
A Symbiotic Relationship Between Formal Methods and Security

Jeannette M. Wing"
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract • "

Security played a significant role in the development of formal methods in the 70s and
early 80s. Have the tables turned? Are formal methods now ready to play a significant role
in the development of more secure systems? While not a panacea, the answer is yes, formal
methods can and should play such a role. In this paper we first review the limits of formal
methods. Then after a brief historical excursion, we summa rize some recent results on how
model checking and theorem proving tools revealed new and known flaws in authentication

protocols. Looking to the .future we discuss the challenges and opportunities for .formal
methods in analyzing the security of systems, above and beyond the protocol level.

...

1: Introduction

The formal methods community owes much to the security community. In the United
States, the National Security Agency was a major source of funding in the 70s and early
80s for formal methods research and development. Results included the development of
formal security models, tools for reasoning about security, and applications of these tools
to proving systems secure. Security provided a challenging research application for the
formal methods community.

The burgeoning use of the Internet brings security now tothe attention of the masses.

The success of Amazon.com Inc. and thelike suggests that people trust sending their credit
card numbers over the wire. People are. however, justifiably hesitant to send their mother'sJ

maiden name to an electronic banking system when asked for it on-line. Simultaneous with
the increasing desire to perform transactions over the]nternet is the maturation of key
(pun intended) technology. For example, public-key encryption is no longer an academic
exercise. We have fortuitously come to a balancing point between a need and a solution:
People are more willing today .to pay the price for increased security.

•This research is sponsored in part by the Defense Advanced Research Projects Agency and the Wright
Laboratory., Aeronautical Systems Center, Air Force Materiel Command, USAF, F33615-93-1-1330, and
Rome Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-97-2-0031and
in part by the National Science Foundation under Grant No. CCIR-9523972. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. This paper is a contribution to the Needs-to-Solution 1998series of workshopssponsored
by the Officeof Naval Research and the National Science Foundation. The views and conclusionscontained
herein are those of the author and should not be interpretedas necessarily representingthe officialpolicies
or endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency Rome
Laboratory or the U.S. Government.

26 0-7695-0337-3/99 $10.00 © 1999 IEEP.

• 27

Are formal methods part of this maturing technology? With respect to security, what

problems can formal methods help to solve? What problems will formal methods never
help to solve?

In an attempt to answer these questions, the remainder of this paper first delimits the
bounds of formal methods, and then reviews briefly the historical role of the security com-
munity in the early development of formal methods I" summarizes recent results in the use
of formal methods tools for reasoning about security protocols; and discusses directions for
the future role of formal methods applied to security.

2: The Limits of Formal Methods
, ,

2.1: What Formal Methods Cannot Do

It is •axiomatic that systems will •never be made 100°_ secure. Formal methods will not
break that axiom. Moreover, substitute the word "proven" for "made _ in the previous
sentence_ and we have a corollary, it would be foolish for anyone in formal methods to
stand up and say "I can prove your system is 100°_ secure." Why?

Systems do not run in isolation; they operate in some environment. The formal spec-
ification of a system must always include the assumptions one makes about the system's
environment. A proof of correctness is valid only when these assumptions hold, So, if any
assumption is violated, all bets are off. Indeed, to break into a system, clever intruders find
out how to violate these assumptions.

Moreover, even if one were careful to state these assumptions explicitly, which is often
impractical, there would inevitably be conditions missed. And, even if one were compre-
hensive about stating these assumptions, which is always impracticable, a system could
very well be deployed in an environment for which it was not originally designed, perhaps
for convenience or lack of an alternative.

These remarks are not particular to security; they apply in. general to the process of
verifying a system meets its specification.

It is also axiomatic that the more secure one wants a system to be the more one must

be willing to pay. This truth implies that security itself is not an either/or property. If you
add more locks to your door, you make it harder for someone to break into your house.
More locks means mores ecure.

Requiring passwords, using biometrics, encrypting data, signing messages, settingfile ac-
cess control bits, using firewalls, sandboxing, managing a private network, running secure
coprocessors, or hiring a guard are just examples of the collection of "locks" one can use
to make a system more secure. In practice, security is a combination of many properties,
including data integrity, privacy, entity identification, message authentication, and account-
ability. Some of these properties are also not either/or, but measured in terms of degree.
Also, depending on the application or the user's end goal, some properties will be more
important than others. One property may even conflict with another, or achieving one may
make it harder to achieve another. For example: both anonymity and accountability are
desired properties of electronic payment systems. Achieving some security properties may

conflict with achieving other system goals. Requiring passwords for access conflicts with
convenience; using a public-key encryption scheme conflicts with performance.

1This paper does not do justice to either the historyof security researchor the history, of formal methods;
ratherit focuses on the intersection of the two and even so, only sketchily.

28

2.2: What Formal Methods Can Do

Formal methods can help us

• Articulate precisely a system's boundary, i.e.. the interface between the system and
its environment.

• Characterize precisely a system's behavior. Most current methods focus on functional -...

behavior only (What is the correct answer?) but some can handle real-time behavior
too (Is the correct answer delivered on time?).

• Define precisely a system's desired properties.

• Prove a system meets its specification.

• Determine under what circumstances a system does not meet its specification; for
example, some methods produce counterexamples, such as intruder scenarios, which
explain why the system is flawed.

These capabilities of formal methods help the practitioner in two ways:

• Through specification, focusing the system designer's attention. What is the interface?
What are one's assumptions about the system's environment? What lathe system
supposed to do under this condition or that condition? What happens if that condition
is not met? What are the system's invariant properties?

• Through verification, providing additional assurance. Relying on a proof that a system
meets its security goals is better than relying on a gut feeling.

It should be emphasized that any proof of correctness is relative to both the formal
specification of the system and the formal specification of the desired properties. A system +
"proven correct" with respect to an "incorrect" specification leaves us with no assurance
about the system at all. Finally, there will always be a gap between what is in a person's
head and the first codification of the system or desired property. No amount of formalization
will eliminate this gap.

+

,, 3: Past

The early formal methods research funded directly by the National Security Agency, or
indirectly through the National Computer Security Center (NCSC), centered on proving
systems secure.

Addressing the question of what #ecure means+ researchers defined models and policies to
express Lampson-style [26] access rights of subjects to objects. This work led to the Bell-
LaPad ula No-Read-Up and No-Write-Down secrecy model [3], the Biba No-Read-Down and
No-Write-Up integrity model [5], and the less formal Clark-Wilson integrity model based on :
a set of nine rules of practice [11]. The Bell-LaPadula model in particular gained notoriety
when McLean introduced System Z, which satisfies Bell-LaPadula properties but is clearly

insecure [29].
The systems of interest to prove secure were operating systems. More specifically, kernels.

Given that one cannot prove an entire system secure, better to try to prove a small piece

of it. Trust the kernel and nothing else. This approach emphasized the importance of the
reference monitor concept: the functionality of the operating system that mediates access
by subjectsto objects.For example, a user-levelprocessshouldnot have accessto the
kernel-levelstack.

29

The formal methods community played a fundamental role in fleshing out what proving
means. The process of proving entails three parts (not necessarily done in this order):
First, one must state the property of the system to prove, as expressed explicitly in a
formal specification. In the security context, this specification might simply be a list of
properties such as the so-called *,property (No-Write-Down) of the BeU-LaPadula model.

Second. one must model the system so that one can formally prove the property. This
mathematical model might be a semantic structure like a state machine or a syntactic
structure like a logical expression. Third, the proof. Typically, the proof might rely on
induction over traces of the state machine model or it might rely on deduction to show that
an implication holds (SystemModel =_ SystemProperty). The proof might be discovered
automatically by the machine or require interactive guidance from the human user. Formal

verification is the process of proving, by hand or machine, that the model of the system
satisfies the formal specification. In practice, most theorem proving tools are more like
proof checkers; they differ in the amount of human intervention needed to check the proof.

One of the most influential documents of the time, produced by the NCSC, is the U.S.
Trusted Computer System Evaluation Criteria, better known as "The Orange Book" [10].
Amoroso [2] summarizes its goals:

• To provide a standard metric for the NCSC to compare the security of different com-..
puter systems. "

• To guide computer system vendors in the design and development of secure systems.

• To provide a means for specifying security requirements in Government contracts.

In particular for a system to be certified A.1 according to the Orange Book means that
one formally specify the system's security requirements, formally model the system, and
formally prove that the model meets its specification. :

In this context, the major results of the early 80s by the formal methods community in

the United States, in particular those funded heavily by the security community, were in
the development of theorem proving tools. To get one's system certified A.1, one would use
one ofthesetoolsto producetheproof.

Infact,thesetoolsweregeneral-purposetheorem provers;theywere appliedtoexamples

from thesecurityarena,but wereapplicableingeneralto allkindsofsystems.By 1986,in
Kemmerer's landmark VerificationAssessmentStudy [23],fourtoolswerethemost mature,

known, or used:

• Affirm, developed at the University of Southern California's Information Sciences In-
stitute, best known for its support for reasoning about equational specifications, in

particular through its implementation of the Knuth-Bendix completion procedure.

• The Formal Development Methodology (FDM) System, developed at System Devel-
opment Corporation's Santa Monica Research Center, best known for its support for
a non-deterministic state machine model and the]na Jo specification language.

• Gypsy, developed at the Institute for Computing Science at the University of Texas
at Austin, best known for its support for program verification of a subset of Pascal,
including a verification condition generator. :

• (Enhanced) Hierarchical Development Methodology (HDM), developed at Stanford
Research Internationars Computer Science Laboratory, best known for its SPECIAL
specification language and its collection of decision procedures for propositional logic

as the heart of its theorem prover.

The general-purpose Boyer-Moore theorem prover [8], also developed during the same

3O

time period, was representative of the state of the art in automated theorem proving tools
and was applied to many examples', notably the _CLlnc Stack" [4].

A few researchers developed tools specific to reasoning about security. The two best

i_ known examples are the Interrogator [33] and the NRL Protocol Analyzer [31]. With both
of these tools, one 'specifies an insecure state and the tool searches backwards to determine
whether that state is reachable. The Interrogator is based on Prolog, does an exhaustive

search (and hence is fully automatic): and has a built-in notion of encryption. The NRL
Protocol Analyzer's search is less automatic. It is based on Dolev and Yao's pioneering

work on an algebraic term rewriting model for two-party cryptographic protocols [14].
Meadows used the NRL Protocol Analyzer to discover previously unknown flaws in the

• Simmons Selective Broadcast Protocol and the Burns-Mitchell Resource Sharing Protocol.

Kemmerer, Meadows, and Millen's [22] paper summarizes the strengths and weaknesses of
FDM, the NRL Protocol Analyzer, and the Interrogator, using theTatebayeshi-Matsuzaki-
Newman (TMN) protocol as the common running example.

In 1990, Burrows, Abadi, and Needham published their work on a Logic of Authentication

(aka the BAN Logic) [9], a formal logic designed specifically to reason about authentication
protocols. The iogic's main construct allows one to reason in terms of belief, and in par-
ticular the beliefs a principal accumulates during the run of a protocol. One kind of belief

a principal might acquire is about the freshness of messages, e.g., through the freshness of
message components such as nonces. The lack of proof that a message is fresh suggests
a possible replay attack--a well-known vulnerability of the original Needham-Schroeder
symmetric-key protocol. The BAN work attracted both praise and criticism. It inspired
some to define their own belief logics, e.g., the GNY (Gong, Needham, and Yahalom)

logic [16], the SVO (Syverson and van Oorschot) logic [39], and AUTLOG [24]. Unlike the
aforementioned general-purpose tools, BAN and its derivatives focused on only authentica=
tion protocols, and except for AUTLOG [24], lack tool support. Despite these limitations,
theBAN Logic's influence was positive overall: it demonstrates that formal logics have a
role in revealing flaws in an important class of security protocols.

One of the criticisms against the original BAN paper was the absence of a semantic

model. Solving this problem led to the definition of various state-machine semantic models
for authentication protocols, including Abadi and Tuttle's [1], Woo and Lam's [40], and

" Heintze and Tygar's [18]. Woo and Lam also introduced the need to check not just for

secrecy, but also correspondence, a property that assures that the authenticating principal
is indeed _talking" to the intended authenticated principal.

In their comprehensive 1993 survey report, Rubin and Honeyman [38] use Meadows's
four-type classification scheme [30] to categorize twenty-seven different formal approaches
to the analysis of authentication protocols. The four types are (1) using general-purpose

specification languages and tools, e.g., Ina Jo_ (2) using special-purpose rule-based tools.
e.g., the Interrogator, to help the protocol designer; (3) using belief logics, e.g., BAN; and
(4) using special-purpose algebraic-based tools, e.g., the NRL Protocol Analyzer.

Two international meetings caused the formal methods and security communities to cross

paths: the FM'89 [13] and FM'91 workshops, sponsored by the governments of the United
States, Canada, and the United Kingdom (in particular by the National Security Agency
and its Canadian and UK counterparts). The focus in F_'89 was on the role of formal
methods for trustworthy computer systems. Here, trustworthy meant not just security but

also safety-critical. The main outcome was the recognition of two different styles of formal
methods:

31

• The UK and European style: The focus was on specification, on the system's high-level
design, and on paper-and-pencil analysis.

• The US and Canadian style: The focus was on verification, from the system's high-
level design through its code-level implementation down to its bit-level representation
in hardware (the "CLInc Stack" approach), and on machine-assisted analysis.

Debate over which style was better subsided by FM'91 where instead there was con-

sensus to embrace all methods, to acknowledge that tools are necessary, and to direct the
community's effort to producing more convincing case studies, Another outcome of FM'91
(for the US at least) was the move of mainstream formal methods research out from under
the shadow of the security agencies, witnessed by the absence of subsequent workshops
sponsored by those three agencies.

4: Present . " '

Since the early 90s the formal methods community has experienced an explosion of new
developments: new methods, new tools, and countless large-scaled projects and non-trivial
case studies. 2 Clarke and Wing capture the state of the art in their 1996 ACM Computing
Surveys paper detailing the progress of three threads in the development of formal methods:
model checking, theorem proving, and software specification. Model checking, in particular,
is a proven success for hardware verification; companies such as lntel are.establishing their
own hardware verification groups, building their own verification systems, and hiringpeople
trained in formal methods.

In 1996 another convergence of the two communities occurred. Lowe [27] used Roscoe's
model checker. FDR, to exhibit a flaw in the Needham-Schroeder public, key authentication
protocol, first published eighteen years earlier. Lowe actually discovered the flaw on his
own. but used the tool to check both the flawed and the amended protocols. This paper
started a flurry of activity in (1) the use of other model checkers to •show the same thing,
(2) the use of other tools and techniques to show the same thing, and (3) the application
of all these tools to other authentication protocols and to simplified electronic commerce

protocols. Here is a sampling:

• Model checking approaches

- Mitchell, Mitchell and Stern [34] use Dill's Mur¢ model checker (originally de-
signed for hardware verification) on the Needham-Schroeder public-key, TMN,
and Kerberos protocols. Current efforts at Stanford are aimed at specifyingand
verifying SSL 3.0.

- Marrero: Clarke, and Jha [28] describe a special-purpose model checker, Brutus,
which has a built-in model of an intruder.]t has direct support for checking
correspondence properties. Marrero used it to verify fifteen classic authentication

protocols and is currently applying it to examine electronic •commerce protocols,
including 1KP, 2KP, and Netbill

- Heintze. Tygar, Wing, and Wong [19] used FDR to check atomicity properties of
Netbill and a simple digital cash protocol.

2As of 14 May 1999, the Oxford Formal Methods Web page http ://wm.comlab.ox.ac.uk/archive/fomal -- mothodm/
lists 79 different formal methods notations and tools, and 660 "formal methodists _ .

32

• Theorem proving approaches

- Paulson used a general-purpose theorem prover, Isabelle. to show how to use
induction to reason about five classic authentication protocols and their varia-

tions [37].

- Dutertre and Schneider embed CSP in the general-purpose theorem prover PVS
and used the embedding to verify authentication protocols [15]

- Bolignano used the general-purpose theorem prover, Coq, to analyze the Needham-
Schroeder public-key protocol [6] and is investigating its use for analyzing elec-
tronic commerce standards likethe Secure Electronic Transaction (SET_ proto-

col [7].
• Hybrid approaches

- Meadows has recently made improvements to the NRL Protocol Analyzer so
that it should best be viewed as special-purpose tool that embodies both model

checking (e.g., brute force search) and theorem proving (e.g., lemma generation)
functionality. She is currently applying it to analyze the Internet Key Exchange

protocol [32] and the SET protocol. •

- Kindred and Wing [25] invented a new technique, called theory generation, which
automatically generates a finite representation of a protocol'8 theory, as repre-
sented in terms of BAN-like formulae. Kindred has applied this approach to
the classic set of authentication protocols and variants of the NetBill electronic

payment protocol.

The common theme in almost all of the above recent work is the demonstration of

how formal methods can be applied to authentication protocols, particularly Needham-
Schroeder'8 public-key protocol. Indeed at the September 1997 DIMACS Workshop of

Cryptographic Protocol Design and Verification many of the speakers presented how their
method reveals the flaw discovered by Lowe.

In June 1998, Heintze andWing [20] ran the well-attended Workshop on Formal Meth-
ods and Security Protocols and there are numerous similar workshops scheduled for 1999
worldwide. The interest in the intersection of these two communities remains unabated.

The motivation from the formal methods community is clear: security still remains a

challenge. The motivation from the security community is strong too. More and more peo-

ple place their trustin computing systems today for doing everything from casual shopping
to medical recordkeeping; and more and more systems are built out of commercial-off-the-

shelf components. It is no longer just the government, the military, or the universities who
are the purchasers, users, or conveyors of large, complex computing systems. Thus, system
designers and implementers are morewilling to pay the price for increasing the assurance
that their systems are secure. Formal methods can provide such increased assurance.

..

•5: Future

5.•1: The Practice of Building Secure Systems

Figure 1 depicts how we build secure systems. We first and foremost rely on a solid
cryptographic base. Out of these primitives for encryption,• decryption, signatures, hash-

ing, etc., we define •protocols such as for authentication and key-exchange, and we rely on
..

33

L

! a00,ica,iooI
i systems and _anguages I

|l i =J protocols,

I c 0t°I
Figure 1. System Layers

Ia0o''t'ooI
I 0ro,oco,sI

! c ,,o I
Rgurs 2. Secud_ Guarantees

standard reliable network protocols like TCP/IP. We rely on these protocols to build secu-
rity services, some of.which we use on a daily basis; for example, I invoke Kerber_'s l_intt
every morning to access my files stored remotely. All of these protocols and.system services
are implemented in general-purple programming languages such as C or Java. Finally,
above the systems and languages level, we have applications which are what ..the public
sees and uses. These applications include on-line shopping, banking, bill payment, and tax
forms submission, all of which should provide some guarantees of privacy and protection
to the user.

Ironically, the "strength" of what we can guarantee is inversely proportional to the =size"
of the layer (Figure 2). There are fundamental and deep results in cryptography that tell
us precisely what we can guarantee, what we cannot, and what is still an open question
(e.g., the equivalence of the RSA problem and factoring). At the protocol level we have
a handful of formal methods, even mechanized ones, that let us provide some guarantees
about authentication protocols. At the system/protocol layer, we have protocols like SSL
and SHTTP, which provide minimal encryption and authentication •functionality for setting

up secure channels. At the systems and languages layer, commercial technologysuch as
Authenticode, Active X, Java, and JavaScript provide varying degrees of security, but

are subject to widely publicized attacks such as denial of service and spoofing. At the
application layer, in terms of security guarantees, we don't have very much at all. What
then are the challenges for the future? ..

..

5.2: Challenges and Opportunities for Formal Methods Researchers

Below I use N to indicate near-term research; L, long-term.
First, I focus on the protocol leuel (N). If a protocol has a design flaw, it does not mat-

ter if the implementation is correct. The protocol is vulnerable to attack. We know that
protocols are notoriously difficult to get right and the more complex a protocol, the harder

34 '_

it is to understand. Good progress has been made in proving or disproving that individual
protocols meet certain properties." "Progress has also been made in using different mech-
anized methods like model checking and theorem proving to help with the proof process.
This work should continue, as sh6uld the more general work of building and integrating
formal methods tools and applying them to larger and larger systems.

With respect to security, however, I would like to move the formal methods community
to look beyond the protocol level.

• Multiple protocols

- Protocol composition (L). We expect in practice that more and more people will be
designing and deploying their own protocols by using existing protocols as build-
ing blocks. We should design new and integrated protocols with compositionality
in mind. By composition, I mean running protocols interleaved (concurrently),

sequentially (back-to-back), and layered (as subprotocols of each other).

In general we need all composition mechanisms to work together. For example,
authentication requires using encryption as a subprotocol; digital cash requires a
blind signature scheme; and the SET standard relies on a public-key infrastruc-
ture. .

Some newly discover_ attacks arise because of •multiple, interleaved runs of the
same or different protocols. For example, the correctness of the separate runs
of two protocols does not imply the correctness of a system where an intruder
can participate in both runs at the same time. We need to look at multiple,
simultaneous, and possibly interleaved runs of the same and different protocols.

• Systems and language level

- Program analysis tools (N). Even if the protocol design is correct, the imple-
mentation could be flawed. Many of the Computer Emergency Response Team
(CERT) advisories can be traced to a buffer overflow problem, e.g., resulting from
using the unsafe s¢rcpy C library string routine. From the CERT report the fol-
lowing are given as examples of "weaknesses in how protocols and software are
implemented" [12]:

' • race conditions in file access

• non-existent checking of data content and size
• non-existent checking for success or failure
• inability to adapt to resource exhaustion

• incomplete checking of operating environment
• inappropriate use of system calls
• re-use of software modules for purposes other than their intended ones

•

We should develop program analysis tools that will help us detect these kinds
of weaknesses in the software implementations of protocols and systems. Work
such as applying program slicing to do a vulnerability analysis of TCP/IP [17] is
a step in this direction.

- Certified library components (N). As more and more systems are built out of off-
the-shelf components, it pays to have additional assurance that the components
have been certified to meet some degree of security. Since these building blocks
will be used multiple times and in different contexts, the cost of certifying them
could be amortized over the overall cost of developing the systems in which they
are embedded.

35

These librarycomponents might be in hardware too. A milestonewas recently

achievedwhen theIBM 4758 PCI CryptographicCoprocessor,which providesa

tamper,sensingand tamper-respondingenvironmentto enablesecureelectronic
businesstransactions,earned the highestcertificationfor commercial security

awarded by theUS Government. Itisthe firstproductto evermeet the Federal

InformationProcessingStandard 140-ILevel4 [21].

- Benchmark suite(N).Itwould be a greatserviceto the community to have a
benchmark suiteofintruderscenariosthatcan be used as a testbedfor design-

ing,analyzing,and debuggingexistingand futureprotocolsand systems.These
benchmarks can be usedas testcasesagainstsourcecode as wellastestcasesfor

formalmethods analysistools.

- Programming language design (L). Language designers should investigate incor-
porating into the programming language more "type" information that would
.permit some security guarantees to be statically enforced or dynamically checked.
Myers's work on JFlow for statically analyzing flow control [35] is one approach
based on additional annotations to Java programs. Another approach by Nec-

ula and Lee is to use proof-carrying code, allowing clients to execute untrusted
remote code safely [36].

• Applications level

- Case studies (.iV). We should do large-scale examples to show the applicability
and scalability of our formal methods. Current studies of the SSL, IKE, and SET

standards are good examples. Moreover, formalizing a standard has a higher
payoff than formalizing a single system. This work takes tirrle, effort, and people
power; it also can be extremely tedious. Thus, the case studies need to be chosen
wisely; when completed, the targets of these studies must still be relevant.

• Horizontal and vertical slices (IV, L)

- Global properties. At each level and above all levels, we need to reconsider global
security properties of systems. We need to understand which properties can be
decomposed such that local proofs imply they hold globally', and which do not.
We may need new proof techniques to handle global properties that cannot be
decomposed.

- Intruder models. We need to build a suite of intruder models, each class repre-

senting different intruder capabilities (passive, active: etc.). Some intrudermodels
may be protocol-specific; others, more generic. As the taxomomy of protocols of
interest expands, e.g., to include electronic payment protocols and secure auction
protocols, so must our models of intruders.

- Crossing abstraction boundaries. We need to look at slices that cut across the four
levels depicted in Figure 1, tracing a property or function from an application at
the top all the way down to how it is implemented at the cryptographic level. We
should pay particular attention to when we are crossing boundaries between the
levels since interfaces often do not match at the boundaries.

Even beyond these layers and slices, we need to take a more holistic view of a system.
Again, from the CERT report:

Vulnerabilities in the category of system and network configurations are not
caused by problems inherent in protocols or software programs. Rather, the
vulnerabilities are a result of the way these components are set up and used.

36 "'

Products may be delivered with default settings that intruders can exploit. Sys-
tem.administrators and users .may neglect to change the default settings, or they

may simply set up their system to operate in a way that leaves the network
vulnerable.

An example of a faultyconfigurationthathas been exploitedisanonymous

FileTransferProtocol(FTP) service.Secureconfigurationguidelinesforthis
servicestressthe need to ensurethatthe passwordfile,archivetree,and ancil-

larysoftwareareseparatefrom the restof theoperatingsystem,and thatthe

operatingsystemcannot be reachedfrom thisstagingarea.When sitesmiscon-

figure their anonymous FTP archives, unauthorized users can get authentication
information and use it to compromise the system.

Thus, we see that it is not enough to look at just the system or even the system and its
intended operating environment. Formal methods need to be integrated with other methods
that can address issues--some of which are beyond the scope of formalization--raised by

examples like the one above. These analyses include risk analysis, hazard analysis, fault
analysis, and intrusion detection analysis. Formal methods also need to be better integrated
into the entire software development lifecycle such as during requirements analysis, testing,
and simulation.

Finally, we must introduce the human factor, which in principle is part of the system's
environment. Human factors cannot be neglected. Research in modeling human behav-

ior, human-computer interaction, and management of processes and organizations can all
complement the more formal nature of research of formal methods.

Acknowledgments

Opinions expressed in this paper are my own, not of any of my sponsors or even neces-
sarily of any of my formal methods or security colleagues.

References

" [1] M. Abadi and M. Turtle. A semantics for a logic of authentication. In Proceedings o] the lOth ,4CM
Symposium on Principles o] Distributed Computing, pages 201-216, August 1991.

[2] E. Amoroso. Fundamentals ol Computer Security Technology. AT&T Bell Laboratories, 1994.

[3] D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations. Technical Report
ESD-TR-73-278, The MITRE Corporation, Bedford, MA, 1973.

[4] W.R. Bevier, W.A. Hunt, Jr., J S. Moore, and W.D. Young. An approach to swtems verification.
Journal o] Automated Reasoning, 5:411-428, 1989. See also three other articles in the same issue by
Young, Moore, and Hunt.

[5] K. Biba. Integrity considerations for secure computer systems. Technical Report MTR-3153, The
MITRE Corporation, Bedford, MA, 1975.

[6] D. Bolignano. An approach to the formal verification of cryptographic protocols. In Proct_dings o] the
Third ,4CM Conference on Computer and Communications Security, pages 106-118. ACM Press, 1996.

[7] D. Bollgnano. Towards the formal verification of electronic commerce protocols. In Proceedings of the
Tenth IEEE Computer Security Foundatio_ Workshop, June 1997.

[8] R. Buyer and J. Moore. A Computational Logic. ACM monograph series. Academic Press, New York,
1979.

[9] M. Burrows, M. Ahadi, and R. Needham. A Logic of Authentication..4 CM Transactions on Computer
Systems, 8(1):18--36, February 1990.

-, [I0] National Computer Security Center. Department of Defense Trusted Computer Security Evaluation
Criteria. Technical Report DoD S200.Z8-STD,NCSC, i985.

•• 37

[II] D. Clark and D. Wilson. A comparison of commercial and military, computer security policies. In IEEE
Symposium on Security and Privacy, 1987.

[12] Computer Emergency Response Team Coordination Center Staff. Security of the interact. In Encyclo-
pedia of Telecommunications, 1997.

[13] D. Craigen and K. Summerskin. Formal Methods for Trustworthy Computer Systems (FM89). Springer-
Verlag, 1990. Workshops in Computing Series.

[14] D. Dolev and A. Yao. On the security of public key protocols. IEEE Tmnsactione on Information
Theory, 29(2):198-208, March 1989.

[15] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authenticat_a protocols, in
Theorem Proving in Higher Order Logics, pages 121-136, August 1997. LNCS 1275.

•[16] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cr.vptographic protocols. In Pro-
ceedings of the 1990 IEEE Computer Society Symposium on Research in Security and Privacy, pages
234-248, May 1990.

[17] B, Guha and B. Mukherjee. Network security via reverse engineering of TCP code: Vulnerability
analysis and proposed solutions. In Proc. IEEE In/acorn '96, pages 603-610, San Frsndsco, CA, March
1996. •.....

[18] N. He_t_ and J. Tygar. A model forsecure protocols and their compositions. ,IEEE Tra_actions on
Software Engineering, 22(1):16-30, January 1996.

[19] N. Heintze, J. T.vgar, J. Wing, and H. Wang. Model checking electronic commerce protocols. In
Proceedings of the Second USENIX Workshop in Electronic Commerce, pa_es 147--164, November 1996.

..

[20] N. Heintze and J.M. Wing. Proceedings of the workshop on formal methods and aecurity protocols.
URL: http://cm.beIl-labs.com/cm/cs/who/nch/fmsp/index.html, June 1998.

[21] IBM. IBM Coprocessor First to Earn Highest Security Valid_ion.
http://w_'.ibm.com/security/cryptocards/html/pr_fips.html.

[22] R. Kemmerer, C. Meadow's, and J. Millen. Three systems for cryptographic protocol analysis. Journal
of Cryptolocjy, 7(2):79-130, 1994.

[23] R.A. Kemmerer. Verification assessment study final report. Technical Report C3-CR01-86, National
Computer Security Center, Ft. George G. Meade, MD, March 1986. Five volumes.

[24] V. Kessler and G. Wedel. AUTLOG---an advanced logic of authentication. In Proceedings of the
Computer Security Foundations Workshop VH, pages 90-99. IEEE Comput. Smc., June 1994.

[25] D. Kindred and J. Wing. Fast, automatic checking of security protocols. In USENIX Snd Workshop
on Electronic Commerce, 1996.

• _.

[26] B. Lampson. Protection. In Proceedings of the Fifth Princeton Symposium on Information Sciences
and Systems, 1971. Reprinted in ACMU Operating Systems Review, Vol. 8, 1974.

[27] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDP_ in Tools and
Algorithms for the Construction and Analysis of Systems, volume 1055 of Lecture Notes in Computer
Science, pages 147-166. Springer-Verlag, 1996.

[28] Will Marrero, Edmund Clarke, and Somesh Jha. A model checker for authentication protocols. In
Proc. of the D[MA CS Workshop on Design and Formal Verification of Security Protocols. DIMACS
Rutgers University, September 1997.

[29] J. McLean. A Comment on the Basic Security Theorem of Bell and LaPadula. Information Proceuing
Letters, 20, 1985.

[30] C. Meadows. Applying formal methods to the analysis of a key management protocol. _ Journal of
Computer Security, 1:5-53, 1992. "

[31] C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic Programming, pages 113-
131, 1996.

[32] C. Meadows. Analysis of the intemet Key Exchange Protocol Using the NRL Protocol Analyzer.
submitted to 1999 Securitye and Privacy, 1998. .,

[33] J.K. Millen, S.C. Clark, and S.B. Freedman. The Interrogator: Protocol Security Analysis. IEEE
Trans. on Soft. Eng., 13(2), February 1987.

[34] J. Mitchell, M. Mitchell, and U. Stem. Automated Analysis of Cryptographic Protocols Using Murphi.
In Proceedings of the IEEE Conference on Secuirty and Privacy, pages 141-151, 1997.

[35] A. Myers. JFiow: Practical Static Information Flow Control. In Proceedings of the :86th A CM Sympo.
slum on Principles of Programming Languages, January 1999.

38

[36] G. Necula and P. Lee. Safe Kernel Extensions Without Run-Time Checking. In Proc. of Second Syrup.
on Operution8 System8 Design and Implementation, October 1996.

[37] Lawrence C. Pauison. Proving properties of security protocols by induction. Technical report, University
of Cambridge, December 1996.

[38] A Rubin and P Honeyman. Formal methods for the analysis of authentication protocols. Technical
Report 93-97, CITI, November 1993.

[39] P. Syverson and P. van Oorschot. On unifying some cryptograph/c protocol logics. In Proceedings o/
the 1994 IEEE Computer Society Symposium on Research in Security and Privacy. IEEE Computer
Society Press, May 1994.

[40] T. Woo and S. Lam. A semantic model for authentication protocols. In Proceedings of the IEEE
Symposium on Research in Security and Privacy, 1993. .,

