Reprinted from
Encyclopedia of Software Engineering - 2 Volume Set
ISBN #1-54004-8
Copyright 1994 by John Wiley & Seons, Inc.
All Rights Reserved

504

FORMAL METHODS

Formal methods used in developing computer systems are
mathematically based techniques for describing system
properties. Such formal methods provide frameworks
within which people can specify, develop, and verify sys-
tems in a systematic, rather than ad hoc manner.

A method is formal if it has a sound mathematical
basis, typically given by a formal specification language.
This basis provides the means of precisely defining notions
like consistency and completeness and, more relevantly,
specification, implementation, and correctness. It provides
the means of proving that a specification is realizable,
proving that a system has been implemented correctly,
and proving properties of a system without necessarily
running it to determine its behavior.

A formal method also addresses a number of pragmatic
considerations: who uses it, what it is used for, when it is
used, and how it is used. Most commonly, system designers
use formal methods to specify a svstem’s desired behavioral
and structural properties.

However, anyone involved in any stage of system devel-
opment can make use of formal methods. They can be
used in the initial statement of a customer’s requirements,
through system design, implementation, testing, debug-
ging, maintenance, verification, and evaluation.

Formal methods are used to reveal ambiguity, incom-
pleteness, and inconsistency in a system. When used early
in the system development process, they can reveal design
flaws that otherwise might be discovered only during costly
testing and debugging phases. When used later, they can
help determine the correctness of a system implementation
and the equivalence of different implementations.

For a method to be formal it must have a well-defined
mathematical basis. It need not address any pragmatic
considerations, but lacking such considerations would ren-
der it useless. Hence, a formal method should possess a
set of guidelines, or a style sheet, that tells the user the
circumstances under which the method can and should be
applied as well as how it can be applied most effectively.

One tangible product of applying a formal method is a
formal specification. A specification serves as a contract,
a valuable piece of documentation, and a means of commu-
nication among a client, a specifier, and an implementer.
Because of their mathematical basis, formal specifications
are more precise and usually more concise than informal
ones.

Since a formal method is a method and not just a com-
puter program or language, it may or may not have tool
support. If the syntax of a formal method’s specification
language is made explicit, providing standard syntax anal-
ysis tools for formal specifications would be appropriate.
If the language’s semantics are sufficiently restricted,
varying degrees of semantic analysis ¢an be performed
with machine aids as well. Thus, formal specifications have
the additional advantage over informal ones of being ame-
nable to machine analysis and manipulation.

For more on the benefits of formal specification, see
Meyer (1985). For more on the distinction between a
method and a language, and what specifying a computer
system means, see Lamport (1989).

What Is a Specification Language?

A formal specification language provides a formal method’s
mathematical basis. I borrowed the terms and definitions
from Guttag, Horning, and Wing (1982). Burstall and Go-
guen have used the term language and more recently the
term institution for the notion of a formal specification
language.

Definition: A formal specification language is a triple, <Syn,
Sem, Sat>, where Syn and Sem are sets and Sat C SynXSem
is a relation between them. Syn is called the language’s syntactic
domain; Sem, its semantic domain; and Sat, its satisfies rela-
tion.

Definition: Given a specification language, <Syn, Sem, Sat>,
if Sat(syn, sem) then syn is a specification of sem, and sem is
a specificand of syn.

Definition: Given a specification language, <Syn, Sem, Sat>,
the specificand set of a specification syn in Syn is the set of all
specificands sem in Sem such that Sat(syn, sem).

Less formally, a formal specification language provides
a notation (its syntactic domain), a universe of objects (its
semantic domain), and a precise rule that defines which
objects satisfy each specification. A specification is a sen-
tence written in terms of the elements of the syntactic
domain. It denotes a specificand set, a subset of the seman-
tic domain. A specificand is an object satisfying a specifica-
tion. The satisfies relation provides the meaning, or inter-
pretation, for the syntactic elements.

Backus-Naur form is an example of a simple formal
specification language with a set of grammars as its syntac-
tic domain and a set of strings as its semantic domain.
Every string is a specificand of each grammar that gener-
ates it. Every specificand set is a formal language.

In principle, a formal method is based on some well-
defined formal specification language. In practice, how-
ever, this language may not have been explicitly given.
The more explicit the specification language’s definition,
the more well-defined the formal method.

Formal methods differ because their specification lan-
guages have different syntactic and/or semantic domains.
Even if they have identical syntactic and semantic do-
mains, they may have different satisfies relations.

Syntactic Domains. We usually define a specification
language’s syntactic domain in terms of a set of symbols
(for example, constants, variables, and logical connectives)
and a set of grammatical rules for combining these symbols
into well-formed sentences. For example, using standard
notation for universal quantification (V) and logical impli-
cation (=), let x be a logical variable and P and Q be
predicate symbols. Then this sentence, VxP(x)=tQ(x),
would be well-formed in predicate logic, but this one,
Vax=P(x)=Q(x), would not because = is a binary logical
connective.

A syntactic domain need not be restricted to text; graph-
ical elements such as boxes, circles, lines, arrows, and icons
can be given a formal semantics just as precisely as textual
ones. A well-formedness condition on such a visual specifi-
cation might be that all arrows start and stop at boxes.

Semantic Domains. Specification languages differ most
in their choice of semantic domain. The following are some
examples:

» Abstract-data-type specification languages are used
to specify algebras, theories, and programs. Though
specifications written in these languages range over
different semantic domains, they often look syn-tacti-
cally similar.

¢ Concurrent and distributed systems specification lan-
guages are used to specify state sequences, event se-
quences, state and transition sequences, streams,
synchronization trees, partial orders, and state ma-
chines.

¢ Programming languages are used to specify functions
from input to output, computations, predicate trans-
formers, relations, and machine instructions.

Each prograrnming language (with a well-defined for-
mal semantics) is a specification language, but the reverse
is not true, because specifications in general do not have
to be executable on some machine whereas programs do.
By using a more abstract specification language, we gain
the advantage of not being restricted to expressing only
computable functions. It is perfectly reasonable in a specifi-
cation to express notions like “For all x in set A, there
exists a y in set B such that property P holds of x and y,”
where A and B might be infinite sets.

Programs, however, are formal objects, susceptible to
formal manipulation (for example, compilation and execu-
tion). Thus programmers cannot escape from formal meth-
ods. The question is whether they work with informal re-
quirements and formal programs, or whether they use
additional formalism to assist them during requirements
specification.

When a specification language’s semantic domain is
over programs or systems of programs, the term imple-
ments is used for the satisfies relation, and the term imple-

FORMAL METHODS 505

mentation is used for a specificand in Sem. An implementa-
tion prog is correct with respect to a given specification
spec if prog satisfies spec. More formally,

Definition: Given a specification language, <Syn, Sem, Sat>,
an implementation prog in Sem is correct with respect to a
given specification spec in Syn if and only if Sat(spec, prog).

Satisfies Relation. We often would like to specify differ-
ent aspects of a single specificand, perhaps using different
specification languages. For example, you might want to
specify the functional behavior of a collection of program
modules as the composition of the functional behaviors of
the individual modules. You might additionally want to
specify a structural relationship between the modules such
as what set of modules each module directly invokes.

To accommodate these different views of a specificand
we first associate with each specification language a se-
mantic abstraction function, which partitions specificands
into equivalence classes.

Definition: Given a semantic domain, Sem, a semantic abstrac-
tion function is @ homomorphism. A: Sem—2%®, that maps
elements of the semantic domain into equivalence classes.

For a given specification language, we choose a semantic
abstraction function to induce an abstract satisfies relation
between specifications and equivalence classes of specific-
ands. This relation defines a view on specificands.

Definition: Given a specification language, <Syn, Sem, Sat>,
and a semantic abstraction function, A, defined on Sem, an
abstract satisfies relation, ASat:Syn—2%", is the induced rela-
tion such that

VspeceSyn.progeSem X[Sat(spec.prog)=ASat(spec.A(prog))]

Different semantic abstraction functions make it possi-
ble to describe multiple views of the same equivalence
class of systems, or similarly, impose different kinds of
constraints on these systems. Having several specification
languages with different semantic abstraction functions
for a single semantic domain can be useful. This encour-
ages and supports complementary specifications of differ-
ent aspects of a system.

For example, in Figure 1, a single semantic domain,
Sem, is on the right. One semantic abstraction function
partitions specificands in Sem into a set of equivalence
classes, three of which are drawn as blobs in solid lines.
Another partitions specificands into a different set of equiv-
alence classes, two of which are drawn as blobs in dashed
lines. Via the abstract satisfies relation ASatl, specifica-
tion A of syntactic domain Synl maps to one equivalence
class of specificands (denoted by a solid-lined blob), and
via ASat2, specification B of syntactic domain Syn2 maps
to a different equivalence class of specificands (denoted by
a dashed-line blob). Note the overlap between the solid-
lined and dashed-lined blobs.

To be concrete, suppose Sem is a library of Ada program
modules. Imagine that A specifies (perhaps through a pred-
icate in first-order logic) all procedures that sort arrays,
and B specifies (perhaps through a call graph) all proce-

506 FORMAL METHODS

Syn2

Figure 1. Single semantic domain and a set of equivalent classes.

dures that call functions on a user-defined enumeration
type E. Then, a procedure that sorts arrays of E’s might
be in the intersection of ASat1(A) and ASat2(B).

Two broad classes of semantic abstraction functions are
those that abstract preserving each system’s behavior and
those that abstract preserving each system’s structure. In
the example above, A specifies a behavioral aspect of the
Ada program modules, but B describes a structural aspect.

Behavioral Specifications. Behavioral specifications de-
scribe only constraints on the observable behavior of specif-
icands. The behavioral constraint that most formal meth-
ods address is a system’s required functionality (that is,
mapping from inputs to outputs). Current research in for-
mal methods addresses other behavioral aspects such as
fault tolerance, safety, security, response time, and space
efficiency.

Often some of these behavioral aspects, such as security,
are included as part of, rather than separate from, a sys-
tem’s functionality. If the overall correctness of a system
is defined so that it must satisfy more than one behavioral
constraint, a system that satisfies one but not another
would be incorrect. For example, if functionality and re-
sponse time were the constraints of interest, a system pro-
ducing correct answers past deadlines would be just as
unacceptable as a system producing, incorrect answers on
time.

Structural Specifications. Structural specifications de-
scribe constraints on the internal compeosition of specific-
ands. Example structural specification languages are mod-
ule interconnection languages. Structural specifications
capture various kinds of hierarchical and uses relations
such as those represented by procedure-call graphs, data-
dependency diagrams, and definition-use chains. Systems
that satisfy the same structural constraints do not neces-
sarily satisfy the same behavioral constraints. Moreover,
the structure of a specification need not bear any direct
relationship to the structure of its specificands.

Properties of Specifications. Each specification language
should be defined so each well-formed specification is un-
ambiguous.

Definition: Given a specification language, <Syn, Sem, Sat>,
a specification syn in Syn is unambiguous if and only if Sat
maps syn to exactly one specificand set.

Informally, a specification is unambiguous if and only if
it has exactly one meaning. This key property of formal
specifications means that any specification language based
on or incorporating a natural language (like English) is
not formal because natural languages are inherently am-
biguous. It also means that a visual specification language
that permits multiple interpretations of a box and/or arrow
is ill-defined, and hence not formal.

Another desirable property of specifications is consis-
tency.

Definition: Given a specification language, <Syn, Sem, Sat>,
a specification syn in Syn is consistent (or satisfiable) if and
only if Sat maps syn to a non-empty specificand set.

Informally a specification is consistent if and only if
its specificand set is non-empty. In terms of programs,
consistency is important because it means there is some
implementation that will satisfy the specification. If you
view a specification as a set of facts, consistency implies
that you cannot derive anything contradictory from the
specification.

Were you to pose a question based on a consistent speci-
fication you would not get mutually exclusive answers.
Obviously we want consistent specifications. An inconsis-
tent specification, which negates on one occasion what it
asserts on another, means you have no knowledge at all.

Specifications need not be complete in the sense used in
mathematical logic, though certain relative-completeness
properties might be desirable (for example, sufficient com-
pleteness of an algebraic specification).

In practice, you must usually deal with incomplete spec-
ifications. Why? Specifiers may intentionally leave some
things unspecified, giving the implementer some freedom
to choose among different data structures and algorithms.
Also, specifiers cannot realistically anticipate all possible
scenarios in which a system will be run and thus, perhaps
unwittingly, have left some things unspecified. Finally,
specifiers develop specifications gradually and iteratively,
perhaps in response to changing customer requirements,
and hence work with unfinished products more often than
finished ones.

A delicate balance exists between saying just enough
and saying too much in a specification. Specifiers want to
say enough so that implementers do not choose unaccept-
able implementations. Specifiers are responsible for not
making oversights: any incompleteness in the specification
should be an intentional incompleteness. On the other
hand, saying too much may leave little design freedom for
the implementer. A specification that overspecifies is guilty
of implementation bias (Jones, 1980).

Informally, a specification has implementation bias if
it specifies externally unobservable properties of its specif-
icands; it places unnecessary constraints on its specific-
ands. For example, a set specification that keeps track of
the insertion order of its elements has implementation bias
toward an ordered-list representation and against a hash
table representation.

Proving Properties of Specificands. Most formal methods
are defined in terms of a specification language that has
a well-defined logical inference svstem. A logical inference
system defines a consequence relation, typically given in
terms of a set of inference rules, mapping a set of well-
formed sentences in the specification language to a set of
well-formed sentences.

We use this inference system to prove properties from
the specification about specificands. Again taking a specifi-
cation as a set of facts, we derive new facts through the
application of the inference rules.

When you prove a statement inferable from these facts,
you prove a property thata specificand satisfying the speci-
fication will have, a property not explicitly stated in the
specification. An inference system gives users of formal
methods a way to predict a system’s behavior without hav-
ing to execute or even build it. It gives users a way to state
questions, in the form of conjectures, about a system cast
in terms of just the specification itself. Users can then
answer these questions in terms of a formal proof con-
structed through a formal derivation process.

The inference system increases user confidence in the
specification’s validity. If users are able to prove a surpris-
ing result from the specification, then perhaps the specifi-
cation is wrong.

A formal method with an explicitly defined inference
system usually has the further advantage that this system
can be completely mechanized (for example, ifit has a finite
set of finite rules). Theorem provers and proof checkers are
example tools that assist users with the tedium of deriving
and managing formal proofs.

Pragmatics

Certain pragmatic concerns exist about formal methods,
their users, their uses, and their characteristics.

Users. Some users of formal methods are actually going
to produce something tangible: formal specifications. How-
ever, most people need only read specifications, not develop
their own from scratch. Besides specification writers, there
are several kinds of specification readers.

In Figure 2, each stick figure represents a different role
in the system development process. A person playing any
of these roles is a potential specification user. In practice,
one person may play multiple roles, and some role may
not be played at all.

Specifiers write, evaluate, analyze, and refine spec-ifi-
cations. They prove that their refinements preserve certain
properties and prove properties of specificands through
specifications. Specification readers, besides specifiers, are
customers, those people who may have hired the specifiers;
implementers, those people who realize a specification; cli-
ents, those people who use a specified system, usually with-
out knowledge of how it is implemented; and verifiers,
those people who prove the correctness of implementations.
All these people can benefit from the assistance of machine
tools (another kind of specification reader), some of which
might blindly manipulate specifications without regard to
their meaning.

FORMAL METHODS 507

What does this
program do?

Client

X

Implementer

Informal
requirments

Fuc

Customer Specifier

Specification

Doesthis
program
satisfy this
. specification?
Verifier

Figure 2. Specification users.

One point of tension in many formal methods is that
their languages may be more suitable to one type of specifi-
cation user than to others. Most language designers will
target their language for at least two types of users (for
example, clients and specifiers or specifiers and implem-
enters). Some specification languages contain a lot of syn-
tactic “sugar” to make specifications more readable by cus-
tomers. Some contain a minimal amount because the
intent of the method is to do formal proofs by machines or
because the meaning of a rich set of cryptic math-ematical
notation is assumed.

An advocate of a particular formal method should tell
potential users the method’s domain of applicability. For
example, a formal method might be applicable for sequen-
tial programs but not parallel ones, or for describing mes-
sage-passing distributed systems but not transaction-
based distributed databases. Without knowing the proper
domain of applicability, a user may inappropriately apply
a formal method to an inapplicable domain.

A formal method’s set of guidelines should identify dif-
ferent types of users the method is targeted for and the
capabilities each should have. To apply some methods
properly, users might need to know modern algebra, set
theory, and/or predicate logic. To apply some domain-spe-
cific methods, users might need to know additional mathe-
matical theories—for example, digital logic, if specifying
hardware, or probability and statistics, if specifying system
reliability.

Uses. You can apply formal methods in all phases of
system development. Such applications should not be con-
sidered a separate activity, but rather an integral one. The
greatest benefit in applying a formal method often comes
from the process of formalizing rather than from the end
result. Gaining a deeper understanding of the specificand
by forcing yourself to be abstract yet precise about desired
system properties can be more rewarding than having the
specification document alone.

508 FORMAL METHODS

Consider, for each system development phase, some
uses of formal specifications and the formal methods that
support them.

Requirements Analysis. Applying a formal methed helps
clarify a customer’s set of informally stated requirements.
A specification helps crystallize the customer’s vague ideas
and reveals contradictions, ambiguities, and incom-plete-
ness in the requirements. A specifier has a better chance
of asking pertinent questions and evaluating customer re-
sponses through the use of a formal, rather than informal,
specification. Both the customer and specifier can pose and
answer questions based on the specification to see whether
it reflects the customer’s intuition and whether the specif-
icand set has the desired set of properties. Systems such
as Kate and the Requirements Apprentice address the
problem of trans-forming informal requirements into for-
mal specifications; the Gist explainer addresses the con-
verse problem of translating a formal specification into a
restricted subset of English.

System Design. Two of the most important activities
during design are decomposition and refinement. The Vi-
enna Development Method (VDM), Z, Larch, and Lam-
port’s transition axiom method are formal methods that
are especially suitable for system design.

Decomposition is the process of partitioning a system
into smaller modules. Specifiers can write specifications
to capture precisely the interfaces between these modules.
Each interface specification provides the module’s client
the information needed to use the module without knowl-
edge of its implementation. At the same time, it provides
the module’s implementer the information needed to im-
plement the module without knowledge of its clients. Thus,
as long as the interface remains the same, the implementa-
tion of the module can be replaced, perhaps by a more
efficient one, at some later time without affecting its cli-
ents.

The interface provides a place for recording design deci-
sions; moreover, any intentional incompleteness can be
captured succinctly as a parameter in the interface.

Refinement involves working at different levels of ab-
straction, perhaps refining a single module at one level to
be a collection of modules at a lower level, or choosing a
representation type for an abstract data type. Each refine-
ment step requires showing that a specification (or pro-
gram) at one level satisfies a higher level specification.

Proving satisfaction often generates additional assump-
tions, called proof obligations, that must be discharged for
the proof to be valid. A formal method provides the lan-
guage to state these proof obligations precisely and the
framework to carry out the proof.

Program refinement dates back to Dijkstra’s work on
stepwise refinement and predicate transformers and
Hoare’s work on data representation and abstraction func-
tions. Related work on program transformation, program
synthesis, and inferential programming have spawned the
design of languages like Refine and Extended ML, and
programming environments like CIP-S and the Ergo Sup-
port System. These refinement approaches are based on
classical mathematical logic. An alternative approach to

program development based on constructive logic gave rise
to proof development environments like Nuprl in which
programs are proofs and vice versa.

System Verification. Verification is the process of show-
ing that a system satisfies its specification. Formal verifica-
tion is impossible without a formal specification. Although
you may never completely verify an entire system, you can
certainly verify smaller, critical pieces. The trickiest part
is in explicitly stating the assumptions about the environ-
ment in which each critical piece is placed. Systems such
as Gypsy, the Hierarchical Development Method (HDM),
the Formal Development Method (FDM), and m-EVES
(Environment for Verifying and Evaluating Software)
evolved as a result of a primary focus on program verifica-
tion. Higher Order Logic (HOL) was originally developed
for hardware verification.

System Validation. Formal methods can aid in system
testing and debugging. Specifications alone can be used to
generate test cases for black-box testing. Specifications
that explicitly state assumptions on a module’s use identify
test cases for boundary conditions.

Specifications along with implementations can be used
for other kinds of testing analysis such as path testing,
unit testing, and integration testing. Testing based solely
on an analysis of the implementation is not sufficient; the
specification must be taken into account. For example, a
test set may be complete for doing a path analysis but
may not reveal missing paths that the specification would
otherwise suggest. The success of unit and integration test-
ing depends on the precision of the specifications of the
individual modules.

Only a few formal methods have been developed explic-
itly for testing. Three examples are the Data Abstraction,
Implementation, Specification, and Testing System, used
to test implementations of abstract data types; Kemmerer’s
symbolic execution tool, used to venerate and execute test
cases from Ina Jo specifications; and the Task Sequencing
Language Runtime System, used to automatically check
the execution of Ada tasking statements against TSL speci-
fications.

System Documentation. A specification is a description
alternative to system implementation. It serves as a com-
munication medium between a client and a specifier, be-
tween a specifier and an implementer, and among mem-
bers of an implementation team. In reply to the question
“What does it do?” no answer is more exasperating than
“Run it and see.” One of the primary intended uses of
formal methods is to capture the “what” in a formal specifi-
cation rather than the “how.” A client can then read the
specification rather than read the implementation or
worse, execute the system, to find out the system’s be-
havior.

System Analysis and Evaluation. To learn from the experi-
ence of building a system, developers should do a critical
analysis of its functionality and performance once it has
been built and tested. Does the system do what the cus-
tomer wants? Does it do it fast enough? If formal methods

were used in its development, they can help system devel-
opers formulate and answer these questions. The specifica-
tion serves as a reference point. If the customer is unhappy
but the system meets the spec-ification, the specification
can be changed and the system changed accordingly.

Indeed, much recent work in the application of formal
methods to nontrivial examples has been in specifying a
system already built, running, and used. Some of these
exercises revealed bugs in published algorithms and circuit
designs, serious bugs that had gone undiscovered for years.
As expected, most revealed unstated assumptions, incon-
sistencies, and unintentional incompleteness in the
system.

Medium-sized systems that have been specified for-
mally include VLSI circuits, microprocessors, oscil-lo-
scopes, operating systems kernels, distributed databases,
and secure systems. Most formal methods have not yet
been applied to specifying large-scale software or hardware
systems: most are still inadequate to specify many import-
ant behavioral constraints beyond functionality, for exam-
ple, fault-tolerance and real-time performance.

This problem of scale exists in two often confused dimen-
sions: size of the specification and complexity of the specif-
icands. Tools can help address specification size, since
managing large specifications is just like managing other
large documents (such as programs, proofs, and test suites)
and their structural interrelationships.

The problem of dealing with a specificand’s inherent
complexity remains. System complexity results from inter-
nal complexity and/or interface complexity. For example,
an optimizing compiler is internally more complex than a
nonoptimizing one for the same language, yet, in principle,
they both provide the same simple interface to their clients
(for example, “compile pro-gram_name”). By providing a
systematic way to think and reason about specificands,
formal methods can help people grapple with both kinds
of system complexity.

Characteristics. A formal method’s characteristics, such
as whether its language is graphical or whether its under-
lying logic is first-order, influence the style in which a user
applies it. This article is not intended to give a complete
taxonomy of all possible characteristics of a method nor to
classify exhaustively all methods according to these char-
acteristics. Instead, a partial listing of characteristics is
given; note that a method typically reflects a combination
of many different ones.

Model-Versus Property-Oriented. Two broad classes of
formal methods are called model-oriented and property-
oriented. Using a model-oriented method, a specifier de-
fines a system’s behavior directly by constructing a model
of the system in terms of mathematical structures such as
tuples, relations, functions, sets, and sequences. Using a
property-oriented method, a specifier defines the system’s
behavior indirectly by stating a set of properties, usually
in the form of a set of axioms, that the system must satisfy.

A specifier following a property-oriented method tries
to state no more than the necessary minimal constraints
on the system’s behavior. The fewer the properties speci-

FORMAL METHODS 509

fied, the more the possible implementations that will sat-
isfy the specification.

Model-oriented methods for specifying the behavior of
sequential programs and abstract data types include Par-
nas’ state-machines, Robinson and Roubine’s extensions
to them with V-, O-, and OV-functions, VDM, and Z. Meth-
ods for specifying the behavior of concurrent and distrib-
uted systems include Petri nets, Milner’s Calculus of Com-
municating Systems, Hoare’s Communicating Sequential
Processes, Unity, I/O automata, and TSL. The Raise Proj-
ect represents more recent work on combining VDM and
CSP.

Property-oriented methods can be broken into two cate-
gories, sometimes referred to as axiomatic and algebraic.
Axiomatic methods stem from Hoare’s work on proofs of
correctness of implementations of abstract data types,
where first-order predicate logic preconditions and post-
conditions are used for the specification of each operation
of the type. Iota, OBJ, Anna, and Larch are example specifi-
cation languages that support an axiomatic method.

In an algebraic method, data types and processes are
defined to be heterogeneous algebras. This approach uses
axioms to specify properties of system, but the axioms are
restricted to equations. Much work has been done on the
algebraic specification of abstract data types, including
the handling of error values, nondeterminism, and para-
meterization. The more widely known specification lan-
guages that have evolved from this work are Clear and
Act One (Algebraic Specification Techniques for Correct
and Trusted Software Systems).

Property-oriented methods for specifying the behavior
of concurrent and distributed systems include extensions
to the Hoare-axiom method, temporal logic, and Lamport’s
transition axiom method. The Language of Temporal Or-
dering of Specifications (LOTOS) specification language
represents more recent work on the combination of Act
One and CCS (with some CSP influence).

Visual Languages. Visual methods include any whose
language contains graphical elements in their syntactic
domains. The most prominent visual method is Petri nets
and its many variations, used most typically to specify the
behavior of concurrent systems.

More recent visual language work includes Harel’s state
charts based on higraphs, used to specify state transitions
in reactive systems. Figure 3 gives a simple example of a
state chart that describes the behavior of a one-slot buffer.
Rounded rectangles (“roundtangles”) represent states in
a state machine and arrows represent state transitions.
Initially, the one-slot buffer is empty. If a message arrives
and is put in the buffer, the buffer becomes full; when the
message has been serviced and removed from the buffer,
its state changes back to being empty.

The example shows one of the more notable features
of state charts that distinguish them from “flat” state-
transition diagrams: A roundtangle can represent a hierar-
chy of states (and, in general, an arrow can represent a
set of state transitions), thereby letting users zoom in and
out of a system and its subsystems.

Harel’s higraph notation inspired the design of the Miré
visual languages, which specify security constraints. Like

510 FORMAL METHODS

ﬁ
One-slot buffer f \ \

Full

Message_arrived Busy

Message_serviced

Empty

Message_removed Done

N\ _/
N /

Figure 3. State chart specification of a one-slot buffer.

state charts, the Miré languages have a formally defined
semantics and tool support.

Many informal methods use visual notations. These
methods allow the construction of ambiguous specifica-
tions, perhaps because English text is attached to the
graphical elements or because multiple interpretations of
a graphical element (usually different meanings for an
arrow) are possible. Many popular software and system
design methods such as Jackson’s method, Hierarchy-In-
put-Processing-Output (HIPO), structured design, and
software requirements engineering methodology are exam-
ples of semiformal methods that use pictures.

Executable. Some formal methods support executable
specifications, specifications that can run on a computer.
An executable specification language is by definition more
restricted in expressive power than a nonexecutable lan-
guage because its functions must be computable and de-
fined over domains with finite representations. As long as
users realize that the specification may suffer from imple-
mentation bias, executable specifications can play an im-
portant role in the system development process. Specifiers
can use them to gain immediate feedback about the specifi-
cation itself, to do rapid prototyping (the specification
serves as a prototype of the system), and to test a specific-
and through symbeolic execution of the specification. For
example, the Statemate tool lets users run simulations
through the state transition diagram represented by a
state chart.

Besides state charts, executable specification languages
include OBJ; Prolog, a logic programming language that
when used in a property-oriented style lets specifiers state
logical relations on objects; and Paisley, a model-oriented
language, based on a model of event sequences and used
to specify functional and timing behavioral constraints for
asynchronous parallel processes.

Tool-Supported. Some formal methods evolved from the
semantic-analysis tools that were built to manipulate spec-

ifications and programs. Model-checking tools let users
construct a finite-state model of the system and then show
a property holds of each state or state transition of the
system. Tools such as Extended Model Checker (EMC) are
especially useful for specifying and verifying properties of
VLSI circuits.

Proof-checking tools that let users treat algebraic speci-
fications as rewrite rules include Affirm, Reve, the Rewrite
Rule Laboratory, and the Larch Prover. Tools (and their
associated specification languages) that handle subsets of
first-order logic include the Boyer-Moore Theorem Prover
(and the Gypsy specification language). FDM (Ina Jo),
HDM (Special), and m-EVES (m-Verdi). Finally, tools that
handle subsets of higher order logics include HOL, LCF,
and OBJ.

Some Examples

This section illustrates six well-known or commonly used
formal methods, half applied to one simple example and
the other half applied to another example. All six methods
have been used to specify much more complex systems.

Sometimes, when specifying the same problem using
different methods, the resulting specifications look re-
markably similar (as in the first three examples), and
sometimes they do not (as in the last three). The similarity
or difference is sometimes attributable to the nature or
simplicity of the specificand and sometimes to the methods
themselves.

The choice of a method is likely to affect what a specifica-
tion says and how it is said. A method’s guidelines may
encourage the specifier to be explicit about some system
behaviors (for example, state changes) and not others (for
example, error handling). Syntactic conventions (such as
indentation style), special notation (vertical and horizontal
lines), and keywords affect a specification’s physical ap-
pearance and its readability.

Most proponents of methods used primarily to specify
behavioral properties of concurrent and distributed sys-
tems have carefully defined the satisfies relation for a given
semantic domain. Many of their methods lack the niceties
—the syntactic sugar and software support tools—that for-
mal methods for sequential systems provide. For some
theories or models of concurrent and distributed systems,
more user-friendly specification languages (LOTOS and
Raise) are beginning to appear.

Abstract Data Types: Z, VDM, Larch. Z, a formal method
based on set theory, can be used in both model-oriented and
property-oriented styles. Figure 4 gives a model-oriented
specification of a symbol table, following the Z notation of
Spivey (1988). The state of the table is modeled by a partial
mapping from keys to values (X-bY denotes a set of partial
mappings from set X to set Y; a partial mapping relates
each member of X to at most one member of Y). By conven-
tion, unprimed variables in Z stand for the state before an
operation is performed and primed variables for the state
afterwards. I will use the same convention in the VDM
and Larch specifications.

The table contains four operations: INIT, INSERT,
LOOKUP, and DELETE. INIT initializes the symbol st to

ST=KEY+>VAL
NIT

st : ST

h

st'=1{}

INSERT

st, st’ : ST
. k:KEY
' v:VAL

k&dom(st)n
st’ = stUtk—ov}

LOOKIIP

st, st' : ST
k: KEY
v’ : VAL

kEdom(stia
v’ =st(k)a
st'=st

DELETE

st, st’ : ST
k : KEY

k€& dom(st)a
st'={k}<st

Figure 4. Z specification of a symbol table.

be empty. INSERT modifies the table by adding a new
binding to st, in the case the key k is not already in the
domain of st. LOOKUP requires that the key & be in the
domain of the mapping, returns the value to which £ is
mapped, and does not change the state of the symbol table
(st'=st). DELETE also requires that the key & be in the
domain of the mapping and modifies the table by deleting
the binding associated with & from st (Qis a domain sub-
traction operator). The proof checker B has been used to
prove theorems based on Z specifications.

VDM supports a model-oriented specification style and
defines a set of built-in data types (such as sets, lists, and
mappings), which specifiers use to define other types.

The VDM specification in Figure 5 defines a symbol
table also in terms of a mapping from keys to values. I
follow the VDM notation given in Jones (1986). The behav-
ior of the INIT, INSERT, LOOKUP, and DELETE opera-
tions are the same as specified in the Z specification. How-
ever, the preconditions, specified in pre clauses are made
explicit and separate from the postconditions, specified in
post clauses.

A precondition on an operation is a predicate that must
hold in the state on each invocation of the operation, if it
does not hold, the operation’s behavior is unspecified. A

FORMAL METHODS 511
ST = map Key to Val

INIT()
ext wr st: ST
post st' = {}

INSERT (k:Key,v : Val)
ext wr st : ST
pre ké dom st
post st’ = stU (k - v}

LOOKUP(k : KEY)v: Val
ext rd st : ST

pre k € dom st

post v’ = st(k)

DELETE(& : Key)
ext wr st : ST
pre ke dom st
post st’ = {k}< st

Figure 5. VDM specification of a symbol table.

postcondition is a predicate that holds in the state upon
return. An operation’s clients are responsible for satisfying
preconditions, and its implementer is responsible for guar-
anteeing the postcondition.

The fact that LOOKUP does not modify the symbol table
(hence st'=st) but INSERT and DELETE do is specified
by using rd (for read-only access) instead of wr (for write-
and-read access) in the declaration of the external state
variables accessed by each operation.

Larch is a property-oriented method that combines both
axiomatic and algebraic specifications into a two-tiered
specification (Guttag, Horning, and Wing, 1985b). The axi-
omatic component specifies state-dependent behavior (for
example, side effects and exceptional termination) of pro-
grams. The algebraic component specifies state-indepen-
dent properties of data accessed by programs. Figure 6
shows a Larch specification of the symbol table example.
The Larch notation given in Guttag, Horning, and Wing
(1985a) is used.

The first piece of the Larch specification, called an inter-
face specification, looks similar to the Z and VDM specifica-
tions. For each operation, the requires and ensures
clauses specify its pre- and postconditions. The modifies
clause lists those objects whose value may possibly change
as a result of executing the operation. Hence, LOOKUP is
not allowed to change the state of its symbol table argu-
ment, but INSERT and DELETE are.

One difference (not shown in the example) between
Larch and VDM (and Larch and Z) is that, if the target
programming language supports exception handling, the
interfaces would specify whether and under what condi-
tions an operation signals exceptions. For example, we
could remove INSERT’s requires clause and instead use a
special signals clause in its postcondition to specify that
a signal should be raised in the case that the key k& is
already in the symbol table.

The second piece of the Larch specification, called a
trait, looks like an algebraic specification. It contains a set
of function symbol declarations and a set of equations that
define the meaning of the function symbols. The equations

512

FORMAL METHODS
symbol__table is data type based on S from SymTab

init=proc () returns (s: symbol _table)
ensures s'= emp A new (s)
insert=proc(s:symbol _table k: key,v: val)
requires ~isin(s,k)
modifies (s)
ensures s’ = add(s,k,v)

lookup=proc(s: symbol_table.k : key)returns(v: val)
requires isin(s k)
ensures v’ =find(s,k)

delete=proc(s: symbol_tablek : key)
requires isin(s,k)
modifies (s)
ensures s’ = rem(s,k)

end symbol_table

SymTab; trait
introduces
emp— S
add:S,K,V—- S
rem:S K- S
find:S, K-V
isin:S,K— Bool

asserts
S generated by (emp, add)
S partitioned by (find, isin)
for all (s: Skk1:Kv:V)
rem(add(s,k,v),k1)==if k=k1 then s else add(rem(s,k1)k,v)
find(add(s,k,v),k1)==if k=k1 then v else find(s k1)

isin(emp,k)==false

isin(add(s,k,v),k1)==(k=k1) V isin(s,k1)

implies

converts (rem find,isin)exempting(rem(emp),find(emp))

end SymTab

Figure 6. Larch specification of a symbol table.

determine an equivalence relation on sorted terms. Objects
of the symbol_table data type specified in the interface
specification range over values denoted by the terms of
sort S.

The generated by clause states that all symbol table
values can be represented by terms composed solely of the
two function symbols, emp and add. This clause defines
an inductive rule of inference and is useful for proving
properties about all symbol table values.

The partitioned by clause adds more equivalences be-
tween terms. Intuitively, it states that two terms are equal
if they cannot be distinguished by any of the functions
listed in the clause. In the example, we could use this
property to show that order of insertion of distinct key-
value pairs in the symbol table does not matter, that is,
insertion is commutative.

The exempting clause documents the absence of right
sides of equations for rem(emp) and find(emp): the re-
quires and signals clauses in the interface specification
deal with these “error values.” The converts and exempt-
ing clauses together provide a way to state that this alge-
braic specification is sufficiently complete.

Syntax analyzers exist for Larch traits and interfaces.
The Larch Prover has been used to perform semantic anal-
ysis on Larch traits.

The user-defined function symbols in a Larch trait are
exactly those used in the pre- and postconditions of the
interface specification; they serve the same role as the
built-in symbols like U, and < used in the Z and VDM
specifications.

Unlike Z and VDM, Larch does not come with any spe-
cial built-in notation nor with any built-in types. The ad-
vantage is that the user does not have to learn any special
vocabulary for those concepts and is free to introduce what-
ever symbols he or she desires, giving them the exact mean-
ing suitable for the specificand set. Exactly those proper-
ties of a data type being specified need be stated explicitly
and satisfied by an implementation.

The disadvantage is that the user may often need to
provide a large set of user-defined symbols, as well as
the equations that define their meaning. Since I modeled
symbol tables in Z and VDM in terms of finite mappings,
1 did not need to state explicitly that insertion is commuta-
tive. This is a property of mappings—the commutative

property came for free. The Larch handbook (Guttag, Horn-
ing, and Wing, 1985a) serves as a compromise between
the two extremes in that it provides a library of traits
that define many general and commonly used concepts (for
example, properties of finite mappings, partial orders, sets,
and sequences).

Concurrency: Temporal Logic, CSP, Transition Axioms. As
mentioned before, many formal methods for specifying the
behavior of concurrent and distributed systems differ be-
cause of their choice in semantic domain. Some focus on
Jjust the states, some on just the events, and some on both.
To be more concrete here, I will model a system’s behavior
as a set of linear sequences of states and associated events.
An alternative approach, used by CCS and EMC, is to
model a system’s behavior as a set of trees of states and
associated events. When a specification is interpreted with
respect to sets of sequences, separating properties of con-
current and distributed systems into two general catego-
ries, safety and liveness, is common. Safety properties
(“nothing bad ever happens”) include functional correct-
ness, and liveness properties (“something good eventually
happens”) include termination.

Temporal logic is a property-oriented method for speci-
fying properties of concurrent and distributed systems.
For a given temporal logic inference system, special modal
operators concisely state assertions about system behavior.
Specifiers use these operators to refer to past, current, and
future states (or events).

There is no one standard temporal logic inference sys-
tem nor one standard set of operators. Modal operators
commonly used are [, ¢, and (. Informally, when inter-
preted with respect to a sequence of states. [P says that
in all future states, the state predicate P holds. OP says
that in some future state, P will hold; and QP says that
in the next state P will hold. For example, P-<{@Q says
that if P holds in the current state, Q will eventually hold.
Temporal logic notation tends to be terse, and a temporal
logic specification is simply an unstructured set of predi-
cates, all of which must be satisfied by a given implementa-
tion.

Figure 7 presents a temporal logic specification of the
behavior of an unbounded buffer in an asynchronous envi-
ronment. The example is adapted from Koymans (Koy-
mans, Vytopil, and de Roever, 1983), using the temporal
logic system in Pnueli (1986), which has 12 modal opera-
tors. The formulas are interpreted with respect to se-
quences of events. A buffer has a left input channel and a
right output channel. The expression <c¢/m> denotes the
event of placing message m on channel ¢. The first predi-
cate.

<right!m>=6 <left'm>

<right!m>=>%<left!m> (1)
(<right!m>A@C<rightlim'>)=>%(<leftlm>ArDo<left!m'>) (2)
(<left!m>A@ S <left!m'>=>(m#m') (3)
(<left!m>)=>%(<rightim>) (4)

Figure 7. Temporal logic specification of an unbounded buffer.

FORMAL METHODS 513

states that any message transmitted to the right channel
(<right!m>) must have been previously placed on the left
channel (O<left!m>). The second predicate,

(<right!m>A@&(right!m’>) =0(<leftim> o <leftlm>)

states that messages are transmitted first in, first out. If
message m placed on the output channel is preceded by
some other message m’ also on the output channel
(©9<right!m’>), there must have been a preceding (the
second <) event of placing m on the input channel
(<left!m>) and, moreover, an even earlier event that
placed m’ on the input channel ahead of m(&©< <left!m’>).
The third predicate,

(<leftim>A@% <left!m’'>)=>(m*m’)

states that all messages are unique. For each message m
currently placed on the input channel and for each pre-
viously placed message m' (@ <left!m’>), m and m' are
not equal. This property is not a property of the buffer,
but an assumption of the environment. This assumption
is essential to the validity of the specification. Without it,
a buffer that outputs duplicate copies of its input would
be considered correct.

Whereas the first three predicates state safety proper-
ties of the system (and its environment), the fourth predi-
cate,

(<left!m>)=O(<right!m>)

states a liveness property: Each incoming message will
eventually be transmitted.

CSP uses a model-oriented method for specifying con-
current processes and a property-oriented method for stat-
ing and proving properties about the model. CSP is based
on model of traces, or event sequences, and assumes that
processes communicate by sending messages across chan-
nels. Processes synchronize on events so the event of send-
ing output message m on named channel ¢ is synchronized
with the event of simultaneously receiving an input mes-
sage on c. Figure 8 gives a CSP specification of an un-
bounded buffer (Hoare, 1985). BUFFER itself is specified
to be a process P that acts as an unbounded buffer. The
recursive definition of P is divided into two clauses to han-
dle the empty and non-empty cases. The first clause,

P_.=left?m—P.,,

says that if the buffer is empty, in the event that there is
a message m on the left channel (left?m), it will input it.
In CSP, if x is an event and P is a process, the notation
x—P denotes a process that first engages in the event x
and then behaves exactly as described by P. The second
clause,

Py =(1eft?n—oP ponencns | Tight!m—P,)

says that if the buffer is non-empty, then either the buffer
will input another message n from the left channel, ap-
pending it to the end of the buffer, or output the first

514 FORMAL METHODS

BUFFER=P.,
where P_=left?m— P o,

and P ,+=Ueft?n— P s right!m— Py)

Buffer sat (right < left) A (if right = left then left & ref else righte ref)

Figure 8. CSP program and specification of an unbounded buffer.

message in the buffer to the right channel. CSP uses s\t
to denote the concatenation of sequence s to sequence . It
uses | to denote choice: If x and y are distinct events.
x—Ply—Q describes a process that initially engages in
either x or y. After this first event, subsequent behavior
is described by P, if the first event was x, and by @, if the
first event was y.

In CSP’s formalism, BUFFER is a CSP program; you
can state and prove properties about the traces it denotes.
Using algebraic laws on traces, you can formally verify that
a given CSP program satisfies a specification on traces. The
last line in Figure 8 states that BUFFER describes a set
of traces, each of which satisfies the predicate given on
the right side of sat. The predicate’s first conjunct says
that the sequence of (output) messages on the right channel
is a prefix of the sequence of (input) messages on the left
channel. CSP uses the notation s=<t to denote that the
sequence s is a prefix of sequence ¢. The prefix property of
sequences guarantees that only messages sent from the
left will be delivered to the right, only once, and in the
same order. The second conjunct says that the process
never stops: it cannot refuse to communicate on either the
right or left channel. This implies that input messages will
eventually be delivered, which is the same property as
stated in the temporal logic specification’s fourth predicate.

B, previously mentioned for proving theorems from Z
specifications, has also been used to prove properties of
CSP specifications. Occam is a programming language de-
rivative of CSP that has been implemented and used on
Transputers.

Lamport’s transition axiom method combines an axiom-
atic method for describing the behavior of individual opera-
tions with temporal logic assertions for specifying safety
and liveness properties. In the buffer example of Figure
9 (Lamport, 1983). I use his original notation, although
Lamport introduced two other notations in a more recent
description of his method (Lamport, 1989).

In the example, the functions, buffer, parg, and gval
define the state of the buffer, which has two operations.
PUT and GET, and an initial size of 0. For this example,
we assume that invocations of different operations can be
active concurrently, but at most one invocation of a given
operation can be active at once.

The predicates at(OP), in(OP), and after(OP) state
whether control is at the point of calling the operation OP,
within the execution of OP, or at the point of return from
OP.

The first pair of safety properties states that the value
of the state function parg is equal to the input parameter
to PUT at the time of call and equal to NULL upon return.

The second pair states similar properties for GET. The
third pair of properties indicates how the state functions
change as a result of executing PUT and GET: If control

isin PUT, buffer gets updated by appending the non-NULL
message to its end; if control is in GET and the buffer
is non-empty, buffer gets updated by removing its first
message, which is GET’s return value gval. (The * denotes
appending an element to a sequence.)

The fourth and fifth properties are liveness properties
requiring that PUT return whenever there are fewer than
min messages in the buffer and that GET return whenever
the buffer is non-empty (the temporal logic operator ~
stands for “leads to”). These requirements ensure that
progress is made, that once control is within the PUT (or
GET) operation, control will reach its corresponding return
point. The fifth implies that messages received (through
PUT) are eventually transmitted (through GET) since, if
control is in GET, it must eventually return.

Unlike the temporal logic and CSP examples—but like
the Z, VDM, and Larch examples—the last example uses
keywords and distinct clauses for highlighting a model of
state (state functions), state initialization (initial con-
ditions), and state changes (allowed changes to). Again,
unlike the temporal logic and CSP examples, it uses similar
notational conveniences to highlight synchronization con-
ditions (the enabling predicates to the left-hand side of
—) and safety and liveness constraints on the processes’
behaviors. Hence, this last example shows a combination
of linguistic features borrowed from formal methods used
to specify sequential programs and others used to specify
concurrent ones.

Bounds of Formal Methods

Between the 1deal and Real Worlds. Formal methods are
based on mathematics but are not entirely mathematical.
Formal methods users must acknowledge the two import-
ant boundaries between the mathematical world and the
real world.

Users cross the first boundary in codifying the custom-
er’s informally stated requirements. Figure 10 illustrates
this mapping, where the cloud symbolizes the customer’s
informal requirements and the oval symbolizes a formal
specification of them.

This mapping from informal to formal is typically
achieved through an iterative process not subject to proof.
A specifier might write an initial specification, discuss its
implications with the customer, and revise it as a result
of the customer’s feedback.

At all times, the formal specification is only a mathemat-
ical representation of the customer’s requirements. On one
hand, any inconsistencies in the requirements would be
faithfully preserved in the specifier’s mapping. On the
other, the specifier might incorrectly interpret the require-
ments and formally characterize the misinterpretation.

FORMAL METHODS 515

module BUFFER with subroutines PUT,GET

state functions:

buffer : sequence of message
parg : message or NULL
gual : message or N ULL

initial conditions:

\buffer! = 0

safety properties

1. (a) at{(PUT)=>parg=PUT.PAR
(b) after(PUT)=>parg=NULL
2. (a) at(GET)=>gval=NULL
) after(GET)=>GET.PAR=gval
3. allowed changes to buffer
parg when in(PUT)
gual when in(GET)
(a)a[BUFFER:in(PUT)Aparg#N ULL—

parg’

=NULLAbuffer' =buffer*parg

(b)a[BUFFER]:in(GET)Agval =NULLA| buffer >0 —
gual' #Ni ULLAbuffer=guval *buffer’

liveness properties

4. in(PUT)A | buffer | <min ~safter(PUT)
5. in(GET)A | buffer| >0~after(GET)

Figure 9. Transition axiom specification of an unbounded buffer.

For these reasons, it is important that specifiers and cus-
tomers interact.

Specifiers can help customers clarify their fuzzy, per-
haps contradictory, notions: customers can help specifiers
debug their specifications. The existence of this boundary
should not be surprising because people use formal
methods.

The second boundary is crossed in the mapping from
the real world to some abstract representation of it. Figure
11 illustrates this mapping, where the cloud symbolizes
the real world and the oval symbolizes an abstract model
of it.

The formal specification language encodes this abstrac-
tion. For example, a formal specification might describe
properties of real arithmetic, abstracting away from the
fact that not all real numbers can be represented in a
computer. The formal specification is only a mathematical

informal
requirements

Formal
specification

Figure 10. Mapping informal requirements for a formal specifi-
cation.

approximation of the real world. This boundary is not
unique to formal methods or computer science in general;
it is ubiquitous in all fields of engineering and applied
mathematics.

Assumptions about the Environment. Another kind of
boundary is often neglected, even by experienced specifi-
ers. It’s the boundary between a real system and its envi-
ronment. A system does not run in isolation; its behavior
is affected by input from the external world, which in turn
consumes the system’s output.

Given that you can formally model the system (in terms
of a specification language’s semantic domain), then, if
you can formally model the environment, you can formally
characterize the interface between a system and its envi-
ronment. Most formal methods leave the environment’s
specification (formal or otherwise) outside the system’s

Figure 11. Mapping the real world to an abstract model.

516 FORMAL METHODS

specification. An exception is the Gist language used to
specify closed systems. In theory, a complete Gist specifica-
tion includes not only a description of the system’s behav-
jor, but also of its clients and other environmental factors
like hardware.

A system’s behavior as captured in its specification is
conditional on the environment’s behavior:

Environment=_>System

This implication says that if the environment satisfies
some precondition, Environment, then the system will be-
have as specified in System. If the environment fails to
satisfy the precondition, then the system is free to behave
in any way.

Environment is a set of assumptions. Whereas a system
specifier places constraints on the system’s behavior, the
specifier cannot place constraints on the environment but
can only make assumptions about its behavior. For exam-
ple, in the temporal logic specification of the unbounded
buffer, the assumption that messages are unique is an
obligation the environment is expected to satisfy, not a
property the buffer is expected to satisfy nor a constraint
the system specifier can place on the environment.

A specifier often makes implicit assumptions about a
system’s environment when specifying something like a
procedure in a programming language because the envi-
ronment is usually fixed or at least well-defined.

A procedure’s environment is defined in terms of the
programming language’s invocation protocol. A proce-
dure’s specification will typically omit explicit mention of
the language’s parameter passing mechanism, or, for a
compile-time type-checked language, that the argument
types are correct. The specifier presumably knows the de-
tails of the programming language’s parameter-passing
mechanism and assumes the programmer will compile the
procedure, thereby doing the appropriate type checking.

However, when specifying a large, complex software or
hardware system, the specifier should take special care to
make explicit as many assumptions about the environment
as possible. Unfortunately, when specifying a large system,
specifiers too often forget to explicitly state the circum-
stances under which the system is expected to behave prop-
erly.

In reality, it is impossible to formally model many envi-
ronmental aspects such as unpredictable or unanticipated
events, human error, and natural catastrophes (lightning,
hurricanes, earthquakes). Hazard analysis, as a comple-
mentary technique to formal methods, can identify a sys-
tem’s safety-critical components. Formal methods can then
be used to describe and reason about these components,
where reasoning holds only for those system input parame-
ters that are made explicit.

CONCLUSION

In a strict mathematical sense, formal methods differ
greatly from one another. Not only does notation vary, but
the choice of the semantic domain and definition of the
satisfies relation both make a tremendous difference be-

tween what a specifier can easily and concisely express in
one method versus another. An idiom in one language
might translate into a long list of unstructured statements
in another or might not even have a counterpart.

But, in a more practical sense, formal methods do not
differ radically from one another. Within some well-defined
mathematical framework, they let system developments
couch their ideas precisely. The more rigor applied in sys-
tem development, the more likely developers are to state
requirements correctly and to get the design right and, of
course, the more precisely they can argue the correctness
of the implementation.

In conclusion, existing formal methods can be used to

o Identify many, though not all, deficiencies in a set of
informally stated requirements, detect discrepancies
between a specification and an implementation, and
find errors in existing programs and systems;

e Specify medium-sized and nontrivial problems, espe-
cially the functional behavior of sequential programs,
abstract data types, and hardware; and

e Provide a deeper understanding of the behavior of
large, complex systems.

Many challenges remain. In an effort to push against
some of the current pragmatic bounds (in contrast to the
two theoretical bounds covered in the previous section),
the formal methods community is actively pursuing the
following goals:

o Specifying nonfunctional behavior such as reliability,
safety, real time, performance, and human factors;

o Combining different methods, such as a domain-spe-
cific one with a more general one, or an informal one
with a formal one;

o Building more usable and more robust tools, in partic-
ular tools to manage large specifications and tools to
perform more complicated semantic analysis of speci-
fications more efficiently, perhaps by exploiting paral-
lel architectures and parallel algorithms;

« Building specification libraries so systems and their
components can be reused based on information cap-
tured in their specification (general libraries, like the
Larch handbook (Guttag, Horning, and Wing, 1985a)
and the Z mathematical toolkit (Spivey, 1988), and
domain-specific ones like that for oscilloscopes, are
recent examples);

» Integrating formal methods with the entire system
development effort, for example, to provide a formal
way to record design rationale in the system develop-
ment process;

« Demonstrating that existing techniques scale up to
handle real-world problems and to scale up the tech-
niques themselves; and

o Educating and training more people in the use of
formal methods.

BIBLIOGRAPHY

J. V. Guttag, J. J. Horning, and J. M. Wing, “Some Remarks on
Putting Formal Specifications to Productive Use,” Science of
Computer Programming 2(1), 53—-68(1982).

J. V. Guttag, J. J. Horning, and J. M. Wing, “Larch in Five Easy
Pieces,” Technical Report 5, DEC Systems Research Center,
July 1985a.

J. V. Guttag, J. J. Horning, and J. M. Wing, “The Larch Family of
Specification Languages,” IEEE Software 2(5), 24-36(1985b).

C. A. R. Hoare, Communicating Sequential Processes, Prentice
Hall International, Hempstead, UK, 1985.

C. B. Jones, Software Development: A Rigorous Approach, Prentice
Hall International, Hempstead, UK, 1980.

C. B. Jones, Systematic Software Development Using VDM, Pren-
tice Hall International, Hempstead, UK, 1986.

R. Koymans, J. Bytopil, and W. P. de Roever, “Real-Time Program-
ming and Asynchronous Message Passing,” Proceedings of the
Second ACM Symposium Principles Distributed Programming,
1983, pp. 187-197.

L. Lamport, “Specifying Concurrent Program Modules,” ACM
Transactions Programming Languages and Systems 5(2),
190-222 (1983).

L. Lamport, “A Simple Approach to Specifying Concurrent Sys-
tems,” Communications of the ACM 32(1) 32-45, (Jan. 1989).

B. Meyer, “On Formalism in Specification,” IEEE Software, 6-26
(1985).

A. Pnueli, “Applications of Temporal Logic to the Specification
and Verification of Reactive Systems: A Survey of Current
Trends,” in Current Trends in Concurrency: Overviews and
Tutorials, W.-P. de Roever and G. Rozenberg, eds., lecture
notes in Computer Science 224, Springer-Verlag, New York,
1986, pp. 510-584.

J. M. Spivey, Introducting Z: A Specification Language and its
Formal Semantics, Cambridge University Press, New York,
1988.

JEANNETTE M. WiNG
Massachusetts Institute of Technology

517

