and then another process C also finishes an
Eng(y) (back = 3 and y is in position 2). If at this point B
rereads back and enters the loop the second time, what is
going to happen? B will remove and return y instead of x.
(Recall that x <, y according to our definition of <;.)

6.4. Bounded Version

In order to use a fixed amount of storage, in our second
implementation we use a bounded array to store the ele-
ments of the queue. We use modular arithmetic to ‘“‘fold”
an unbounded list into the bounded array. To preserve
the FIFO ordering, each queue element is tagged with a
generation number that counts the number of times the
back counter has ‘‘wrapped around.”

typedef struct {

elt item; /* a queue element */
int tag; /* its generation number */
} entry:

typedef struct rep {
entry elts[SIZE]; /*
int back;
} reptype;

a bounded array */

reptype queue;

in addition to the READ instruction described in the
unbounded version, the bounded version makes use of
the following atomic instructions:

entry EXCHANGE(entry el, int gen, entry €2){
modifies ¢l
ensures result = el A (el.tag = gen > el’ =
(el.tag # gen =2 unchanged(el))

}

EXCHANGE returns the old value of el. If el.tag
matches gen, then it sets el to the value of e2; otherwise
it leaves el unchanged.

e2) N

WING AND GONG

void FETCH_AND_MAX(int *i, int j) {
modifies *i
ensures (*1)’ = max((*i), j)

}

FETCH_AND_MAX sets the integer pointed to by i to be
the maximum of its initial value and j.

Eng is implemented as

void Eng(queue ¢, elt x) {
int 1i;
entry e, *olde;
e.item = Xx;

/* set the new element's item to x */
READ (& (q. back)) + 1;
/* get a slot in the array for the new
element */
while (true) {
etag = 1 / SIZE;
/* set the new element's generation number */
olde = EXCHANGE (& (q. elts[i % SIZE]),
-1, &e);
/* exchange the new element with
slot's value if that slot has not been used */
if (olde—tag == —1) { /* if exchange
is successful */
/* get out of the loop */

i =

break;
}
++i; /* otherwise, try the next slot */
{
FETCH_AND_MAX (& (g. back) , /* reset the

value of back */

i);

Initially each entry’s tag is equal to —1 and back =
—1.2 Eng reads the index of the last enqueued item, and
cyclically scans the array starting at the slot after that
index. EXCHANGE checks whether each slot is empty,
and if so, swaps in the item x tagged with its generation
number. If the tag of the entry returned is NULL, then
the slot was empty and queue.back is updated to the
maximum of i and the current value of queue.back (other
concurrent Eng’s could have updated queue.back before
this one completes).

elt Deq(queue q) {

entry e, *olde;

int 1, range;

e.tag = —1; /* make e an empty entry */
e.item = NULL;

while (true) {
/* keep trying until an element is found*/

range = READ (& (g.back)) — 1;
/* search up to back-1 slots */
for (i = 0; i <= range; i++) {
olde = EXCHANGE (& (q.elts[i % SIZE]),

i / SIZE, &e);

2 C arrays start indexing from 0.



TESTING AND VERIFYING CONCURRENT OBJECTS

/% check slot to see if it contains the oldest
element */
if (olde—>tag '= —1) { /* if so */
return (olde—>item);
/* return the item in 1t */

}

/* otherwise try the next one */

}

Deq cyclically scans the array, starting at index 0 and
ending at the observed value of queue.back. For each
clement. it atomically compares to see if its tag is the
current generation number; if so, it swaps in the
“empty”’ entry. If the tag of the entry returned is not
equal to —1, then Deq returns the associated item.

6.5. Proof of Correctness for the Bounded Version

We change the definition of <, to be as follows:

x <, y iff FETCH-AND_MAX for x
precedes the READ for y.

Lemma 1.1 still holds. Again we assume that only distinct
items are inserted in a queue.

LEMMA 2.1.  Suppose H is a history accepted by the
bounded FIFO queue and H; = eok(x), then x is a maxi-
mal element in enqueue(H,).

Proof. The same argument as in Lemma 1.3 with the
FETCH_AND_ADD instruction replaced by READ, and
STORE by FETCH_AND_MAX.

We need the following new notation:

« For an item x, entry(x) denotes the entry holding x.

« i(x) for the index of queue where x (or entry(x)) is
stored.

e slot(x) = i(x) + (SIZE * entry(x).tag). M

LemMMa 2.2. If H is a history accepted by the
bounded FIFO queue and x <.y € enqueue(H), then
slot(x) < slot(y).

Proof. We use back to remember the most recently
used index of a slot. An enqueueing process P first gets a
slot index by reading back+1 (several concurrent pro-
cesses may get the same index); then it atomically does
the following: (a) checks if the slot is empty, and (b) if so
stores the item there, prohibiting other concurrent pro-
cesses from using this slot again. After storing the item, P
will increase the value of back by at least 1 through
FETCH_AND_MAX. Since x <; y, according to our
definition of <,, we know that the operation READ for
y must be after the FETCH_AND_MAX for x. So y’s
enqueuer can get only a greater slot value. R

177

LEMMA 2.3. If H is a history accepted by the bounded
FIFO queue and H; = dok(x), then x is the minimal item

of left(LH}})-

Proof. Ifnot, there mustbeay € left({H})) such that y
<, x; by Lemma 2.2, slot(y) < slot(x), since a process
starts its search range from the first slot and its search
range is limited by back. Hence, the same reasoning as in
Lemma 1.5 applies here. W

THEOREM 2. If H is a complete history accepted by
the bounded FIFO queue implementation, then H is
linearizable.

Proof. Similar to the proof of Theorem 1 using Lem-
mas 1.1 and 2.1-2.3. H

7. SEMIQUEUES

7.1. Specification

A Semiqueue, object consists of a sequence of items.
The Eng operation inserts an item in the sequence, and
the Deq deletes and returns one of the first k items in the
queue. If k is one, the object is a FIFO queue (Fig. 1) and
if k is n, the maximum number of items allowed in the
queue, the object is a multiset. The motivation for pro-
viding this ‘‘weaker’’ queue data type [17] is to give bet-
ter response time to dequeueing processes.

The Larch specification of the Semiqueue object
shown in Fig. 7 shows a reuse trait: if a trait T includes
another trait T,, then T extends the theory denoted by T
by adding more operators and equations explicitly in T.
The SemiQ trait includes the FifoQ trait of Fig. 1 and the
Set trait (not shown) and extends them by adding two
operators, prefix and del.

SemiQ: trait
includes FifoQ, Set
introduces
prefix: Q, Int — SetOfE

del: B,E - B
asserts for all [g: Q, i: Int]
prefix(q,i) = if i=0V isEmp(q)) then {} else prefix(rest(q), i-1) U {first(q)}

del(emp, e) = emp
del(ins(b, e), el) = if e = el then b else ins(del(b, el), e)

void Enq(queue q, elt e) {
modifies q
ensures q’ = ins(q, €)

}

elt Deq(queue q) {
requires - isEmp(q)
modifies g
ensures q' = del(q, resuit) A result € prefix(q, k)

}

FIG. 7. Semiqueue;.



178

7.2. Implementation

Our implementation of a Semiqueue, uses the same list
representation of queues as that for the unbounded ver-
sion of the FIFO queue. The Eng operation is identical.
To implement the Deg operation, we use the following
atomic instruction:

void ADD(int *p) {
modifies *p
ensures (*p)’ = (*p) + 1

}

ADD atomically increases by one the value of the integer
pointed to by p.
Deq is as follows:

elt Deq(queue q) {

int i. range, differ;
elt value;
slot current;
1 while (true) ({
current = q.head;
3 range = READ (& (q. back))
/* range initially is back */
i = 0;
i1 0;
/* starting search from first slot */
while ((i < range) && (i < q.back)) {
value = SWAP (current, NULL);
if (value != NULL) {
/* successful dequeue */
ADD (&num_deqd) ; /* number of
1tems actually deq'd */
return (value) ;
}
i++; /* try the next location */
current = current—>next;
differ = range — num_deqd;
/% differ is the number of items
potentially enq'd but */
/* not yet deq'd (and possibly not
yet stored) from 1 to range. */
13 if (differ < K) {
14 range += K - differ;
/* ok to incr range since there
were */
/* fewer than K items from 1 to
range */

L

The while loop in Deq is similar to that for the un-
bounded FIFO queue except that range can be increased
during the search. The loop invariant is that num_deqd is
always less than the number of items deleted. When a
dequeueing process starts its first search, setting range =
back establishes the invariant since any inserted items
between the first slot and the rangeth slot are in order.

WING AND GONG

After the first search, we can allow the dequeueing pro-
cess to search further if we can ensure that it would not
reach an item that is not in the first K items of the queue.
The local variable, differ, keeps track of the number of
items potentially enqueued that have not yet been de-
queued within the slots 1 to range. (Recall that some
enqueueing process might have reserved a slot between 1
and range but have not yet done a STORE of it.) By
checking differ in the last test (lines 13 and 14), we check
that there are at most differ items that could be ordered
before those items in the slots after range, so we are safe
in increasing range by K — differ.

7.3. Proof of Correctness for the Semiqueue

The partial order is the same as defined for the un-
bounded FIFO queue. Lemmas 1.1, 1.2, 1.3, and 1.4 still
hold here (with unbounded FIFO queue replaced by
semiqueue).

LEMMA 3.1. num_deqd is always less than or equal to
the number of items deleted from the queue.

Proof. Initially, we set num_deqd = 0. Num_deqd is
changed only at one place in Deqg and only after a process
has deleted an item from the queue. Once an item is
deleted by some process by executing the SWAP and the
item is non-NULL, this dequeueing process increases
num_deqd by 1. M

LEMMA 3.2. When a process P swaps out an item x
from the mth slot (by executing SWAP), the set (partially
ordered by <;) S = {x | x is stored in slot between the first
slot and the mth slot} contains no chain with length = K.

Proof. Observe that the value of range can be
changed at only two places, at the beginning of the loop
at line 3 (because of some concurrent enqueueing pro-
cess) and at the end of the loop at line 14 (because of this
dequeueing process). We define Phase I to be the inter-
val from when range is changed at the beginning of the
loop to when it is changed at the end, and Phase 2 to be
the interval from when range is changed at the end of the
loop to when it is changed at the beginning. During the
execution of a Deq, a process passes through these two
Phases alternatively.

By Lemma 3.1 and the test in line 13, we can prove the
following properties about range:

(1) m < range.
(2) In Phase 2, there can be at most K items between
the first and rangeth slots.

So if P gets x in Phase 2, the Lemma must be true since
there are less than K items between slots 1 and range.

Suppose P swaps x in Phase I, then the value of range
must be the same as when P starts searching from slot 1,
so for any item y stored between slot 1 and m — 1,
label(eng(y)) < label(deq(x)). For any two items, x, and



TESTING AND VERIFYING CONCURRENT OBJECTS

x,. stored in slots fand n, 1 < [ < n < m. it is impossible
that x, <, x, by Lemma 1.4. If x, <, xp, then label(eok(x,))
< label(eng(xy)) < label(deq(x)), i.e., when P searches
slot [, x, must have been stored there. Thus P can get x,
(if it is still there). In this case, we showed that there is
no chain with length >1 on the set of elements in slots 1
tom—1. A

LEMMA 3.3. If H is a history accepted by the semi-
queue and x is an item such that H; = deqx), H; =
dok(x). then x € enqueue({H;—1]) and there is no chain C
in left ([H;_\]) such that x is after the Kth item on C.

Proof. Since H; = dok(x), we have enqueue([H;-1]) =
enqueue(1H;]). We also know that x € dequeue(lH;1). By
Lemma 1.2, x € enqueue([H;]), so x € enqueune([H;_11).

Suppose that there is a chain C in left(lH;-]),

X <o < X <y <, x <y,
then label(eok(x)) < labelleng(x)) <. (1 =!=k)and no
event deg(x) is in [H;].
There must be a slot m from which x was removed. By
Lemma 1.4, all x; are stored in slots before slot m.
Combining the above two sentences, We have: at the
time x was removed from the slot m, there is a chain with
length = K between slot 1 and m — 1, which contradicts
Lemma 3.2. W

THEOREM 3. If H is a complete history accepted by
the semiqueue implementation, then H is linearizable.

Proof. Similar to that for the unbounded FIFO queue
using Lemmas 1.1-1.4 and 3.1-33. 1

8. STUTTERING QUEUES

8.1. Specification

A Stuttering_Queue object (Fig. 8) is like a FIFO
queue except that the first item in the queue may be

StutQ: trait
includes FifoQ
5tQ record of (items: Q, count: Int]

void Enq(queue g, elt e) {
modifies q
ensures q.items = ins(q.items, e)

}

clt Deq(queue q) {
requires - isEmp(q.items)
modifies q
ensures
q.count < j = (result = first(q.items) A
((q’.count = q.count + 1 A q’.items = q.items) V
(q’.count = 0 A q’.items= rest(q.items) )))

FIG. 8. Stuttering—Queue.

179

returned up to j times. As for the semiqueue, the motiva-
tion for allowing stuttering is to give quicker response to
concurrent dequeuers. Relaxing the strict FIFO con-
straint of a normal queue means letting up to jdequeueing
processes get the same first element. In the case that j is
always equal to 1, i.e., that there is always only one
active dequeueing process, then a stuttering queue be-
haves like a FIFO queue.

8.2. Implementation

In our implementation we do not use the atomic
instructions SWAP and ADD, but instead we use
FETCH_AND_ADD, STORE, and SUB:

void SUB(int *p) {
modifies *p
ensures (*p)’ = (*p) — 1

}

SUB decreases by one the value of the integer pointed to
by p.

Again, only the differences to the Degq operation are of
interest:

elt Deq(queue q) {
int 1, range,
elt value;
slot current;

num;

while (true) {
current = q.head;
range = READ (&q.back);
for (i = 1; i <= range; 1 ++) {
num = FETCH_AND_ADD(&q,&(current—£>hold));
/* get the number of processes currently
looking at the same slot */
if (num < J) {
/* if it is not greater than J */
value = current—>item;
/* not atomic because want
to allow */
/* allow other process to get
same value */
if (value !'= NULL) {
/* successful dequeue */
current—>item = NULL;
/* set this location
to NULL value */
SUB (& (current—>hold})
return (value);
}
}
SUB (& (current—>hold) ) ;
/* There have been J processes
looking at this slot */
/* so this process should not
try to dequeue it again */
current = current—>next;
/* try next slot */

}



180

As with the implementation of the FIFO queue, we use
back to limit the search range of a Deq operation. We use
hold to remember how many processes are currently
“‘Jooking at’’ the item stored in a slot. Whenever a pro-
cess wants to search for an item from a slot, it first checks
and increases this value. J determines the maximum
number of processes that are allowed to look at the same
slot concurrently and hence, the maximum times an item
could be returned. In contrast to the FIFO queue imple-
mentation, here when a Deq operation gets a non-NULL
value from a slot it does not immediately swap in the
NULL element, thus giving other dequeueing processes
the chance to get the same item from the slot. However,
the maximum number of processes that can get an item
from one slot is limited to be less than J. By carefully
ordering the updates to hold and ifem, we ensure that
before hold of a slot is decreased, the irem has been ini-
tialized to NULL, prohibiting more processes from get-
ting this item from this slot.

8.3. Proof of Correctness for the Stuttering Queue

Lemmas 1.2, 1.3, and 1.4 hold for the Stut-
tering-Queue.

LEMMA 4.1. No item can be dequeued more than J
times in the Stuttering;_Queue.

Proof. By observing the following two facts: (1) We
allow at most J processes to access a slot concurrently
(determined by the value of hold of the slot); (2) If exactly
one process has gotten an item from the mth slot and
decreases hold value in that slot, then slot m will be set to
NULL. So several processes can get an item from slot m
only if they access slot m before any one of them has
decreased the hold value of that slot; however, only J
processes are allowed to do so. H

LEMMA 4.2. When a process P gets an item x from
the mth slot, x must be the minimal item in the set § =
{v |y is stored in some slot between the first and mth
slots and there are fewer than J processes that have also
dequeued y}.

Proof. Since each time P must first get the value of
back in determining its range and then start its search
from the first slot, for any y € S, it must be true that
labelleng(y)) < label(deg(x))). If there is an itemy € S
such that label(eok(y)) < label(eng(x)), then label(eok(y))
< label(deg(x))), and also y was stored in a slot before the
slot in which x is stored (by Lemma 1.4). Thus, P could
get a non-NULL item y before reaching x, a contradic-
tion. W

LEMmMA 4.3, If H is a history accepted by the Stut-
tering;_Queue and x is an item such that H; = deq(x) and

WING AND GONG

H; = dok(x), then x € enqueue([H;-\]) and x is the mini-
mal item in left(lH;-])

Proof. 1If not, there mustay € left({H;—1]) such that
label(eok(y)) < label(eng(x)) and it must be true that y €
S (defined as in Lemma 4.2) since left(H) C S. By
Lemma 4.2, this is impossible. W

THEOREM 4. If H is a complete history accepted by
the stuttering queue implementation, then H is lineariza-
ble.

Proof. Similar to the proof for the unbounded FIFO
queue using Lemmas 1.2-1.4 and 4.1-4.3. H

9. CURRENT AND FUTURE WORK

Building the simulator and collecting a library of veri-
fied concurrent objects are first steps toward understand-
ing linearizability as a correctness condition from both
practical and theoretical viewpoints. We are interested in
pursuing two directions of further work: (1) investigating
more structured proof methods for showing the correct-
ness of implementations, and (2) using the simulator to
help fine-tune correct implementations.

We observe that the critical insight needed in the fol-
lowing proofs is in defining the partial order, <,. One way
to do a more syntax-directed verification of our code, as
suggested by Herlihy and Wing [15], is to encode this
partial order as auxiliary data and reason about this hid-
den state information. Such a proof method yields cum-
bersome proofs and tends to obscure the critical insight.
We are currently exploring simpler and more elegant
proof methods. For example, we are investigating the
relevance of Brookes’s work on syntax-directed proof
methods for reasoning about concurrent programs [1, 2].
We hope to be able to develop an axiomatic proof method
that lets one reason about the underlying semantic struc-
ture of the model of computation. The major difficulty
seems to be the need to handle the potentially complex
interactions of concurrent objects without recourse to
brute-force analysis based on interleaving.

We would like to extend our simulation environment to
serve as a basis for measuring the performance of imple-
mentations on multi-processor architectures. This basis
would be useful for producing statistics to compare the
relative efficiency of different implementations and to
compare a concurrent object under different loads and
test conditions (e.g., many dequeueing processes). We
have taken preliminary performance statistics on all ob-
jects in our library on both single and multiprocessor ar-
chitectures. They indicate that we need much better in-
strumentation of the lower-level operating system
primitives, e.g., those provided by C-Threads, before we
can draw definitive conclusions on relative performance
of our implementations.



TESTING AND VERIFYING CONCURRENT OBJECTS 181
APPENDIX: THE SEARCH ALGORITHM
/* search for the the next possible operation in the history H */

event *search(event *h) {
elt_stack current; /* Used to locate the current section and the selected operation. */

elt_stack *tmp; /* Auxiliary pointer */

event *head; /* Head pointer of the remaining subhistory */

bool found;

init_stack (&stack); /* Initialize stack. */

head = h;

while (head—->next '= NULL) { /* The remaining subhistory is not empty. */
current.pi = head; /* Let the first section of the remaining */
current.pr = head->match; /* subhistory be the current section. */
current. inv = current.pi; /* Try the first operation in the current section. */
while (true) { /* Keep trying until success. */

op_copy (current. inv, &current); /* Store the selected operation in current. */
if (operation(current.op, current.item, current.result, 1)) {
/* This operation is allowed by the sequential object. */

push (&stack, &current); /* Push current into stack. */
if (lift(current.inv, current.resp)) { /* Lift the selected operation from H. */
head = current.pi->next; /* Update head if it's the */
} /* first operation of the history. */
break;
t
else /* This operation is not allowed. */
do { /* Looking for another operation within the current section. */
current. inv = current. inv—>next;
found = true;
if ((current.inv—>op == '0') || (current.inv == current.pr)) {

/* Every operation in the current section has been tried without success. */
found = false;

if (isempty (&stack)) { /* If no previous section */

return (NULL) ; /* return NULL value. */

}
tmp = top(&stack); /* bBacktrack to the previous section. */
pop (&stack) ;

if (operation(tmp—>op, tmp—>item, tmp->result, 0}) {
/* undo the previous selected operation */
unlift (tmp—>inv, tmp—>resp); /* Put it back in history. */

current.pi = tmp—>pi; /* The previous section */
current.pr = tmp—>pr; /* becomes the current section. */
head = tmp—>pi;
current. inv = tmp—>1inv;
t
}
} while (!found);
}

}

current. inv = head;

push (&stack, &current); /* Push an extra event as sentinel. */

return(linearization(&stack)); /* Return linearized history. */

}

ACKNOWLEDGMENTS tion under Grant CCR-8906483 under the special NSF/DARPA joint
initiative on Parallel Computing Theory and in part by the Office of
The authors thank Maurice Herlihy for earlier collaborative work on  Naval Research under Grant N00014-88-K-0699.
linearizability and Francesmary Modugno for suggesting a polynomial- The views and conclusions contained in this document are those of
time analysis algorithm for the FIFO queue. We also thank the anony-  the authors and should not be interpreted as representing the official
mous referees for their helpful and insightful comments. policies, either expressed or implied, of the Defense Advanced Re-
This research was supported in part by the National Science Founda-  search Projects Agency or of the U.S. Government.



REFERENCES

1. Brookes. S. D. An axiomatic treatment of a parallel language. In
Proceedings of Conference on Logics of Programs. Brooklyn, NY,
1985, Springer Lecture Notes in Computer Science, Vol. 193,
Springer-Verlag. Berlin/New York, 1985.

[$%]

. Brookes. S. D. A semantically-based proof system for partial cor-
rectness and deadlock in CSP. In Proceedings of Symposium on
Logic in Computer Science. Cambridge, MA. 1986. IEEE Com-
puter Society Press, New York, 1986.
3. Burns. J. E.. and Peterson, G. L. Constructing multi-reader atomic
values from non-atomic values. In Proceedings of the Sixth ACM
Svmposium on Principles of Distributed Computing, 1987, pp. 222—
231.
4. Chor. B., Israeli, A., and Li, M. On processor coordination using
asynchronous hardware. In Proceedings of the Sixth ACM Sympo-
sium on Principles of Distributed Computing, 1987, pp. 86-97.
5. Cooper, Eric C. C threads. Technical Report CMU-CS-88-154,
School of Computer Science, Carnegie Mellon University, 1988.
6. Dijkstra. E. W. Notes on Structured Programming. Academic
Press. New York. 1972, pp. 1-82.
7. Ellis. C. S. Concurrent search and insertion in 2-3 trees. Acta
Inform. 14 (1980).
8. Gottlieb, A., Lubachevsky, B. D. and Rudolph, L. Basic tech-
niques for the efficient coordination of very large numbers of coop-
erating sequential processors. ACM Trans. Programming Lang.
Svstems 8, 2 (Apr. 1983), 164-189.
9. Schneider, F. B., and Andrews, G. R. Concepts and notations for
concurrent programming. Comput. Surveys 15, 1 (Mar. 1983), 1-43.
10. Guttag, J. V., and Horning, J. J. Introduction to LCL, a Larch/C
interface language. Technical Report 74, DEC/Systems Research
Center, Aug. 1991.

i1. Guttag.J. V., Horning, J. J., and Wing, J. M. The Larch family of
specification languages. IEEE Software 2, 5 (Sept. 1985), 24-36.

12. Herlihy. M. P. Impossibility and universality results for wait-free

synchronization. In Seventh ACM SIGACT-SIGOPS Symposium

on Principles of Distributed Computing (PODC). Aug. 1988.

13. Herlihy. M. A methodology for implementing highly concurrent
data structures. In Proceedings of the Second ACM SIGPLAN
Svmposium on Principles and Practice of Parallel Programming,
Mar. 1990. pp. 197-206.

14. Herlihy. M. P.. and Wing, J. M. Implementing queues without
mutual exclusion. Some queue examples.

15. Herlihy. M. P., and Wing, J. M. Axioms for concurrent objects. In
Fourteenth ACM Symposium on Principles of Programming Lan-
guages, Jan. 1987, pp. 13-26.

16. Herlihy, M. P., and Wing, J. M. Linearizability: A correctness
condition for concurrent objects. ACM Trans. Programming Lang.
Systems 12, 3 (July 1990), 463-492.

Received January 8. 1991: revised August 13, 1991: accepted November
22,1991

WING AND GONG

17. Herlihy, M. P., and Wing, J. M. Specifying graceful degradation.
IEEE Trans. Parallel Distrib. Comput. (Jan. 1991), 93-104.

18. Lamport, L. Concurrent reading and writing. Comm. ACM 20, 11
(Nov. 1977), 806-811.

19. Lamport, L. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Trans. Comput. C-
28, 9 (Sept 1979), 690.

20. Lanin, V., and Shasha, D. Concurrent set manipulation without
locking. In Proceedings of the Seventh ACM Symposium on Princi-
ples of Database Systems. Mar. 1988, pp. 211-220.

21. Lehman, P. L., and Bing Yao, S. Efficient locking for concurrent
operations on B-trees. ACM Trans. Database Systems 6, 4 (1981),
650-670.

22. Mellor-Crummey, J. M. Concurrent queues: Practical fetch_and_-¢
algorithms. Technical Report TR 229, Dept. of Computer Science,
University of Rochester, Nov. 1987.

23, Misra, J. Axioms for memory access in asynchronous hardware
systems. ACM Trans. Programming Lang. Systems 8, 1 (Jan.
1986). 142-153.

24. Papadimitriou, C. H. The serializability of concurrent database up-
dates. J. Assoc. Comput. Math. 26, 4 (Oct. 1979), 631-653.

25. Weihl, W. E., and Wang, P. Multi-version memory: Software cache
management for concurrent B-trees. In Proceedings of the 1990
IEEE Symposium on Parallel and Distributed Computing. Dallas,
TX, Dec. 1990, pp. 650-655.

JEANNETTE M. WING is an Associate Professor of Computer Sci-
ence at Carnegie Mellon University. Her research interests include
formal specifications, programming languages, and concurrent and dis-
tributed systems. She heads the Venari Project, whose goal is to pro-
vide support for distributed object management. She was actively in-
volved in the design of the Avalon transaction-based programming
language and the Miro visual specification language. She continues to
contribute to the design of the Larch family of specification languages.
Wing received her S.B., S.M., and Ph.D. degrees in computer science
from the Massachusetts Institute of Technology. She is a member of the
IEEE and ACM.

CHUN GONG received a B.S. in computer science from Peking
University, People’s Republic of China, in 1982, and an M.S. in com-
puter science from the Institute of Software, Academia Sinica, People’s
Republic of China, in 1985. From 1985 to 1988, he was research assist-
ant at the Institute of Software, Academia Sinica. From 1988 to 1990, he
was visiting the School of Computer Science, Carnegie Mellon Univer-
sity. Since January 1991, he has been at the University of Pittsburgh
studying for his Ph.D. His research interests include semantics of pro-
gramming languages, parallel and distributed computing systems, and
parallel algorithms.



