Composing Transactional Concepts

Jeannette M. Wing'
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1. Revisiting Transactions

Transactions are a well-known and fundamental control abstraction that arose out of the database commu-
nity. They have three properties that distinguish them from normal sequential processes: (1) A transaction
is a sequence of operations that is performed stomicslly (“all-or-nothing”). If it completes successfully, it
commits; otherwise, it aborts; (2) concurrent transactions are serializable (appear to occur one-at-s-time),
supporting the principle of isolation; and (3) effects of committed transactions are persistent (survive fail-
ures).

1.1. Separation of concerns

Systems like Tabs [5] and Camelot [2] demonstrate the viability of layering a general-purpose transactional
facility on top of an operating system. Languages such as Argus (3] and Avalon/C++ [1] go one step further
by providing linguistic support for transactions in the context of a general-purpose programming language.
In principle programmers can now use transactions as a unit of encapsulation to structure an application
program without regard for how they are implemented at the operating system level.

In practice, however, transactions have yet to be shown useful in general-purpose applications program-
ming. One problem is that state-of-the-art transactional facilities are so tightly integrated that application
builders must buy into a facility in {oto, even if they need only one of its services. For example, the Coda
file system [4] was originally built on top of Camelot, which supports distributed, concurrent, nested trans-
actions. Coda needs transactions for storing “metadata” (e.g., inodes) about files and directories. Coda
is structured such that updates to metadata are guaranteed to occur by only one thread executing at a
single-site within a single top-level transaction. Hence Coda needs ouly single-site, single-threaded, non-
nested transactions, but by using Camelot was forced to pay the performance overhead for Camelot’s other
features.

The Venari Project at CMU is revisiting support for transactions by adopting a “pick-and-choose”
approach rather than a “kit-and-kaboodle” approach [6]. Ideally, we want to provide separable components
to support transactional semantics for different settings, e.g., in the absence or presence of concurrency
and/or distribution. Programmers are then free to compose those components supporting only those features
of transactions they need for their application. Our approach also enables programmers to code some
applications that cannot be done without an explicit separation of concerns.

We waat to support this approach at the programming language level. The current status of the Venari
Project is that we can support concurrent, multi-threaded, nested transactions in the context of Standard
ML. We have not yet addressed distribution, but see that as our next big step. (We were more concerned
to break apart separable transactional concepts before tackling distribution.)

’MMvuMMMAmM,WMMWM.AMMSMNM
(AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, Arpa Order No. 7567.



1.2. Why SML?

To explore the feasibility of designing a language to support orthogonal transactional concepts, we chose not
to design a brand new language from scratch. Instead, we decided we would target an existing language as
a basis for extension; we chose Standard ML, and in particular the New Jersey implementation.

SML is not the obvious choice for building a transaction-based programming language, even less so for
building an object-oriented distributed language. SML’s heart is in functional (stateless) programming and
transactions are very much a state-oriented concept. SML has no notion of subtype or inheritance and no
direct support for concurrency, distribution, or persistence.

However, SML does give a good starting point. In the design and implementation of our extensions,
we gained leverage from SML’s high-level language features including strong typing, exceptions, first-class
functions, and modules. SML makes a type distinction between immutable and mutable values (rets and
arrays); we rely on strong typing to let the runtime system safely operate on addresses (without the
programmer’s knowledge). SML’s support for first-class functions (closures) allow us to make transactions
first-class. We use signatures to separate interface information from implementation and functors to compose
parameterized modules. SML’s modules facility enables us to support our “pick-and-choose” approach at
the language level.

2. The Application Programmer’s View of Venari/ML Transactions

If £ is a function applied to some argument a, then to execute:
1 a
in a transaction, programmers can write:
(transact f) a
or more probably,
((transact £) a ) handle Foo => [some work]

where Foo is a user-defined exception. Here £ might be muiti-threaded. Informally, the meaning of calling
£ with transact is the same as that of just calling £ with the following additional side effects: If £ returns
normally, then the transaction commits, and if it is a top-level transaction, its effects are saved to persistent
memory (i.e., written to disk). If £ terminates by raising any uncaught exception, e.g., Foo, then the
transaction aborts and all of £’s effects are undone. Through SML’s exception-handling, in the case of
an aborted transaction, the programmer has control of what to do such as clean-up and/or retrying the
transaction.

As a more compelling (and the canonical) example, suppose we want to transfer money from one bank
account to another. This would involve withdrawing money from one account and depositing it in the other.
We need to make sure that either both the withdrawal and the deposit succeed, or that neither of them
occur. If only the withdrawal happened, the money would be lost, and we would be very unhappy. If only
the deposit happened, the money would be “duplicated,” and the bank would be very unhappy. So, we use
a transaction to effect the desired behavior.



fun transfer (account_i, account_2, amount) =
let fun do_transfer () =
(withdraw (account_1, amount);
deposit (account_2, amount))
in
transact do_transfer ()
end

The function transfer transfers money from account_i to account_2 with the guarantee that a partial
transfer will not occur. The transfer itself occurs in the function do_transter, which withdraws the money
from account_1 and deposits it into account_2. The functions withdrav and deposit are expected to raise
an exception if something goes wrong, e.g., if account._1 has insufficient funds or the bank’s computer goes
down. We wrap a transaction around the call to do_transfer so that if anything goes wrong, the whole
transfer will be aborted. If the transfer is aborted, we reraise the exception that caused the abort.

We could make the transfer transaction multi-threaded by having one thread do the withdrawal while
another does the deposit. All we would need to do is to replace the two-line definition of do_transfer with:

(tork (fn () => withdraw (account_1i, amount));
deposit (account_2, amount))

3. The Venari/ML Interfaces

In our design, we teased apart the usual atomicity, serializability, and persistence properties rolled into
transactions, and added the ability for transactions to be multi-threaded. In particular, we provide support
for the following features, each as a separable component—the name of the Venari/ML signature is given in
parentheses.

o Persistence (PERS)

¢ Undoability (UNDO)

¢ Reader-writer locks (RW_LOCK)
o Threads (THREADS)

o Skeins (SKEINS)

The basic idea is that we want the individual pieces to compose in a seamless way to give us transactions.
Persistence ensures permanence of effects of top-level transactions. Undoability allows us to handle aborted
transactions. Reader-writer locks provide isolation of changes to the store, and hence ensure transaction
serializability of concurrent transactions. Skeins let us group a collection of threads together, giving us the
ability to make multi-threaded transactions.

Putting all these pieces together into a single ML module culminates in our main VENARI interface shown
on the next page. It provides a way for application programmers to create and manipulate concurrent
multi-threaded transactions. What distinguishes our model from the more standard model of concurrent,
nested transactions is our ability to identify multiple threads of control (not just one thread) with a single
transaction.



signature VENARI =
sig
val transact : ('a -> ’_b) => ’a => ' b

structure Threads : THREADS
structure Skeins : SKEINS
structure R¥_Lock : RW_LOCK
structure Undo : UNDO
structure Pers : PERS

end

Roughly speaking, a transaction is a locking skein of threads whose effects are undone if the transaction
aborts or made persisient if it terminates.

By having separated transactional concepts from one another, we also provide the ability to put some
pieces together, ignoring others. This separation of concerns enables direct support for different non-
transactional models of computation. Here are some of the more interesting combinations:

o Multi-threaded persistence (threads + persistence = persistent skeins)

¢ Multi-threaded undo (threads + undo = undo skeins)

o Locking threads (threads + r/w locks = locking skeins)

o Concurrent persistence (threads + r/w locks + persistence = locking persistent skeins)

o Concurrent multi-threaded transactions
(persistence + undo + r/w locks + threads = transactional skeins)
As seen, the VENARI interface above supports this particular combination directly.

All skeins can be nested, hence each combination above can be nested. Permanence of a nested persistent
skein’s effects is relative to its parent. All mixes are possible. For example, a transaction can have an undo
skein or locking skein within it, and vice versa. A skein can have nested within it concurrent skeins of
different flavors. Finally, the single-threaded case of any of these is just a special case in which a skein has
just one thread; Venari/ML does not explicitly provide interfaces for the single-threaded cases.

References

[1] D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of synchronization and recovery properties in
Avalon/C++. IEEE Computer, pages 5769, December 1988.

(2] J. Eppinger, L. Mummert, and A. Spector. Camelot and Avalon: A Distributed Transaction Facility. Morgan
Kaufmann Publishers, Inc., 1991.

[3] B. Liskov and R. Scheifier. Guardians and actions: Linguistic support for robust, distributed programs. ACM
Transactions on Programming Language and Systems, 5(3):382-404, July 1983.

[4] M. Satyanarayanan et al. Coda: A highly available file system for a distributed workstation environment. /EEE
Trans. Computers, 39(4):447-459, April 1990.

[5] A.Z. Spector et al. Support for distributed transactions in the TABS prototype. IEEE Transactions on Software
Engineering, 11(6):520-530, June 1985.

[6] 3.M. Wing and et al. Venari/ML interfaces and examples. Technical Report CMU-CS-93-123, CMU School of
Computer Science, March 1993.



