720 FORMAL METHODS FOR COMPUTER SYSTEMS

Since P might have several choices available to it on
each move, this simulation could take exponentially
more time than Pdoes. This might suggest that the task
of parsing a context-free language can be prohibitively
time-consuming, but in fact it is not. General-purpose,
contexi-free parsing algorithms can be designed to
require only time #’, where n is the length of the input,
by using dynamic programming (see ALGORITHMS,
DESIGN AND CLASSIFICATION OF). One of the most popu-
lar such algorithms is Earlev's algorithm. It takes time
n’ in the worst case, but for many context-free
grammars it takes only a linear amount of time. The
#" bound for an all-purpose, context-free parser can be
improved slightly, but it is not yet known how much
improvement is possible.

A non-deterministic pushdown automaton is a theor-
etical construct that is time-consuming to simulaie in
the real world. So, in searching for classes of context-
free languages that are easy to parse, it is reasonable to
consider deterministic context-free languages—those
languages that can be recognized by a deterministic
pushdown automaton. As one might expect, all deter-
ministic context-free languages can be parsed rapidly;
in fact, in a linear amount of time. But not all context-
free languages are deterministic. For example, the set
of all binary strings (strings of 0Os and 1s) that are
palindromes is context-free but not deterministic
because a pushdown automaton for this language
must of necessity operate something like this: by guess-
ing when half the input has been read, store this
portion of the string on the stack, and use the stack to
verify that the second half of the input agrees symbol
by symbol, in reverse order, with the first half.

So, non-deterministic pushdown acceptors are more
powerful than deterministic ones. Are the correspond-
ing statements true for the other kinds of automata
used to characterize the families of languages in the
Chomsky hierarchy? For finite-state automata and for
Turing machines, the answer is no. It is easy to show
that the non-deterministic versions of these devices
are no more powerful than the deterministic versions.
In other words, the ability to make guesses may enable
these devices to do their jobs more quickly, but it will
not let them do anything that they could not have done
without guessing. But for linear-bounded automata, it
is still not known whether the non-deterministic version
(which corresponds to the context-sensitive languages)
1s more powerful than the deterministic version.

This question, called the lba problem, can be recast in
the following form: can a Turing machine that per-
forms a computation with the aid of guessing (i.e. of
non-determinism), using just a linear amount of storage
space, always be simulated by a comparably efficient
Turing machine that does not need to guess? The

analogous question for Turing machines that use a
polynomially bounded amount of computation time
rather than a linear amount of storage space is the
very important P= NP problem (see COMPUTATIONAL
ComPLEXITY and NP-COMPLETE PROBLEMS). In both
cases, the answer is thought to be no, but such
questions are notoriously difficult and have so far
resisted all efforts at solution.

Bibliography

1972. Aho, A. V., and Ullman, J. D. The Theory of Parsing,
Translation and Compiling. Upper Saddle River, NJ: Prentice
Hall.

1973. Salomaa, A. Formal Languages. New York: Academic
Press.

1978. Harrison, M. A. Introduction to Formal Language Theory.
Reading, MA: Addison-Wesley.

1979. Hoperoft, J. E., and Ullman, 1. D. Introduction to
Automata Theory, Languages, and Computation. Reading,
MA: Addison-Wesley.

1988. Moll, R. N., Arbib, M. A., and Kfoury, A. I. 4n
Introduction to Formal Language Theory. New York:
Springer-Verlag.

1996. Linz, P. Introduction to Formal Languages and
Automata. Sudbury, MA: Jones and Bartlett.

Jonathan Goldstine

FORMAL METHODS FOR
COMPUTER SYSTEMS

For articles on related subjects see AUTOMATIC
PROGRAMMING; HARDWARE VERIFICATION; MODEL
CHECKING; PROGRAM SPECIFICATION; and PROGRAM
VERIFICATION.

Formal methods used in developing and verifying soft-
ware and hardware systems are mathematically based
techniques for describing and reasoning about system
properties. Such formal methods provide frameworks
within which people specify, develop, and verify sys-
tems in a systematic,«rather than ad hoc, manner.
Formal methods include the more specific activities of
program specification, program verification, and hard-
ware verification.

A method is formal if it has a sound mathematical
basis, typically given by a formal specification lan-
guage. This basis provides the means of precisely
defining notions like consistency and completeness
and, more relevantly, specification, implementation,
and correctness. It provides the means of proving that
a specification is realizable, proving that a system has
been implemented correctly and proving properties of
a system without necessarily running it to determine its
behavior.

A formal method also addresses a number of pragmatic
considerations: who usesit, what it is used for, when it is
used, and how it is used. Most commonly, system




designers use formal methods to specify or verify a
system's desired behavioral and structural properties.
However, anyone involved in any stage of system
development can make use of formal methods. They
can be used in the initial statement of a customer's
requirements, through system design, implementation,
software testing (g.v.), debugging (g.v.), software main-
tenance (g.v.), program verification, and evaluation.

Formal methods are used to reveal ambiguity, incom-
pleteness, and inconsistency in a system. When used
early in the system development process, they can
reveal design flaws that otherwise might be discovered
only during costly testing and debugging phases.
When used later (e.g. in verification), they can help
determine the correctness of a system implementation
and the equivalence of different implementations.

For a method to be formal, it need not address any
pragmatic considerations, but a lack of such con-
siderations would render it useless. Hence a formal
method should possess a set of guidelines or a “style
sheet” that tells the user the circumstances under
which the method can and should be applied, as well
as how it can be applied most effectively.

One tangible product of applying a formal method is a
formal specification. A specification serves as a con-
tract, a valuable piece of documentation, and a means
of communication between a client, a specifier, and an
implementer. Because of their mathematical basis,
formal specifications are more precise and usually
more concise than informal ones.

Since a formal method is a method and not just a
computer program or language, it may or may not
have software tools to support it. If the syntax of a
formal method's specification language is made expli-
cit, providing standard syntax analysis tools for formal
specifications would be appropriate. If the language's
semantics are sufficiently restricted, varying degrees
of semantic analysis can be performed with machine
aids as well. For example, under certain circum-
stances in hardware verification, the process of proving
the correctness of an implementation against a specifi-
cation can be completely automated. Thus, formal
specifications have the additional advantage over infor-
mal ones of being amenable to machine analysis and
manipulation.

Tremendous progress has been made in formal
methods in the past few years. The most prominent
successes have been in three areas: specification of
large, complex software systems; the use of model
checking for hardware and protocol verification; and
the development of sophisticated theorem provers.

For software specification, the most common formal
notations used today are Z, VDM, Larch, CSP, CCS,

FORTH 721

Statecharts, RAISE, LOTOS, temporal logic, and their
variants. Examples of nontrivial case studies can be
found in a wide range of application domains: avi-
onics, databases, household electricity meters, medi-
cal devices, nuclear reactors, oscilloscopes, railways,
security, and telephony.

Model checking is a technique that relies on building a
finite model of a system and checking that a desired
property holds in that model. The most common model
checkers used today are SMV, Caesar, the Concur-
rency Workbench, Spin, Mur¢, and Cospan/Formal-
Check. Model checkers have been most successfully
used to verify and debug hardware designs and cache
coherence and communication protocols.

Theorem proving (g.v.) is a process of finding a proof
of a property of a system where both the system and
the property are expressed as formulas in some
mathematical logic. Examples of sophisticated theo-
rem provers and proof checkers include PVS, ACL2,
Ngthm, STeP, LP, HOL, and Coq. Recent efforts in
using these systems have focused at the hardware
level, e.g. verifying processor designs, microcode, or
instruction sets.

For a comprehensive survey of the state of the art,
including descriptions of and citations to numerous
case studies, see Clarke and Wing (1996). For more on
the benefits of formal specification, see Meyer (1985)
and Hinchey and Bowen (1995). For a gentle intro-
duction to formal methods, including simple examples
in common specification notations, see Wing (1990).

Bibliograph

1985. Meyer, B. "On Formalism in Specification," IEEE
Software, 2, 6-26.

1990. Wing, J. "A Specifier's Introduction to Formal Methods,"
IEEE Computer, 23, 9, 8-24,

1995. Hinchey, M. G., and Bowen, J. P. (eds.) Applications of
Formal Methods. Upper Saddle River, NI: Prentice Hall.

1996. Clarke, E. M., and Wing, J. M. “Formal Methods: State of
the Art and Future Directions,” ACM Computing Surveys, 28,
4, 626-643.

1999, Bowen, J. “Formal Methods” (part of the Virtual Library).
http://www.comlab.ox.ac.uk/archive/formal-
methods.html.

Jeannette M. Wing

FORTH

For articles on related subjects see EXTENSIBLE LANGUAGE;
POLISH NOTATION; PROGRAMMING LANGUAGES; REAL-TIME
SYSTEMS; and STACK.

History

Forth is a programming language and environment
invented by Charles H. Moore in 1970. It was designed



