Revisiting Abstraction Functions For
Reasoning About Concurrency

Jeannette M. Wing
School of Computer Science, Carnegie Mellon University
Pittsburgh, PA 15213 USA

Abstract

Hoare introduced abstraction functions for reasoning about abstract data
types in 1972 [1]. What happens in the presence of concurrency? Rea-
soning about objects in a concurrent system necessitates extending the
notion of abstraction functions in order to model the system’s inherent
nondeterminisitic behavior. My talk presented in detail the extensions
required to reason about lock-free concurrent objects, used to build lin-
carizable systems. It also discussed briefly a different extension required
to reason about atomic objects, used to build fault-tolerant distributed
systems.

Much of this work is joint with Maurice Herlihy and previously pub-
lished in two papers {2, 3].

1 Background

Hoare introduced abstraction functions for reasoning about abstract data types
in 1972 [1). In the sequential domain, an implementation consists of an abstract
type ABS, the type being implemented, and a representation type REP, the type
used to implement ABS. The subset of REP values that are legal representations
is characterized by a predicate called the representation invariant, I: REP —
BOOL. The abstraction function,

A: REP — ABS

maps each representation value that satisfies the invariant to a single abstract
value.

2 What happens in the presence of
concurrency?

A concurrent object is a data object shared by concurrent processes. Lineariz-
ability is a correctness condition for concurrent. objects defined in terms of the
semantics of abstract data types. Intuitively, linearizability requires that each
operation executed appear to “take effect” instantaneously and that the order
of nonconcurrent operations be preserved. These two requirements allow us to
describe acceptable concurrent behavior directly in terms of acceptable sequen-
tial behavior, an approach that simplifies both formal and informal reasoning
about concurrent programs.

299

In order to prove that an implementation of a concurrent object is correct,
i.e., linearizable, it is necessary to extend the notion of an abstraction function.
The abstraction function must map a single representation value (that satisfies
the invariant) to a sef of abstract values:

A: REP — 24BS

The change to the range of the abstraction function results from inherent
nondeterminism as defined by linearizability. Intuitively, the nondeterminism
arises because at any point in time operations concurrently performed on an
object may or may not have “taken eflect.” For each operation we want to
permit the possibility that it has or has not. The paper by Herlihy and Wing
[2] motivates linearizability, discusses the change to the notion of ahstraction
function, and walks through an example of a FIFO queue in depth.

3 What happens in the presence of
concurrency and faults?

An atomic object is a data object shared by concurrent transactions. A trans-
action is a process that executes a sequence of operations where that sequence
(in contrast to each individual operation) is considered an atomic unit. i.e.,
“all-or-nothing.” A transaction may succeed, in which case all its operations
take effect; or, it may fail, in which case none of its operations take effect.
Faults such as lost messages and site crashes are masked as aborted (failed)
transactions.

Alomicily is a correctness condition for atomic objects defined in terins of
the semantics of abstract data types. It requires that all transactions that
perform operations on an object be “all-or-nothing,” serializable (the concur-
rent execution of a set of transactions must be equivalent to some sequential
execution), and permanent (effects of committed transactions persist).

In order to prove that an implementation of an atomic object is correct, i.e.,
atomic, it is necessary to extend the notion of an abstraction function. The
abstraction function must map a single representation value (that satisfies the
invariant) to a set of sequences of abstract operations:

A: REP — 20PS»

where OPS is the set of operations on the abstract type, ABS. Nondeterminism
(set of sequences) is inherent because any serialization should be allowed. We
need to keep track of history information (sequences of operations) because
the future successful completion of a transaction may require that its opera-
tions be “inserted in the middle” of a history, where the resulting history is
a serialization. The paper by Wing [J], based on earlier work by Herlihy and
Wing, explains in detail the model of computation for atomic objects and the
extended notion of abstraction functions for reasoning about the correctness of
their implementations.



300

References

[1] C.A.R. Hoare, “Proof of Correctness of Data Representations,” Acta Infor-
matica, Vol. 1, 1972, pp. 271-281.

(2] M.P. Herlihy and J.M. Wing, “Linearizab.ility: A Correctness Condition
for Concurrent Objects,” ACM TOPLAS, Vol. 12, No. 3, July 1990, pp.
463-492.

[3] 3.M. Wing, “Verifying Atomic Data Types,” International Journal of Par-
allel Programming, Vol. 18, No. 5, 1989, pp. 315-357.



