1454 PROGRAM SPECIFICATION

6, depending upon the type of instruction currently
being executed.

In all systems that use program counters, there must
be a mechanism for initializing its value and for
changing values at certain points in the program.
This latter mechanism is a special instruction, usually
called a branch or jump. There are two basic kinds of
branch instructions—unconditional branch and con-
ditional branch. The unconditional branch causes a
new value to be placed in the program counter and
hence defines the start of the location of a new
sequence of instructions. A particularly important type
of unconditional branch is the subroutine call, which
additionally saves the current value of the program
counter for later restoration. The conditional branch
has a similar action except that it is dependent upon
the state of certain data items. Thus, whether the next
instruction will be simply the next instruction in the
current sequence or the beginning of a new sequence
will depend upon the result (e.g. positive or negative)
of a preceding instruction

Michael J. Flynn

PROGRAM LIBRARY

See MATHEMATICAL SOFTWARE; and SOFTWARE
LIBRARIES, NUMERICAL AND STATISTICAL.

PROGRAM SPECIFICATION

For articles on related subjects see ABSTRACT DATA TYPE;
AUTOMATIC PROGRAMMING; FORMAL METHODS FOR
COMPUTER SYSTEMS; INFORMATION HIDING; PROGRAM
VERIFICATION; SOFTWARE ENGINEERING; SOFTWARE PROJECT
MANAGEMENT; SOFTWARE PROTOTYPING; and SOFTWARE
TESTING.

The term program specification may refer to:

1. A statement of requirements for a program.
2. An expression of a design for a program.

3. A formal statement of conditions against which the
program can be verified.

Properties of Specifications

Whatever the kind of specification, there are several
concerns:

1. Consistency—Is the specification logically satisfi-
able?

2. Implementability—Is the specification practically
realizable?

3. Completeness—Does the specification capture the
full intent of the specifier?

4. Nonambiguity—Does the specification capture the
precise intent of the specifier?

Uses of Specifications

Specifications can be used in all phases of program
development. In the requirement analysis phase, a
specification helps crystallize the customer’s possibly
vague ideas and reveals contradictions, ambiguities,
and incompleteness in the requirements. In program
design, a specification captures precisely the interfaces
between the modules of a program. Each interface
specification provides the module's client the informa-
tion needed to use the module without knowledge of
its implementation, and simultaneously provides the
module's implementer the information needed to
create the module without knowledge of its clients. In
program verification, a specification is the statement
against which a program is proved correct. Verification
is the process of showing the consistency between a
program and its specification. In program validation,
a specification can be used to generate test cases for
black-box testing. Together with the program, it can be
used for path testing, unit testing, and integration test-
ing. Finally, a specification serves as a kind of program
documentation, since it is an alternative, usually more
abstract, description of a program'’s behavior.

For a more detailed discussion of formal specifica-
tions, see Wing (1990).

EXAMPLE

Consider the specification of a data abstraction for a
bag (in the sense of a sack that holds inserted items).
This example is taken from Guttag et al. (1985). Using
the Larch specification languages, we divide the spec-
ification into two parts. The first part, called a trait,
specifies state-independent properties of data accessed
by programs; the gecond part, called an interface,
specifies state-dependent behavior (e.g. side effects
{g.v.) and exceptional termination of program mod-
ules). In the Larch approach, there is an interface speci-
fication for each programming language. For example,
a Larch/Pascal interface specification describes the
behavior of a Pascal (g.v.) program; it would look dif-
ferent from a Larch/C interface specification.

Fig. 1 presents a trait that is useful for describing
values of multisets and is written in the style of alge-
braic specifications. A multiset is an unordered collec-
tion of items that may contain duplicates. A trait defines
a set of function symbols and a set of equations that
define the meaning of the function symbols. The
equations determine an equivalence relation on terms
written using the function symbols. The generatedby
clause states that all multiset values can be repre-
sented by terms composed solely of the two function




MultiSet: trait

introduces
new: -» MSet
insert: MSet,E ->» MSet
isEmpty: MSet -> Bool
size: MSet -> Card
count: MSet,E ->» Card
delete: MSet,E -> MSet
numElements: MSet -> Card

constrains MSet so that
MSet generated by [new,insert]

PROGRAM SPECIFICATION 1455

MSet partitioned by [count] for all [c: MSet, e, el, e2:E]

isEmpty(new) = true
isEmpty(insertic,e)) = false
size(new) = 0

size(insext(c,e)) = size(c) + 1

count (new, el) = 0

count (insert(c,el), e2) = count (c,e2) + (if el = e2 then 1 else 0)
numklements (new) = 0

numE lements (insert(c,e)) = numElements(c) + (if count(c,e) > O then 0 else 1)
delete(new, el) = new

delete(insert(c,el), e2) = if el = e2 then c else insert (deleteic,e2),el)

implies converts [isEmpty,size,count,delete,numElements]

Figure 1. Specification of multiset values.

symbols, new and insert. This clause defines an induc-
tive rule of inference and is useful for proving proper-
ties about all multiset values. The partitioned by
clause adds more equivalences between terms. Intui-
tively, it states that two terms are equal if they cannot
be distinguished by any of the functions listed in the
clause. In the example, we could use this property to
show that order of insertion of elements in a multiset
does not matter (i.e. insertion is commutative). The
converts clause is a way to state that this algebraic
specification is sufficiently complete.

Fig. 2 gives a Larch/Pascal interface specification of a
bag data abstraction. It introduces a type name, three
procedures, and one function.

The body of each routine's specification places con-
straints on proper arguments for calls on the routine
and defines the relevant aspects of the routine’s behav-
ior when it is properly called. It can be straightfor-
wardly translated to a first-order predicate over two
states by combining its three predicates into a single
predicate of the form

requires predicate = )
(modifies predicate & ensures predicate).

An omitted requires is interpreted as true.

In the body of a Larch/Pascal specification, as in
Pascal, the name of a function stands for the value
returned by that function. Formal parameters may
appear unqualified or qualified. An unqualified formal
parameter stands for the value of that parameter when
the routine is called. A formal parameter qualified by

prime (’), for example b/, stands for the value of that
formal parameter when the routine returns.

The values of variables on entry to and return from
routines must be distinguished because Pascal is a
language in which statements may alter memory.
Since the function symbols in a Larch trait specifica-
tion represent functions, this complication does not
arise there, nor would it in an interface language for a
functional programming (g.v.) language.

The modifies predicate is also related to the impera-
tive nature of Pascal. The predicate modifies at
most [vy,..., v, asserts that the routine changes
the value of no variable in the environment of the
caller except possibly some subset of the variables
denoted by the elements of {v,...,v,}. Notice that
this predicate is really an assertion about all variables
that do not appear in the list, not about those that do.

The based on clause associates the type Bag with the
sort MSet that appears in trait MultiSet. This associa-
tion means that Larch trait terms of algebraic sort
MSet are used to represent Pascal values of type Bag.
For example, the term “new” is used to represent the
value that b is to have when baginit returns. The
requires clause of bagAdd states a precondition that
is to be satisfied on each call. Tt reflects the specifier's
concern with how this type can be implemented in
Pascal. By putting a bound on the number of distinct
elements in the Bag, the specification allows a fixed-
size representation. It is quite natural for such con-
siderations to surface in interface specifications; it
would not be so natural for them to appear in traits.



1456 PROGRAM SPECIFICATION

type Bag exports baglInit,bagAdd,bagRemove, bagChoose

based on sort MSet from MultiSet with [integer for E]

procedure baginit(wvar b: Bag)
modifies at most [b]
ensures b’ = new

procedure bagaAdd (var b: Bag; e: integer)
requires numkElements(insert(b,e)) <
modifies at most [b]
ensures b’ = insert (b,e)

procedure bagRemove (wvar b: Bag; e:
modifies at most [h]
ensures b’ = delete(b,e)

function bagChoose (b: Bayg; var e:integer):

modifies at most [e]

integer)

100

boolean

ensures if <isEmpty(b) then bagChoose & count(b,e") > 0
else ~bagChoose & modifies nothing

Figure 2. Interface specifications of a Larch/Pascal bag abstraction.

The most interesting routine is probably bagChoose.
Its specification says that it must set e to some value in b
(if b is not empty, where ‘~' denotes negation), but
does not say which value. Moreover, it doesn’t even
require that different invocations of bagChoose with
the same value produce the same result; in other
words, the implementation may be nondererministic.
Our implementation is abstractly nondeterministic,
even though it is a deterministic program (see Fig. 3).
The value to which e is set depends on the order in
which elements have been added to and removed from
b, whereas this order does not affect b's abstract value.

This interface specification has recorded a number of
design decisions beyond those contained in the trait
MultiSet. It says which routines must be implemented
and, for each routine, it indicates both the condition
that must hold at the point of call and the condition
that must hold upon return. Thus, a contract that pro-
vides a logical firewall has been established between
the implementers and the clients of type Bag. They can
then proceed independently, relying only on the inter-
face specification (see ABSTRACT DATA TYPE and INFOR-
MATION HIDING).

The clients must establish the requires clause at
each point of call. Having done that, they may pre-
sume the truth of the ensures clause on return, and
that only variables in the modifies at most clause
are changed. They need not be concerned with how
this happens.

The implementers are entitled to presume the truth of
the requires clause on entry. Given that, they must
establish the ensures clause on return, while respect-
ing the modifies at most clause.

Because the interface specification does not specify
either the representation of the type or the algorithms
in routines, vet another level of design is needed.

Because this level is hidden from clients of the data
type, the design may be changed without affecting
their correctness.

The specification of each routine in an interface can be
understood without reference to the specifications of
other routines—unlike traits, in which the specifica-
tion constrains the operators by giving relations among
them. Of course, to understand the type itself, to
reason about it, or to design an efficient representation
for it, the specifications of all its routines must be taken
into account.

To illustrate the relation between an interface speci-
fication and an implementation, we give a Pascal
implementation of type Bag in Fig. 3. Neither the data
structure chosen for the representation nor the
program itself is very interesting. Both the abstraction
function and the representation invariant are pre-
sented informally. If we had included a formal specifi-
cation of the type used in the representation, we could
have presented them using a program annotation
language. Then they could be mechanically combined
with the interface specifications already given to derive
a concrete specification for each routine, which could
then be verified separately.

For example, to show that the implementation of
bagAdd satisfies its specification, one assumes the
precondition, which says that there cannot be more
than 100 distinct elements contained in the bag if we
were to insert e. The implementation of bagAdd then
either finds an index lastEmpty at which to insert a
new distinct element e in the elems array (and sets the
corresponding count for e tol) or finds the index i
at which the elems array already stores e (and incre-
ments e's count by 1), Notice that the implementation
of bagAdad relies on the precondition since if we try to
insert a new distinct element in a bag that already has
100 distinct elements then lastEmpty will be undefined



const MaxBagSize = 100;
type ElemVals = array [1..MaxBagSize] of integer;
ElemCounts = array [1..MaxBagSize] of integer;
Bag = record
elems: ElemVals;
counts: ElemCounts
end;

PROGRAM SPECIFICATION 1457

{Abstraction function: the abstract bag is eguivalent to the result of
inserting into the empty bag each integer in elems a number of times

equal to the corresponding number in counts.}

{Representation invariant: Each integer in counts is at least zero and
no integer appears in elems more than once associated with a positive

value in counts.}

procedure baginit(wvar b: Bag):
var i: 1..MaxBagSize;
begin
for i := 1 to MaxBagSize do b.counts[i] :=
end {baglnit};

procedure baghAdd(var b: Bag; e: integer);
var i,lastEmpty: 1l..MaxBagSize;

:= b.counts[i] + 1 else

begin
i =1,
while (i < MaxBagSize) and (b.elems[i] <> e) do
begin
if b.counts[i] = 0 then lastEmpty :=
1 =4 +1
end;
if b.,elems[i] = e then b.counts[i]
begin
if b.counts[i] = 0 then lastEmpty :=
b.elems|lastEmpty] := e;
b.counts[lastEmpty] := 1
end

end (bagAdd};

procedure bagRemove (wvar b: Bag; e: integer);
var i: 1l..MaxBagSize;
begin
i:=1;
while (not ((b.elems[i] = e¢) and (b.counts[i] > 0)) and (i < MaxBagSize)) do
i::= 1+ 1;
if (b.elems[i] = e) and (b.counts[i] > 0} then
b.counts [i] := b.counts [i] - 1

end {bagRemove};

function bagChoose(b: Bag; var e: integer): booclean;

var i: 1..MaxBagSize;

begin
i = 1y
while (i < MaxBagSize) and (b.counts[i] = 0) do i := i + 1;
if b.counts [i] = 0 then bagChoose := false else
begin
e := b.elems[i];
bagChoose := true
end

end {bagChoose};

Figure 3. Pascal implementation of bag abstraction.

and an error presumably will occur in trying to access
the elems array at an undefined index. Upon termina-
tion, bagAdd satiskies the postcondition of the speci-
fication, which says that the new bag value is the same
as the old with the addition of the newly inserted ele-

ment. Furthermore, we can check that upon inserting
an element in a bag, its final (multiset) value satisfies
the desired properties as specified in the MultiSet trait:
inserting a new distinct element into a multiset in-
creases the number of distinct elements of the multiset



1458 PROGRAM VERIFICATION

by one; inserting an element already in the multiset
does not; and regardless of whether the element is
already in the multiset or not, the multiset's size
increases by one.

Other specification languages for sequential program-
ming are VDM (Vienna Development Method) and Z
(pronounced "zed"). The latter is based on mathemat-
ical set theory and predicate logic, and has been used
to specify industrial projects, particularly in Europe.
There are also specification languages for concurrent
programming (g.v.), which are less widely used, but
have been applied to some safety-critical problems.

Bibliograph

1985, Guttag, J. V., Horning, J. J., and Wing, J. M. “The Larch
Family of Specification Languages,” IEEE Software, 2, 5
(September), 24-36.

1990, Wing, J. M. "A Specifier’'s Introduction to Formal
Methods,” IEEE Computer (September), 8-24.

1994. Morgan, C. C. Programming from Specifications,
Ind Ed. Upper Saddle River, NJ: Prentice Hall.

Jeannette M. Wing

PROGRAM VERIFICATION

For articles on related subjects see AUTOMATIC
PROGRAMMING; FORMAL METHODS FOR COMPUTER SYSTEMS;
LOGICS OF PROGRAMS; LOOP INVARIANT; MODEL CHECKING;
PROGRAM SPECIFICATION; SOFTWARE TESTING; and
STRUCTURED PROGRAMMING.

It is important to know that a computer program meets
its specifications. Program errors might result in the
loss of life or limb, the loss of information, or the loss of
financial assets. With the massive penetration of com-
puting technology into society, program errors can
result in widespread inconvenience and risk (Neumann
(1994) discusses and catalogs numerous failures of
computing systems.) Various techniques can be used to
determine whether a program satisfies its precise and
rigorous specifications. Each technique provides vary-
ing amounts of assurance.

The most common technique is esting a program (see
SOFTWARE TESTING). Sample data, presumed to be rep-
resentative and to cover the necessary extreme cases,
is given to the program and the results are compared
against known or expected answers. The major prob-
lem is to know when to stop testing—how much more
assurance of meeting specifications would be gained by
additional cases. Or, as Dijkstra (1972) wrote, “Pro-
gram testing can be used to show the presence of bugs,
but never to show their absence!”

In contrast, but often as a supplement to testing rather
than as a distinct alternative, is the technique of pro-
gram verification. As that term is used in this arficle,

to verify a program means to demonstrate, via a
mathematical proof, that the program is consistent
with its specifications. It may be quite useful just to
prove limited properties, such as that the program
terminates (and without executing an operation whose
result is undefined, such as division by 0) or that certain
variables remain unchanged. The criterion of success
requires a sufficiently believable proof, as do all mathe-
matical proofs. Failure to complete the proof may be
due to a problem with either the program or the specifi-
cations, as well as because of insufficient information
about the problem domain or even actual inability to
prove a true theorem.

Basic Technique and Example

The most common technique for verifying a program
is known as the method of assertions (or invariant
assertions or inductive assertions). The basic idea is
to associate assertions with various points in the pro-
gram. Assertions are propositions involving the vari-
ables of the program usually expressed in a system like
the first-order predicate calculus (see DISCRETE MATHE-
MATICS). The intent is that each assertion be a true
statement every time the execution of the program
passes the point with which that assertion is associated.
The proof requirement is to demonstrate that this
intent is actually satisfied. Those assertions that appear
at the end of a program are often called postconditions;
assuming that the program terminates, these give the
result of the program. Assertions that appear at the
start of a program are called preconditions. Because
programs do not accept arbitrary inputs, a precondi-
tion is intended to give a sufficient condition for the
program to compute its result. For example, a program
to compute the inverse of a matrix or the reciprocal of a
number requires nonzero input and perhaps other
conditions as wedl. The only other requirement on the
association of assertions is that (the path formed by)
every loop must have at least one point with an
assertion. An assertion that is true for every execution
of a loop is called a loop invariant. Such invariants can
often be deduced from the program or, indeed, the loop
can be constructed to preserve a previously given
invariant. In either case, the loop invariant is an essen-
tial part of understanding why the program works as
well as an essential ingredient of the verification.

The standard way to achieve the proof requirement is
to focus on a particular assertion, say Py, and to follow
the program execution from P; along all possible
paths, stopping on each path when another assertion,
P,, is reached (P, is often P, again if the path is a
loop). One must show, for each such path, that Py and
the effects of the statements between Pj and P imply
that P, holds. Suppose we do this for all assertions,



