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1. Experimental Goals and Summary 

Many people have argued the importance 
of mechanical theorem-proving for reasoning 
about programs. Proving the correctness of 
programs by hand is usually hard and error- 
prone. People often miss boundary cases or 
forget to state hidden assumptions. On the other 
hand, can current mechanical theorem provers 
deal with a wide scope of non-trivial problems? 
Here, the question of scale is in diversity of 
problems as well as in complexity of each prob- 
lem. Some provers are more suitable for one 
class of problems than others and all provers 
have space and time bounds that set practical 
limits on the size of an individual problem that 
can be handled. 

This position paper summarizes our expe- 
rience 1181 using the Larch Prover (LP) (61 
as a mechanical aid for proving properties of 
Avalon/C++ programs [5]. Avalon/C++ is a 
programming language that deals with concur- 
rency and faults. Its semantics are based on a 
client/server model of distributed transactions. 
The Larch Prover is a proof checker based on 
rewrite-rule theory. It is more than a rewrite- 
rule engine, but not quite a general-purpose 
first-order logic theorem prover. ’ 

We 
view our application of LP to Avalon/C++ from 
two ways. From the Avalon/Ci+ viewpoint, we 
consider how LP can help in the proofs of non- 
trivial properties like atomicity, the basic cor- 

‘We have implemented AvaIon/C++ at CMU as an ex- 
tension of C++ [ 171, using the Camelot transaction facility 
[ 161 for its runtime system. The Larch Prover was imple- 
mented at MIT. 

rectness condition that must be shown of each 
Avalon/C++ object. From the LP viewpoint, we 
consider how LP fares on a non-trivial exam- 
ple like an Avalon/Ci+ program. Our example 
is different from those which LP-like checkers 
are traditionahy good at or designed for (e.g., 
groups, sets, and other algebraic structures), and 
from those drawn from domains, such as hard- 
ware and operating system kernels, addressed 
before by LP and other checkers such as Gypsy 
[8], LCF [Xl], HOL [9], and Clarke’s model 
checker [2]. 

We began our specification and proof exer- 
with the following general goals in mind: 

To see how amenable Avalon-like proper- 
ties are to specification and proof within 
the Larch framework [ll]; 

To see what can be gained in our under- 
standing of Avalon through the use of ma- 
chine aids; and 

To determine the limitations of one of the 
state-of-the-art mechanized proof check- 
ers. 

When we began, we were familiar with and 
knowledgeable about both the specificand do- 
main, Avalon/C++, and the specification lan- 
guage, Larch; one of us (IMW) was involved in 
the design of both. Our knowledge of LP at first 
was only superficial, but not naive. As a quick 
summary, we conclude that the Larch speci- 
fication language is best suited for describing 
theories of underlying Avalon/C++ data types, 
but less suited for describing globai properties 
of Avalon/C* computations. Though we did 
not gain a deeper understanding of Avalon/Ctt I 
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with our use of LP, we were forced to be ex- 
tremely explicit about Avalon/C++‘s computa- 
tional model and, sometimes more than we felt 
necessary, about certain equality and member- 
ship relations among objects. Finally, LP’s only 
major technical limitation is its inability to han- 
dle explicit existential quantification. Its prag- 
matic limitation is that its users still have to be 
fairly sophisticated. In its favor, LP is a robust, 
efficient and well-engineered proof checker. 

2. The Experiment and Concrete Results 

The Experiment. We encoded in the Larch 
Shared Language (LSL) [l I] an implementa- 
tion of a FIFO queue written in Avalon/Cte. 
In particular, we wrote LSL specifications to 
describe the underlying history-based computa- 
tional model for Avalon/C++, the queue rep- 
resentation (a pair of a partially ordered heap 
and a stack), the queue operations (enqueue and 
dequeue), constraints on an abstraction funo 
tion mapping a representation state to an ab- 
stract (queue) “state” (see below), and a queue- 
specific correctness condition. We performed a 
trivial transformation tiom LSL specifications 
to LP input.2 Finally, we used LP to prove the 
correctness condition, which essentially states 
that all histories (which may have interleaving 
queue operations performed by different trans- 
actions) preserve the first-in first-out property 
of queues. 

Results. One concrete result from this exer- 
cise is a three-page LSL specification of a one- 
page Avalon/C++ implementation of a FIFO 
queue. This specification includes an encoding 
of Avalon/C++‘s computational model special- 
ized for the queue. Since an abstraction func- 
tion for Avalon/C++ objects maps a single rep- 
resentation state to a set of sequences of abstract 
operations, rather than to a single abstract state, 
this encoding is non-trivial 

Another concrete result is a set of proofs of 
properties, ranging from simple, but general 
properties about sequences to more complex 
and very specific properties about the queue 
implementation. The proof transcripts of the 
queue’s correctness condition plus all helping 

‘Them was no direct interface between the LSL syntax 
checker and LF’ at the time we did the experiment. 

lemmas came to 168 pages, though the proof 
outline (user commands only) of the correct- 
ness condition is only one page long. 

3. What We Learned and Where to Co 
From Here 

The specij?cand domain is complex. We knew 
this from the start. Going through the exercise 
of formally specifying Avalon/C++‘s computa- 
tional model and the specific queue example 
down to the level of detail that can be used 
as input to a proof checker made Avalon/C++‘s 
intricacies painstakingly clear. Yes, the speci- 
ficand is complex and no amount of machine 
assistance is going to make that less complex. 

The prover is complex. We used only a small 
subset of the full functionality of LP. To use LP 
at its fullest and perhaps more effectively than 
we did, the user needs to understand concepts 
from rewrite-rule theory (e.g., confluence, ter- 
mination, convergence, and termination order- 
ings), and needs to know the theoretical and 
practical implications of invoking each of the 
related commands. For example, given a set 
of equations and rewrite rules, the complete 
command wiIl attempt (by computing all crit- 
ical pairs) to find a convergent set of rewrite 
rules that decides the equational theory of the 
original system. Instead of naively applying 
complete to our specifications, which would 
certainly exhaust heap space and probably not 
terminate, we chose the more conservative and 
more manageable strategy of computing spe- 
cific sets of critical pairs at “critical” instances 
in our proofsP 

Proving is like programming. Using LP is 
like programming since the user designs a proof 
and lets LP execute it. Getting a proof to go 
through requires iterations through specification 
(of the speciticand), design (of the proof), and 
“implementation” (checking the proof). Debug- 
ging occurs at all phases. The specitication 
changes because not enough has been stated 
for the proof to go through. The proof de- 
sign changes because the current proof path 
leads nowhere or because the specification has 
changed. 

31nformally, computing critical pairs produces equa- 
tional consequences from incomplete rewriting systems. 
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Using a proof checker requires forethought, 
patience (human cycles), and machine cycles. 
Given mechanical tools for theorem proving, 
users may easily be lured into thinking or hop- 
ing that the tool will find the proof for them. 
A proof checker does not decrease the amount 
of thinking required on the user’s part; it can 
alleviate some of the bookkeeping and symbol 
pushing, but no more. 

These conclusions may all sound like plati- 
tudes, and are certainly familiar to those who 
have worked with proof checkers, but they are 
worth repeating. Harder questions to answer ate 
how far has theorem proving technology gone, 
where is it going, and where should it go? To 
what use can we put mechanical theorem prov- 
ing tools in practice? 

We believe that current mechanical theorem 
proving tools can be used today for medium- 
sized, well-defined, domain-specific problems, 
e.g., hardware circuits [7,3], microprocessors 
[13,4], operating systems kernels [l], and se- 
cure systems [15]. We suggest two areas of 
research to push against our current technolog- 
ical limits: 

1. To build parallel systems that exploit par- 
allel architectures and parahelized versions 
of standard theorem-proving algorithms 
(like Knuth-Bendix [14]). In theory, it 
would have been more convenient to in- 
voke the complete command to have LP 
produce all consequences by computing all 
the critical pairs of our entire Avalon/C++ 
queue specification. In practice, we would 
have paid significant performance penal- 
ties. A parallel proving system could in- 
stead support a proof strategy in which 
relatively independent calculations are per- 
formed in parahel, e.g., computing critical 
pairs in parallel with executing the main 
proof. 

2. To build a library of theories that are rele- 
vant to computer science. We had to start 
from scratch (booleans, sets, sequences, 
stacks, etc.) before we could even state the 
queue’s correctness condition. with the 
exception of the Larch Handbook of Traits 
[12], there is a lack of pre-defined reusable 
theories for standard mathematical con- 
cepts that programmers use or assume. 
Ideally such a library of theories would be 

reusable across different theorem-proving 
tools, but they at least should be general 
enough for a variety of applications. They 
should also be extensible so that users can 
specialize the general theories as well as 
add their own application-specific theories. 

Though it may be a long time before a pow- 
erful enough mechanical theorem proving tool 
is built such that software engineers can use it 
in practice, pursuing the above two lines of re- 
search may help get us there quicker. 
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