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Formal specifications can and should play an important role in the design phase of the programming
process. Uncovering design flaws early can save some of the time, effort, and resources spent in
uncovering them later in testing and debugging phases. Forcing onesclf to be precise helps clarify and
disambiguate a client’s problem statement. Often it is the act of specifying, and not the final product
that is most useful in program design. A specification also serves as a valuable piece of documentation.

One of the problems specifiers face when writing a formal specification for a large piece of software is
that no feedback is provided to indicate whether the specification is on the *right track.® One method of
attacking this problem is to provide ways to evaluate a specification as it incrementally develops.

We discuss two ways that a specificr can evaluate a specification. One is to compare two specifications
with respect to their relative strength (Section 2). The second is to determine parts of a specification that
are inessential to show that some desired property holds (Section 3). Another way, which we do not
discuss in this paper but which is addressed in detail in [Wing],l is to check a specification for certain
properties, e.g., consistency and completeness, We give some background information in Section 1 to
establish our context. [Wing] contains further details and precise definitions.

1. Background

We treat a specification as a formal system that specifies a theory. A formal system, Spec = <L, A,
R>, consists of a language L (a set of symbols and a set of well-formed formulae), a set of axioms A, and
a set of rules of inference R. A theory specified by a formal system, Spec, is the smallest set of formulae
reflexively and transitively closed over the set of axioms under the rules of Spec. The theory we associate
with a specification is a first-order theory with equality.

The specification language we use is targeted for the CLU programming language. We are concerned
with specifying procedures and clusters, and thus, with defining the theories of specifications of procedures
and clusters. A cluster names a type and defines a set of procedures that create or manipulate objects of
that type. An object whose value can change is said to be mutable.

The formulae in the theory of a procedure specification, Pr, are triples, P{Pr}Q, where P is a first-order
assertion on the initial values of objects, and Q is a first-order assertion on the initial and final values of
objects. The theory of a cluster specification is the union of the theories of its procedure specifications
plus the set of triples derivable from a type induction rule associated with a cluster specification. There is
a hypothesis in the rule for each procedure specified to create or mutate an object of that type. The type
induction rule lets us associate a type invariant with a cluster specification.

We focus on expressing our definitions in terms of theories, and not of models, because a theory can be
viewed as a set of formulae, i.e., strings of symbols, subject to syntactic manipulation. Given sufficient
mechanized theorem-proving power, we can reason about specifications independently of their models by
just manipulating their theories as we do their text.

2. Comparing Strength

Intuitively, the stronger a specification, the fewer the number of implementations that satisfy it. One
situation in which it is useful to know when a specification is as strong as another is in that ensuring the
strength of a specification is unchanged after a modification to it is made. For example, if we rename
identifiers of a specification in order to have mnemonic names, we would want to make sure we have
made only a syntactic and not a semantic change. A second situation is in determining if it is permissible
to replace a specification with another without affecting any of its users. If one specification is as strong
as another, then under certain circumstances we should be able to substitute one for other.

Sometimes, we may want a stronger specification. We might realize the specification is not strong
enough in trying to prove a property of the specification or of what we intend it to specify. We revisit

lWing, JM., "A Two-Tiered Approach to Specifying Programs,*® Laboratory for Computer Science TR-299, MIT
Cambridge, MA, June 1983. Also Ph.D. thesis, Dept. of EE and CS, MIT, May 1683.
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this situation when we discuss essentiality of a specification in Section 3. Finally, if we were to decide to
strengthen a specification, we might want to compare the new and original specifications to make sure we
did not make them incomparable.

2.1. Definition of Strength

To define strength formally, we borrow the analogous concept from logic that the stronger a theory, the
fewer the number of models that satisfy it, and define a strength relation between specifications in terms
of strength between their theories. For example, the theory of <Z, +, -> is as strong as <N, 0, succ>,
but not vice versa, where Z is the set of all integers, and N is the set of all natural numbers. Determining
when one theory is as strong as another depends on finding an interpretation that translates formulae (not
just symbols) of one theory into those of another. Most of the following definitions are adapted from

{Endenon].2 Let Thl be a theory in a language L1 and Th2 be a theory in a possibly different language
L2.3 Let 7 be a mapping from L1 into L2. '

Def: If Vo € L1 [0 € Thl = n(c) € Th2}, then 7 is an interpretation of Th! into Th2.

Def: Thl is as strong as Th2 if there exists an interpretation of Th2 into Th1l.

Def: Thl is stronger than Th2 if Th1 is as strong as Th2 and Th2 is not as strong as Thl.

Def: Thl and Th2 are sncomparable if Thl is not as strong as Th2 and Th2 is not as strong as Thl.

We extend the last three definitions to two specifications in the obvious way. For example, given two
specifications, Specl and Spec2, Specl is as strong as Spec2 if Th(Spec1) is as strong as Th(Spec2).

2.2. Applying the Definition to Cluster Specifications

It would be useful to characterize changes we can make to a specification by their effect on the strength
of the original specification. For example, adding a procedute specification to a cluster specification might
strengthen the cluster specification, or it might not. Depending on what kind of procedure specification is
added can restrict the possible effects on the strength of the cluster specification. Let us consider two
kinds of procedure specifications: constructors and observers. A constructor of type T specifies that a
procedure return or mutate objects of type T; an observer of type T specifies that a procedure return or
mutate objects of type other than T.

Adding a constructor has the possible effect of leaving the original specification unchanged, making it
incomparable to the new, or weakening it. We conjecture that adding a constructor cannot strengthen a
cluster specification because adding a constructor adds a hypothesis to the type induction rule. Adding a
hypothesis to the rule might leave it unchanged, weaken it, or invalidate it; only by deleting a hypothesis
can we possibly conclude a stronger invariant.

Here is an example. Let Specl be a set cluster specification with the sole constructors singleton and
union and the type invariant that all sets are of size strictly greater than zero. Suppose we add a pair
constructor. Since formulae involving pair can be expressed in terms of singleton and union, no theorems
of Th(Specl) are invalidated and no new theorems are added. This supports our intuition that adding a
constructor that does not change the type invariant should not stremgthen a cluster specification.
Suppose, instead that we add to Specl a create constructor to make Spec2. One might think that by the
addition of create, Th(Spec2) would be strictly larger than Th(Specl) and so Th(Spec2) would be stronger
than Th(Specl). This is not true, however, since the property that all sets are of size greater than zero is
true of Specl, but not of Spec2, and the property that there exists a set of size equal to zero is true of
Spec?2, but not of Speci. This example illustrates a perhaps surprising consequence of our definition since,
intuitively, we would think that adding a constructor that increases the value set of a type should strictly
strengthen a cluster specification.

2Enderton, H. B., A Mathematical Introduction to Logic, Academic Press, New York, 1072.

3L2 must include equality for technical reasons.
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Adding an observer can strengthen a cluster specification or leave it unchanged. Since hypotheses of the
type induction rule deal with only constructors, adding an observer has no effect on the type induction
rule of the cluster specification. Hence, the addition of an observer cannot weaken or invalidate the type
induction rule. As an example of strengthening with an observer, consider adding a size observer to a
stackfelem/ cluster specification that has only constructors. Doing so adds theorems about integers to the
Th(stackfelemf). As an example of leaving the strength unchanged, suppose stackfelem] has null, push,
and top, where top mutates its stack argument. Adding a read observer that is like top except that it does
not mutate its stack argument, does not change the strength of the original specification.

3. Essentiality

In the construction of a specification, we often want it to be "minimal® in a given context. That is, we
would like to able to pare down a specification to just the "essential part® necessary for a desired set of
properties to hold. Removing parts that have been shown to be inessential gives us a way of paring down
a specification.  Henceforth, we limit our discussion on essentiality to the converse notion of
“inessentiality.”

A part, P, of a specification, Spec, is inessential for a theory, T, if Spec with P removed can still be
used to deduce the theorems in T. We say *P is an inessential part of Spec for T.* Identifying a part of a
specification that is inessential to prove a property means that we can freely remove or alter that part of
the specification and still be ensured that the desired property holds. On the other hand, if we were to
change some part that is essential then we might have to reverify that the property holds.

3.1. Definition

For a specification, Spec = <L, A, R>, L is its language, A is its set of axioms, and R is its set of rules.
Let T be a theory such that each formula in T is deducible from Spec. We write this *Spec |- T."

Def: A part of Spec is a specification with a language, L’ C L, a set of axioms, A’ C A, and a set of
rules, R’ C R.

Def: Let P = <L’, A’, R’> be a part of Spec. (Spec - P) is the specification whose language is (L - L’),
whose set of axioms is (A - A'), and whose set of rules is (R - R').

Def: P is an inessential part of Spec for T if and only if (Spec - P) |- T.

Checking for inessentiality must be done with respect to a theory since a part of a specification that is
inessential for one theory might be essential for a different theory.

3.2. Applying the Definition

Here are two situations in which it would be useful to determine whether a part of a specification is
inessential. One situation is to determine what part of a cluster specification is inessential to prove the
type invariant. For example, theorems dealing only with observers are inessential. Theorems dealing with
some of the constructors may be inessential as well, if removing them does not change the strength of the
cluster specification. A second situation is to determine what part of a specification is inessential in the
proof of satisfaction between an implementation, Imp, and a specification, Spec. Suppose in the proof we
use a specification S, whose theory is a subset of Th(Imp). In knowing what part of S is inessential to the
proof of satisfaction, we can change that part of S and be guaranteed that Imp still satisfies Spec.

4. Summary

We presented two ways to evaluate specifications by defining what we mean by the strength of a
specification and an inessential part of a specification. What remains is to develop algorithms and build
software tools based on these algorithms that enable us to compare two specifications with respect to their
strength and to test whether parts of a specification are inessential or not. A specifier can then use these
software tools to help evaluate a specification as it develops.
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