A Specifier’s
Introduction
to Formal

Methods

Jeannette M. Wing, Carnegie Mellon University

ormal methods used in developing
Fcomputcr systems are mathemati-

cally based techniques for describ-
ing system properties. Such formal meth-
ods provide frameworks within which peo-
ple can specify, develop, and verify systems
inasystematic, rather than ad hoc, manner.

A method is formal if it has a sound
mathematical basis, typically given by a
formal specification language. This basis
provides the means of precisely defining
notions like consistency and completeness
and, more relevantly, specification, imple-
mentation, and correctness. It provides the
means of proving that a specification is
realizable, proving that a system has been
implemented correctly, and proving prop-
erties of a system without necessarily run-
ning it to determine its behavior.

A formal method also addresses a num-
ber of pragmatic considerations: who uses
it, what it is used for, when it is used, and
how it is used. Most commonly, system
designers use formal methods to specify a
system’s desired behavioral and structural
properties.

However, anyone involved in any stage
of system development can make use of
formal methods. They can be used in the
initial statement of a customer’s require-
ments, through system design, implemen-
tation, testing, debugging, maintenance,
verification, and evaluation.

Formal methods are used toreveal ambi-
guity, incompleteness, and inconsistency
in a system. When used early in the system
development process, they can reveal de-

Applied to computer
systems development,
formal methods
provide
mathematically based
techniques that
describe system
properties. As such,
they present a
framework for
systematically
specifying, developing,
and verifying systems.

sign flaws that otherwise might be discov-
ered only during costly testing and debug-
ging phases. When used later, they can
help determine the correctness of a system
implementation and the equivalence of
different implementations.

For a method to be formal, it must have
a well-defined mathematical basis. It need

0018-9162/90/0900-0008501.00 © 1990 IEEE

not address any pragmatic considerations,
but lacking such considerations would ren-
der it useless. Hence, a formal method
should possess a set of guidelines or a
“style sheet” that tells the user the circum-
stances under which the method can and
should be applied as well as how it can be
applied most effectively.

One tangible product of applying a for-
mal method is a formal specification. A
specification serves as a contract, a valu-
able piece of documentation, and a means
of communication among a client, a spec-
ifier, and an implementer. Because of their
mathematical basis, formal specifications
are more precise and usually more concise
than informal ones.

Since a formal method is a method and
not just a computer program or language, it
may or may not have tool support. If the
syntax of a formal method’s specification
language is made explicit, providing stan-
dard syntax analysis tools for formal spec-
ifications would be appropriate. If the
language’s semantics are sufficiently re-
stricted, varying degrees of semantic anal-
ysis can be performed with machine aids as
well. Thus, formal specifications have the
additional advantage over informal ones of
being amenable to machine analysis and
manipulation.

For more on the benefits of formal spec-
ification, see Meyer.! For more on the
distinction between a method and a lan-
guage, and what specifying a computer
system means, see Lamport.

Continued on p. 10

COMPUTER

What is a specification
language?

A formal specification language pro-
vides a formal method’s mathematical ba-
sis. I borrowed the terms and definitions
that follow from Guttag et al.* Burstall and
Goguen have used the term “language” and
more recently the term “institution” for the
notion of a formal specification language.

Definition: A formal specification language
isatriple, <Syn, Sem, Sar>, where Syn and Sem
are sets and Sat < Syn X Sem is a relation
between them. Syn is called the language’s
syntactic domain; Sem, its semantic domain;
and Sat, its satisfies relation.

Definition: Given a specification language,
<Svn, Sem, Sar>, if Sar(syn, sem) then syn is
aspecification of sem, and sem s a specificand
of svn.

Definition: Given a specification language,
<Syn, Sem, Sar>, the specificand set of a
specification syn in Syn is the set of all
specificands sem in Sem such that Sar(syn,
sem).

Less formally, a formal specification
language provides a notation (its syntactic
domain), a universe of objects (its seman-
tic domain), and a precise rule defining
which objects satisfy each specification. A
specification is a sentence written in terms
of the elements of the syntactic domain. It
denotes a specificand set, a subset of the
semantic domain. A specificand is an ob-
jectsatisfying a specification. The satisfies
relation provides the meaning, or interpre-
tation, for the syntactic elements.

Backus-Naur form is an example of a
simple formal specification language, with
a set of grammars as its syntactic domain
and a set of strings as its semantic domain.
Every string is a specificand of each gram-
mar that generates it. Every specificand set
is a formal language.

In principle, a formal method is based on
some well-defined formal specification
language. In practice, however, this lan-
guage may not have been explicitly given.
The more explicit the specification lan-
guage’s definition, the more well-defined
the formal method.

Formal methods differ because their
specification languages have different
syntactic and/or semantic domains. Even if
they have identical syntactic and semantic
domains, they may have different satisfies
relations.

Syntactic domains. We usually define a
specification language’s syntactic domain
in terms of a set of symbols (for example,
constants, variables, and logical connec-

10

tives) and a set of grammatical rules for
combining these symbols into well-formed
sentences. For example, using standard
notation for universal quantification (V) and
logical implication (=), let x be a logical
variable and P and Q be predicate symbols.
Then this sentence, Vx.P(x) = Q(x), would
be well-formed in predicate logic, but this
one, Vx. = P(x) = Q(x), would not be-
cause = is a binary logical connective.
A syntactic domain need not be restrict-
ed to text; graphical elements such as box-
es, circles, lines, arrows, and icons can be
given a formal semantics just as precisely
as textual ones. A well-formedness condi-
tion on such a visual specification might be
that all arrows start and stop at boxes.

Semantic domains. Specification lan-
guages differ most in their choice of se-
mantic domain. The following are some
examples:

* Abstract-data-type specification lan-
guages are used to specify algebras, theo-
ries, and programs. Though specifications
written in these languages range over dif-
ferent semantic domains, they often look
syntactically similar.

¢ Concurrent and distributed systems
specification languages are used to specify
state sequences, event sequences, state and
transition sequences, streams, synchroni-
zation trees, partial orders, and state ma-
chines.

¢ Programming languages are used to
specify functions from input to output,
computations, predicate transformers, re-
lations, and machine instructions.

Each programming language (with a well-
defined formal semantics) is a specifica-
tion language, but the reverse is not true,
because specifications in general do not
have to be executable on some machine
whereas programs do. By using a more
abstract specification language, we gain
the advantage of not being restricted to
expressing only computable functions. Itis
perfectly reasonable in a specification to
express notions like “Forall xinset A, there
exists ayin set B such that property P holds
of xandy,” where A and B might be infinite
sets.

Programs, however, are formal objects,
susceptible to formal manipulation (for
example, compilation and execution). Thus,
programmers cannot escape from formal
methods. The question is whether they work
with informal requirements and formal
programs, or whether they use additional
formalism to assist them during require-
ments specification.

When a specification language’s seman-
tic domain is over programs or systems of
programs, the term implements is used for
the satisfies relation, and the term imple-
mentation is used for a specificand in Sem.
An implementation prog is correct with
respectto a given specification specif prog
satisfies spec. More formally,

Definition: Given a specification language,
<Syn, Sem, Sar>, an implementation prog in
Sem is correct with respect to a given
specification specin Synif and only if Sar(spec,
prog).

Satisfies relation. We often would like
to specify different aspects of a single
specificand, perhaps using different spec-
ification languages. For example, you might
want to specify the functional behavior of
a collection of program modules as the
composition of the functional behaviors of
the individual modules. You might addi-
tionally want to specify a structural rela-
tionship between the modules such as what
set of modules each module directly in-
vokes.

To accommodate these different views
of a specificand, we first associate with
each specification language a semantic
abstraction function, which partitions
specificands into equivalence classes.

Definition: Given a semantic domain, Sem, a
semantic abstraction function is a
homomorphism, A: Sem — 25", that maps
elements of the semantic domain into
equivalence classes.

For a given specification language, we
choose a semantic abstraction function to
induce anabstract satisfies relation between
specifications and equivalence classes of
specificands. This relation defines a view
on specificands.

Definition: Given a specification language,
<Syn, Sem, Sat>, and a semantic abstraction
function, A, defined on Sem, an abstract
satisfies relation, ASat:Syn — 2%", is the
induced relation such that

Vspec € Syn,prog € Sem »
[Sat(spec,prog) = ASat(spec.A(prog))]

Ditferent semantic abstraction functions
make it possible to describe multiple views
of the same equivalence class of systems,
or similarly, impose different kinds of con-
straints on these systems. Having several
specification languages with different se-
mantic abstraction functions for a single
semantic domain can be useful. This en-
courages and supports complementary
specifications of different aspects of a sys-
tem.

COMPUTER

T

For example, in Figure 1, a single se-
mantic domain, Sem, is on the right. One
semantic abstraction function partitions
specificands in Sem into a set of equiva-
lence classes, three of which are drawn as
blobs in solid lines. Another partitions
specificands into a different set of equiva-
lence classes, two of which are drawn as
blobs in dashed lines. Via the abstract sat-
isfies relation ASatl, specification A of
syntactic domain Synl maps to one equiv-
alence class of specificands (denoted by a
solid-lined blob), and via ASat2, specifica-
tion B of syntactic domain Syn2 maps to a
different equivalence class of specificands
(denoted by a dashed-line blob). Note the
overlap between the solid-lined and dashed-
lined blobs.

To be concrete, suppose Sem is a library
of Ada program modules. Imagine that A
specifies (perhaps through a predicate in
first-order logic) all procedures that sort
arrays, and B specifies (perhaps through a
call graph) all procedures that call func-
tions on a user-defined enumeration type
E. Then, a procedure that sorts arrays of
E’s mightbe in the intersection of ASat1(A)
and ASat2(B).

Two broad classes of semantic abstrac-
tion functions are those that abstract pre-
serving each system’s behavior and those
that abstract preserving each system’s
structure. In the example above, A specifies
a behavioral aspect of the Ada program
modules, but B describes a structural aspect.

Behavioral specifications. Behavioral
specifications describe only constraints on
the observable behavior of specificands.
The behavioral constraint that most formal
methods address is a system’s required
functionality (that is, mapping from inputs
to outputs). Current research in formal
methods addresses other behavioral aspects,
such as fault tolerance, safety, security,
response time, and space efficiency.

Often, some of these behavioral aspects,
such as security, are included as part of,
rather than separate from, a system’s func-
tionality. If the overall correctness of a
system is defined so that it must satisfy
more than one behavioral constraint, a sys-
tem that satisfies one but not another would
be incorrect. For example, if functionality
and response time were the constraints of
interest, a system producing correctanswers
past deadlines would be just as unaccept-
able as a system producing incorrect an-
swers on time.

Structural specifications. Structural
specifications describe constraints on the

September 1990

Syn2

Sem

internal composition of specificands. Ex-
ample structural specification languages
are module interconnection languages.
Structural specifications capture various
kinds of hierarchical and uses relations
such as those represented by procedure-
call graphs, data-dependency diagrams, and
definition-use chains. Systems that satisfy
the same structural constraints do not nec-
essarily satisfy the same behavioral con-
straints. Moreover, the structure of a
specification need not bear any direct rela-
tionship to the structure of its specificands.

Properties of specifications. Each
specification language should be defined
so each well-formed specificationis unam-
biguous.

Definition: Given a specification language,
<Svn, Sem, Sat>, a specification syn in Syn is
unambiguous if and only if Sat maps syn to
exactly one specificand set.

Informally, a specification is unambigu-
ous if and only if it has exactly one mean-
ing. This key property of formal specifica-
tions means that any specification language
based on or incorporating a natural lan-
guage (like English) is not formal since
natural languages are inherently ambigu-
ous. It also means that a visual specifica-
tion language that permits multiple inter-
pretations of a box and/or arrow is
ill-defined, and hence not formal.

Another desirable property of specifica-
tions is consistency.

Definition: Given a specification language,
<Syn, Sem, Sar>, a specification syn in Syn is

consistent (or satisfiable) if and only if Sar
maps syn (o a non-empty specificand set.

Informally, a specification is consistent
if and only if its specificand set is non-
empty. In terms of programs, consistency
is important because it means there is some
implementation that will satisfy the speci-
fication. If you view a specification as a set
of facts, consistency implies that you cannot
derive anything contradictory from the
specification.

Were you to pose a question based on a
consistent specification you would not get
mutually exclusive answers. Obviously,
we want consistent specifications. An in-
consistent specification, which negates on
one occasion what it asserts on another,
means you have no knowledge at all.

Specifications need not be complete in
the sense used in mathematical logic, though
certain relative-completeness properties
might be desirable (for example, sufficient
completeness of an algebraic specification®).

In practice, you must usually deal with
incomplete specifications. Why? Specifi-
ers may intentionally leave some things
unspecified, giving the implementer some
freedom to choose among different data
structures and algorithms. Also, specifiers
cannot realistically anticipate all possible
scenarios in which a system will be run and
thus, perhaps unwittingly, have left some
things unspecified. Finally, specifiers de-
velop specifications gradually and itera-
tively, perhaps in response to changing
customer requirements, and hence work
with unfinished products more often than
finished ones.

Informal
requirements

¥
i»i

Customer Specifier

Specification

O What does this
program do?

Client

A

Implementer

Does this
program
satisfy this
specification?
Verifier

Figure 2. Specification users.

A delicate balance exists between say-
ing just enough and saying too much in a
specification. Specifiers want to say enough
so that implementers do not choose unac-
ceptable implementations. Specifiers are
responsible for not making oversights; any
incompleteness in the specification should
be an intentional incompleteness. On the
other hand, saying too much may leave
little design freedom for the implementer.
A specification that overspecifies is guilty
of implementation bias.’

Informally, a specification has imple-
mentation bias if it specifies externally
unobservable properties of its specificands;
it places unnecessary constraints on its
specificands. For example, a set specifica-
tion that keeps track of the insertion order
of its elements has implementation bias
toward an ordered-list representation and
against a hash table representation.

Proving properties of specificands.
Most formal methods are defined in terms
of a specification language that has a well-
defined logical inference system. A logical
inference system defines a consequence
relation, typically given in terms of a set of
inference rules, mapping a set of well-
formed sentences in the specification lan-

12

guage to a set of well-formed sentences.

We use this inference system to prove
properties from the specification about
specificands. Again taking a specification
as asetof facts, we derive new facts through
the application of the inference rules.

When you prove a statement inferable
from these facts, you prove a property that
a specificand satisfying the specification
will have, a property not explicitly stated
in the specification. An inference system
gives users of formal methods a way to
predict a system’s behavior without hav-
ing to execute or even build it. It gives
users a way to state questions, in the form
of conjectures, about a system cast in terms
of just the specification itself. Users can
then answer these questions in terms of a
formal proof constructed through a formal
derivation process.

The inference system increases user
confidence in the specification’s validity.
If users are able to prove a surprising result
from the specification, then perhaps the
specification is wrong.

A formal method with an explicitly de-
fined inference system usually has the fur-
ther advantage that this system can be
completely mechanized (for example, if it
has a finite set of finite rules). Theorem

provers and proof checkers are example
tools that assist users with the tedium of
deriving and managing formal proofs.

Pragmatics

Certain pragmatic concerns exist about
formal methods, their users, their uses, and
their characteristics.

Users. Some users of formal methods
are actually going to produce something
tangible: formal specifications. However,
most people need only read specifications,
not develop their own from scratch. Be-
sides specification writers, there are sever-
al kinds of specification readers.

In Figure 2, each stick figure represents
a different role in the system development
process. A person playing any of these roles
is a potential specification user. In practice,
one person may play multiple roles, and
some role may not be played at all.

Specifiers write, evaluate, analyze, and
refine specifications. They prove that their
refinements preserve certain properties and
prove properties of specificands through
specifications. Specification readers, be-
sides specifiers, are customers, those peo-
ple who may have hired the specifiers;
implementers, those people who realize a
specification; clients, those people who use
a specified system, usually without knowl-
edge of how it is implemented; and verifi-
ers, those people who prove the correct-
ness of implementations. All these people
can benefit from the assistance of machine
tools (another kind of specification reader),
some of which might blindly manipulate
specifications without regard to their
meaning.

One point of tension in many formal
methods is that their languages may be
more suitable to one type of specification
user than to others. Most language design-
ers will target their language for at least
two types of users (for example, clients and
specifiers or specifiers and implementers).
Some specification languages contain a lot
of syntactic “sugar” to make specifications
more readable by customers. Some contain
a minimal amount because the intent of the
method is to do formal proofs by machines
or because the meaning of a rich set of
cryptic mathematical notation is assumed.

An advocate of a particular formal meth-
od should tell potential users the method’s
domain of applicability. For example, a
formal method might be applicable for
describing sequential programs but not
parallel ones, or for describing message-

COMPUTER

T

passing distributed systems but not trans-
action-based distributed databases. With-
out knowing the proper domain of applica-
bility, a user may inappropriately apply a
formal method to an inapplicable domain.

A formal method’s set of guidelines
should identify different types of users the
method is targeted for and the capabilities
each should have. To apply some methods
properly, users might need to know mod-
ern algebra, set theory, and/or predicate
logic. To apply some domain-specific
methods, users might need to know addi-
tional mathematical theories — for exam-
ple, digital logic, if specifying hardware,
or probability and statistics, if specifying
system reliability.

Uses. You can apply formal methods in
all phases of system development. Such
applications shouldn’t be considered a
separate activity, but rather an integral
one. The greatest benefit in applying a
formal method often comes from the pro-
cess of formalizing rather than from the
end result. Gaining a deeper understanding
of the specificand by forcing yourself to be
abstract yet precise about desired system
properties can be more rewarding than
having the specification document alone.

Consider, for each system development
phase, some uses of formal specifications
and the formal methods that support them.
(See “Further reading” for specific cita-
tions.)

Requirements analysis. Applying a for-
mal method helps clarify a customer’s set
of informally stated requirements. A spec-
ification helps crystallize the customer’s
vague ideas and reveals contradictions,
ambiguities, and incompleteness in the re-
quirements. A specifier has a better chance
of asking pertinent questions and evaluat-
ing customer responses through the use of
a formal, rather than informal, specifica-
tion. Both the customer and specifier can
pose and answer questions based on the
specification to see whether it reflects the
customer’s intuition and whether the
specificand set has the desired set of
properties. Systems such as Kate and the
Requirements Apprentice address the
problem of transforming informal re-
quirements into formal specifications; the
Gist explainer addresses the converse
problem of translating a formal specifica-
tion into a restricted subset of English.

System design. Two of the most impor-

tant activities during design are decompo-
sition and refinement. The Vienna Devel-

September 1990

opment Method (VDM), Z, Larch, and
Lamport’s transition axiom method are
formal methods that are especially suitable
for system design.

Decomposition is the process of parti-
tioning a system into smaller modules.
Specifiers can write specifications to cap-
ture precisely the interfaces between these
modules. Each interface specification pro-
vides the module’s client the information
needed to use the module without knowl-
edge of its implementation. At the same
time, it provides the module’s implement-
er the information needed to implement the
module without knowledge of its clients.
Thus, as long as the interface remains the
same, the implementation of the module
can be replaced, perhaps by a more effi-
cient one, at some later time without af-
fecting its clients.

The interface provides a place for re-
cording design decisions; moreover, any
intentional incompleteness can be captured
succinctly as a parameter in the interface.

Refinement involves working at differ-
ent levels of abstraction, perhaps refining a
single module at one level to be a collec-
tion of modules at a lower level, or choos-
ing a representation type for an abstract
data type. Each refinement step requires
showing that a specification (or program)
at one level satisfies a higher level speci-
fication.

Proving satisfaction often generates ad-
ditional assumptions, called proof obliga-
tions, that must be discharged for the proof
to be valid. A formal method provides the
language to state these proof obligations
precisely and the framework to carry out
the proof.

Program refinement dates back to Dijk-
stra’s work on stepwise refinement and
predicate transformers and Hoare’s work
on data representation and abstraction
functions. Related work on program trans-
formation, program synthesis, and infer-
ential programming have spawned the de-
sign of languages like Refine and Extended
ML, and programming environments like
CIP-S and the Ergo Support System. These
refinement approaches are based on clas-
sical mathematical logic. An alternative
approach to program development based
on constructive logic gave rise to proof
development environments like Nuprl in
which programs are proofs and vice versa.

System verification. Verification is the
process of showing that a system satisfies
its specification. Formal verification is
impossible without a formal specification.
Although you may never completely veri-

fy an entire system, you can certainly ver-
ify smaller, critical pieces. The trickiest
partis in explicitly stating the assumptions
about the environment in which each crit-
ical piece is placed. (I elaborate on this
point in the “Bounds of formal methods”
section.) Systems such as Gypsy, the Hier-
archical Development Method (HDM), the
Formal Development Method (FDM), and
m-EVES (Environment for Verifying and
Evaluating Software) evolved as aresult of
a primary focus on program verification.
Higher Order Logic (HOL) was originally
developed for hardware verification.

System validation. Formal methods can
aid in system testing and debugging. Spec-
ifications alone can be used to generate test
cases for black-box testing. Specifications
that explicitly state assumptions on a
module’s use identify test cases for bound-
ary conditions.

Specifications along with implementa-
tions can be used for other kinds of testing
analysis such as path testing, unit testing,
and integration testing. Testing based sole-
ly on an analysis of the implementation is
not sufficient; the specification must be
taken into account. For example, a test set
may be complete for doing a path analysis
but may not reveal missing paths that the
specification would otherwise suggest. The
success of unit and integration testing de-
pends on the precision of the specifications
of the individual modules.

Only a few formal methods have been
developed explicitly for testing. Three ex-
amples are the Data Abstraction, Imple-
mentation, Specification, and Testing Sys-
tem, used to test implementations of abstract
data types; Kemmerer’s symbolic execution
tool, used to generate and execute test
cases from Ina Jo specifications; and the
Task Sequencing Language Runtime Sys-
tem, used to automatically check the exe-
cution of Ada tasking statements against
TSL specifications.

System documentation. A specification
is a description alternative to system im-
plementation. It serves as a communica-
tion medium between a client and a speci-
fier, between a specifier and animplementer,
and among members of an implementation
team. In reply to the question “What does
it do?” no answer is more exasperating
than “Run it and see.” One of the primary
intended uses of formal methods is to cap-
ture the “what” in a formal specification
rather than the “how.” A client can then
simply read the specification rather than
read the implementation or worse, execute

13

-

One-slot buffer

Message _arrived

Empty

Message _removed

-

/F——\\

ull

B

Usy

N
D

one

Message _serviced

o)

/

Figure 3. State chart specification of a one-slot buffer.

the system, to find out the system’s
behavior.

System analysis and evaluation. To learn
from the experience of building a system,
developers should do a critical analysis of
its functionality and performance once it
has been built and tested. Does the system
do what the customer wants? Does it do it
fast enough? If formal methods were used
in its development, they can help system
developers formulate and answer these
questions. The specification serves as a
reference point. If the customer is unhappy
but the system meets the specification, the
specification can be changed and the sys-
tem changed accordingly.

Indeed, much recent work in the appli-
cation of formal methods to nontrivial ex-
amples has been in specifying a system
already built, running, and used. Some of
these exercises revealed bugs in published
algorithms and circuit designs, serious bugs
that had gone undiscovered for years. As
expected, most revealed unstated assump-
tions, inconsistencies, and unintentional
incompleteness in the system.

Medium-sized systems that have been
specified formally include VLSI circuits,
microprocessors, oscilloscopes, operating
systems kernels, distributed databases, and
secure systems. Most formal methods have
not yet been applied to specifying large-
scale software or hardware systems; most
are still inadequate to specify many impor-
tant behavioral constraints beyond func-
tionality, for example, fault-tolerance and
real-time performance.

14

This problem of scale exists in two,
often confused dimensions: size of the
specification and complexity of the
specificands. Tools can help address spec-
ification size, since managing large speci-
fications is just like managing other large
documents (such as programs, proofs, and
test suites) and their structural interrela-
tionships.

The problem of dealing with a specifi-
cand’s inherent complexity remains. Sys-
tem complexity results from internal com-
plexity and/or interface complexity. For
example, an optimizing compiler is inter-
nally more complex than a nonoptimizing
one for the same language, yet, in princi-
ple, they both provide the same simple
interface to their clients (for example,
“compile program_name”). By providing
a systematic way to think and reason about
specificands, formal methods can help
people grapple with both kinds of system
complexity.

Characteristics. A formal method’s
characteristics, such as whether its lan-
guage is graphical or whether its underly-
ing logic is first-order, influence the style
in which a user applies it. This article is not
intended to give a complete taxonomy of
all possible characteristics of a method nor
to classify exhaustively all methods ac-
cording to these characteristics. Instead, I
giveapartial listing of characteristics, noting
that a method typically reflects a combi-
nation of many different ones. (See “Fur-
ther reading” for citations of the methods
mentioned.)

Model- versus property-oriented. Two
broad classes of formal methods are called
model-oriented and property-oriented.
Using a model-oriented method, a specifi-
er defines a system’s behavior directly by
constructing a model of the system in terms
of mathematical structures such as tuples,
relations, functions, sets, and sequences.
Using a property-oriented method, a spec-
ifier defines the system’s behavior indi-
rectly by stating a set of properties, usually
in the form of a set of axioms, that the
system must satisfy.

A specifier following a property-orient-
ed method tries to state no more than the
necessary minimal constraints on the sys-
tem’s behavior. The fewer the properties
specified, the more the possible implemen-
tations that will satisfy the specification.

Model-oriented methods for specifying
the behavior of sequential programs and
abstract data types include Parnas’ state-
machines, Robinson and Roubine’s exten-
sions to them with V-, O-, and OV-func-
tions, VDM, and Z. Methods for specifying
the behavior of concurrent and distributed
systems include Petri nets, Milner’s Calcu-
lus of Communicating Systems, Hoare’s
Communicating Sequential Processes,
Unity, I/O automata, and TSL. The Raise
Project represents more recent work on
combining VDM and CSP.

Property-oriented methods can be bro-
keninto two categories, sometimes referred
to as axiomatic and algebraic. Axiomatic
methods stem from Hoare’s work on proofs
of correctness of implementations of ab-
stract data types, where first-order predi-
cate logic preconditions and postconditions
are used for the specification of each op-
eration of the type. lota, OBJ, Anna, and
Larch are example specification languages
that support an axiomatic method.

In an algebraic method, data types and
processes are defined to be heterogeneous
algebras. This approach uses axioms to
specify properties of systems, but the axi-
oms are restricted to equations. Much work
has been done on the algebraic specifica-
tion of abstract data types, including the
handling of error values, nondeterminism,
and parameterization. The more widely
known specification languages that have
evolved from this work are Clear and Act
One (Algebraic Specification Techniques
for Correct and Trusty Software Systems).

Property-oriented methods for specify-
ing the behavior of concurrent and distrib-
uted systems include extensions to the
Hoare-axiom method, temporal logic, and
Lamport’s transition axiom method. The
Language of Temporal Ordering of Speci-

COMPUTER

T

fications (LOTOS) specification language
represents more recent work on the combi-
nation of Act One and CCS (with some
CSP influence).

Visual languages. Visual methods in-
clude any whose language contains graph-
ical elements in their syntactic domains.
The most prominent visual method is Petri
nets and its many variations, used most
typically to specify the behavior of con-
current systems.

More recent visual language work in-
cludes Harel’s state charts based on hi-
graphs, used to specify state transitions in
reactive systems. Figure 3 gives a simple
example of a state chart that describes the
behavior of a one-slot buffer. Rounded
rectangles (“roundtangles”) represent states
in a state machine and arrows represent
state transitions. [nitially, the one-slot buffer
is empty. If a message arrives and is put in
the buffer, the buffer becomes full; when
the message has been serviced and re-
moved from the buffer, its state changes
back to being empty.

The example shows one of the more
notable features of state charts that distin-
guish them from “flat” state-transition di-
agrams: A roundtangle can represent a hi-
erarchy of states (and, in general, an arrow
can represent a set of state transitions),
thereby letting users zoom in and out of a
system and its subsystems.

Harel's higraph notation inspired the
design of the Mir6 visual languages, which
specify security constraints. Like state
charts, the Mird languages have a formally
defined semantics and tool support.

Many informal methods use visual nota-
tions. These methods allow the construc-
tion of ambiguous specifications, perhaps
because English text is attached to the
graphical elements or because multiple
interpretations of a graphical element
(usually different meanings for an arrow)
are possible. Many popular software and
system design methods such as Jackson’s
method, Hierarchy-Input-Processing-Out-
put (HIPO), Structured Design, and Soft-
ware Requirements Engineering Method-
ology are examples of semiformal methods
that use pictures.

Executable. Some formal methods sup-
port executable specifications, specifica-
tions that can run on a computer. An exe-
cutable specification language is by
definition more restricted in expressive
power than a nonexecutable language be-
cause its functions must be computable
and defined over domains with finite rep-

September 1990

resentations. As long as users realize that
the specification may suffer from imple-
mentation bias, executable specifications
can play an important role in the system
development process. Specifiers can use
them to gain immediate feedback about the
specification itself, to do rapid prototyping
(the specification serves as a prototype of
the system), and to test a specificand through
symbolic execution of the specification.
For example, the Statemate tool lets users
run simulations through the state transition
diagram represented by a state chart.

Besides state charts, executable specifi-
cation languages include OBJ; Prolog, a
logic programming language that when used
in a property-oriented style lets specifiers
state logical relations on objects; and Pais-
ley, a model-oriented language, based on a
model of event sequences and used to
specify functional and timing behavioral
constraints for asynchronous parallel
processes.

Tool-supported. Some formal methods
evolved from the semantic-analysis tools
that were built to manipulate specifica-
tions and programs. Model-checking tools
let users construct a finite-state model of
the system and then show a property holds
of each state or state transition of the sys-
tem. Tools such as Extended Model Checker
(EMC) are especially useful for specifying
and verifying properties of VLSI circuits.

Proof-checking tools that let users treat
algebraic specifications as rewrite rules
include Affirm, Reve, the Rewrite Rule
Laboratory, and the Larch Prover. Tools
(and their associated specification lan-
guages) that handle subsets of first-order
logic include the Boyer-Moore Theorem
Prover (and the Gypsy specification lan-
guage), FDM (Ina Jo), HDM (Special), and
m-EVES (m-Verdi). Finally, tools that
handle subsets of higher order logics in-
clude HOL, LCF, and OBJ.

Some examples

This section illustrates six well-known
or commonly used formal methods, half
applied to one simple example and the
other half applied to another example. All
six methods have been used to specify
much more complex systems.

Sometimes, when specifying the same
problem using different methods, the re-
sulting specifications look remarkably
similar (as in the first three examples), and
sometimes they don’t (as in the last three).
The similarity or difference is sometimes

attributable to the nature or simplicity of
the specificand and sometimes to the meth-
ods themselves.

The choice of a method is likely to affect
what a specification says and how it is said.
A method’s guidelines may encourage the
specifier to be explicit about some system
behaviors (for example, state changes) and
not others (for example, error handling).
Syntactic conventions (such as indentation
style), special notation (vertical and hori-
zontal lines), and keywords affect a speci-
fication’s physical appearance and its
readability.

Most proponents of methods used pri-
marily to specify behavioral properties of
concurrent and distributed systems have
carefully defined the satisfies relation fora
given semantic domain. Many of their
methods lack the niceties — the syntactic
sugar and software support tools — that
formal methods for sequential systems
provide. For some theories or models of
concurrent and distributed systems, more
user-friendly specification languages
(LOTOS and Raise) are beginning to
appear.

Abstract data types: Z, VDM, Larch.
Z, a formal method based on set theory, can
be used in both model-oriented and proper-
ty-oriented styles. Figure 4 gives a model-
oriented specification of a symbol table,
following the Z notation of Spivey.® The
state of the table is modeled by a partial
mapping from keys to values (X + Y
denotes a set of partial mappings from set
X to set Y; a partial mapping relates each
member of X to at most one member of ¥).
By convention, unprimed variables in Z
stand for the state before an operation is
performed and primed variables for the
state afterwards. I will use the same con-
vention in the VDM and Larch speci-
fications.

The table contains four operations: INIT,
INSERT, LOOKUP, and DELETE. INIT
initializes the symbol table st to be empty.
INSERT modifies the table by adding a
new binding to sz, in the case the key & is
not already in the domain of stz. LOOKUP
requires that the key k be in the domain of
the mapping, returns the value to which k is
mapped, and does not change the state of
the symbol table (st = sr). DELETE also
requires that the key & be in the domain of
the mapping and modifies the table by
deleting the binding associated with k from
st (€ is a domain subtraction operator).
The proof checker B has been used to prove
theorems based on Z specifications.

VDM supports a model-oriented speci-

15

ST =KEY -+ VAL
INIT
st’: ST

st'={}

INSERT
st, st": ST
k: KEY
v: VAL

k ¢ dom(st) A

st =stu{kiov}

LOOKUP
st, st : ST
k: KEY
v’ VAL

k € dom(st) A
v’ =st(k) A

st” = st

DELETE
st, st": ST
k:KEY

k e dom(st) A

st’ = {k}< st

Figure 4. Z specification of a symbol
table.

fication style and defines a set of built-in
data types (such as sets, lists, and map-
pings), which specifiers use to define other
types.

The VDM specification in Figure 5 de-
fines a symbol table also in terms of a
mapping from keys to values. I follow the
VDM notation given in Jones.” The be-
havior of the INIT, INSERT, LOOKUP,
and DELETE operations are the same as
specified in the Z specification. However,

16

ST = map Key to Val

INIT()
ext wrst: ST
postst’ = {}

INSERT(k : Key,v : Val)
ext wrst: ST

pre k ¢ dom st

postst’ =st U {k B v}

LOOKUP(k: Key)v : Val
ext rd st: ST

pre k € dom st

postV’ = st(k)

DELETE(k : Key)
ext wrst: ST
pre k € dom st
postst’ = {k} < st

Figure 5. VDM specification of a sym-
bol table.

the preconditions, specified in pre clauses
are made explicit and separate from the
postconditions, specified in post clauses.

A precondition on an operationis a pred-
icate that must hold in the state on each
invocation of the operation; if it does not
hold, the operation’s behavior is unspeci-
fied. A postcondition is a predicate that
holds in the state upon return. An opera-
tion’s clients are responsible for satisfying
preconditions, and its implementer is re-
sponsible for guaranteeing the postcondi-
tion.

The fact that LOOKUP does not modify
the symbol table (hence st” = st) but IN-
SERT and DELETE do is specified by
using rd (for read-only access) instead of
wr (for write-and-read access) in the dec-
laration of the external state variables ac-
cessed by each operation.

Larch is a property-oriented method that
combines both axiomatic and algebraic
specifications into a two-tiered specifica-
tion.® The axiomatic component specifies
state-dependent behavior (for example, side
effects and exceptional termination) of
programs. The algebraic component spec-
ifies state-independent properties of data
accessed by programs. Figure 6 shows a
Larch specification of the symbol table
example. I follow the Larch notation given
in Guttag et al.”*

The first piece of the Larch specifica-
tion, called an interface specification, looks

similar to the Z and VDM specifications.
For each operation, the requires and en-
sures clauses specify its pre- and postcon-
ditions. The modifies clause lists those
objects whose value may possibly change
as aresultof executing the operation. Hence,
LOOKUP is not allowed to change the
state of its symbol table argument, but
INSERT and DELETE are.

One difference (not shown in the exam-
ple) between Larch and VDM (and Larch
and Z) is that, if the target programming
language supports exception handling, the
interfaces would specify whether and un-
der what conditions an operation signals
exceptions. For example, we could remove
INSERT’s requires clause and instead use
aspecial signals clause in its postcondition
to specify that a signal should be raised in
the case that the key k is already in the
symbol table.

The second piece of the Larch specifica-
tion, called a trait, looks like an algebraic
specification. It contains a set of function
symbol declarations and a set of equations
that define the meaning of the function
symbols. The equations determine an
equivalence relation on sorted terms. Ob-
jects of the symbol_table data type speci-
fied in the interface specification range
over values denoted by the terms of sort S.

The generated by clause states that all
symbol table values can be represented by
terms composed solely of the two function
symbols, emp and add. This clause defines
an inductive rule of inference and is useful
for proving properties about all symbol
table values.

The partitioned by clause adds more
equivalences between terms. Intuitively, it
states that two terms are equal if they can-
not be distinguished by any of the functions
listed in the clause. In the example, we
could use this property to show that order
of insertion of distinct key-value pairs in
the symbol table does not matter, that is,
insertion is commutative.

The exempting clause documents the
absence of right sides of equations for
rem(emp) and find(emp); the requires and
signals clauses in the interface specifica-
tion deal with these “error values.” The
converts and exempting clauses together
provide a way to state that this algebraic
specification is sufficiently complete.

Syntax analyzers exist for Larch traits
and interfaces. The Larch Prover has been
used to perform semantic analysis on Larch
traits.

The user-defined function symbols in a
Larch trait are exactly those used in the
pre- and postconditions of the interface

COMPUTER

specification; they serve the same role as
the built-in symbols like w and < used in
the Z and VDM specifications.

Unlike Z and VDM, Larch does not
come with any special built-in notation nor
with any built-in types. The advantage is
that the user does not have to learn any
special vocabulary for those concepts and
is free to introduce whatever symbols he or
she desires, giving them the exact meaning
suitable for the specificand set. Exactly
those properties of a data type being spec-
ified need be stated explicitly and satisfied
by an implementation.

The disadvantage is that the user may
often need to provide a large set of user-
defined symbols, as well as the equations
that define their meaning. Since I modeled
symbol tables in Z and VDM in terms of
finite mappings, I did not need to state
explicitly that insertion is commutative.
This is a property of mappings — the
commutative property came for free. The
Larch handbook* serves as a compromise
between the two extremes in that it pro-
vides a library of traits that define many
general and commonly used concepts (for
example, properties of finite mappings,
partial orders, sets, and sequences).

Concurrency: Temporal logic, CSP,
transition axioms. As mentioned before,
many formal methods for specifying the
behavior of concurrent and distributed sys-
tems differ because of their choice in se-
mantic domain. Some focus on just the
states, some on just the events, and some
on both. To be more concrete here, I will
model a system’s behavior as a set of linear
sequences of states and associated events.
An alternative approach, used by CCS and
EMGC, is to model a system’s behavior as a
set of trees of states and associated events.
When a specification is interpreted with
respect to sets of sequences, separating
properties of concurrent and distributed
systems into two general categories, safety
and liveness, is common. Safety properties
(“nothing bad ever happens”) include
functional correctness, and liveness prop-
erties (“something good eventually hap-
pens”) include termination.

Temporal logic is a property-oriented
method for specifying properties of con-
current and distributed systems. For a giv-
en temporal logic inference system, spe-
cial modal operators concisely state
assertions about system behavior. Specifiers
use these operators to refer to past, current,
and future states (or events).

There is no one standard temporal logic
inference system nor one standard set of

September 1990

ensures s’ = emp A new (s)

requires ~ isin(s,k)
modifies (s)
ensures s” = add(s,k,v)

requires isin(s, k)
ensures v'= find(s,k)

requires isin(s,k)
modifies (s)
ensures s’ = rem(s,k)

end symbol_table

SymTab: trait
introduces
emp: = S
add: S, K,V - S
rem: S;K —» S
find: S K - V
isin: S,K — Bool

asserts
S generated by (emp, add)

S partitioned by (find, isin)
for all (s: S kkl:K,v:V)

isin(emp,k) == false

implies

end SymTab

symbol_table is data type based on S from SymTab

init = proc () retul;ns (s: symbol_table)

insert = proc (s: symbol_table k: key,v: val)

lookup = proc (s: symbol_table.k : key) returns (v: val)

delete = proc (s: symbol_table, k : key)

rem(add(s,k,v),k1) == if k = k1 then s else add(rem(s,k1),k,v)
find(add(s,k,v),k1) == if k = k1 then v else find(s,k1)

isin(add(s,k,v),k1) == (k = k1) v isin(s k1)

converts (rem,find,isin) exempting (rem(emp),find(emp))

Figure 6. Larch specification of a symbol table.

operators. Modal operators commonly used
are], <, and O . Informally, when inter-
preted with respect to a sequence of states,
[P says that in all future states, the state
predicate P holds; O P says that in some
future state, P will hold; and O P says that
in the next state P will hold. For example,
P = & Qssays that if P holds in the current
state, 0 will eventually hold. Temporal
logic notation tends to be terse, and a tem-
poral logic specification is simply an
unstructured set of predicates, all of which
must be satisfied by a given implementa-
ton.

Figure 7 presents a temporal logic spec-
ification of the behavior of an unbounded
buffer in an asynchronous environment.
The example is adapted from Koymans et
al.,” using the temporal logic system in
Pnueli,'® which has 12 modal operators.
The formulas are interpreted with respect
to sequences of events. A buffer has a left
input channel and a right output channel.
The expression <c!m> denotes the event of
placing message m on channel c. The first
predicate,

(right!m) = &(left!m)

(righttm) = & (left!m) (1)

(right'm) A@ & (right!m”)) = & ({left!m) A © & (left!m’)) 2
({leftim) A © & (leftim’y) = (m = m’) @)

((leftim)) = O ({right!m)) @

Figure 7. Temporal logic specification of an unbounded buffer.

states that any message transmitted to the
right channel (<right!m>) must have been
previously placed on the left channel
(&<left!m>). The second predicate,

((right!m) A © & (right!m”))
=& ((left!m) A © & (left!m”))

states that messages are transmitted first
in, first out. If message m placed on the
output channel is preceded by some other
message m’” also on the output channel (© ¢
<right!m’>), there must have been a pre-
ceding (the second ©) event of placing m
on the input channel (<left!m>) and,
moreover, an even earlier event that placed
m’” on the input channel ahead of m(© ¢
<left!m’>). The third predicate,

left!m) A © &(left!m™)) = (m #m”)

states that all messages are unique. For
each message m currently placed on the
inputchannel and for each previously placed
messagem’ (© & <left!m’>), mand m” are
not equal. This property is not a property of
the buffer, but an assumption of the envi-
ronment. This assumption is essential to
the validity of the specification. Withoutit,
a buffer that outputs duplicate copies of its
input would be considered correct.
Whereas the first three predicates state
safety properties of the system (and its
environment), the fourth predicate,

(left!m)) = ¢ ((right!m))

states a liveness property: Each incoming
message will eventually be transmitted.
CSP uses a model-oriented method for
specifying concurrent processes and a
property-oriented method for stating and
proving properties about the model. CSP is
based on model of traces, or event se-
quences, and assumes that processes com-
municate by sending messages across
channels. Processes synchronize on events
so the event of sending output message m
on named channel ¢ is synchronized with
the event of simultaneously receiving an
input message on c. Figure 8 gives a CSP
specification of an unbounded buffer
(adapted from Hoare''). BUFFER itself is
specified to be a process P that acts as an
unbounded buffer. The recursive defini-
tion of P is divided into two clauses to
handle the empty and non-empty cases.
The first clause,

P ., =lefttm—>P_,.,
says that if the buffer is empty, in the event
that there is a message m on the left channel
(left?m), it will input it. In CSP, if x is an
event and P is a process, the notation
x — P denotes a process that first engages
in the event x and then behaves exactly as
described by P. The second clause,

BUFFER=P _,
where P _, = left?’m - P_,,

and P .., = (left?n = P _,nn o, | Tightlm — Ps)

BUFFER sat (right < left) A (if right = left then left ¢ ref else right € ref)

Figure 8. CSP program and specification of an unbounded buffer.

18

Ppong =(lefttn > P oancys
| right!m — P,)

says that if the buffer is non-empty, then
either the buffer will input another mes-
sage n from the left channel, appending it
to the end of the buffer, or output the first
message in the buffer to the right channel.
CSP uses s*1 to denote the concatenation of
sequence s to sequence z. It uses | to denote
choice: If x and y are distinct events,
x — Ply = Q describes a process that ini-
tially engagesin either x or y. After this first
event, subsequent behavior is described by
P, if the first event was x, and by Q, if the
first event was y.

In CSP’s formalism, BUFFER is a CSP
program; you can state and prove proper-
ties about the traces it denotes. Using alge-
braic laws on traces, you can formally
verify that a given CSP program satisfies a
specification on traces. The last line in
Figure 8 states that BUFFER describes a
set of traces, each of which satisfies the
predicate given on the right side of sat. The
predicate’s first conjunct says that the se-
quence of (output) messages on the right
channel is a prefix of the sequence of (in-
put) messages on the left channel. CSP
uses the notation s < ¢ to denote that the
sequence s is a prefix of sequence ¢. The
prefix property of sequences guarantees
that only messages sent from the left will
be delivered to the right, only once, and in
the same order. The second conjunct says
that the process never stops: it cannot refuse
to communicate on either the right or left
channel. This implies that input messages
will eventually be delivered, which is the
same property as stated in the temporal
logic specification’s fourth predicate.

B, previously mentioned for proving
theorems from Z specifications, has also
been used to prove properties of CSP spec-
ifications. Occam is a programming lan-
guage derivative of CSP that has been
implemented and used on Transputers.

Lamport’s transition axiom method
combines an axiomatic method for de-
scribing the behavior of individual opera-
tions with temporal logic assertions for
specifying safety and liveness properties.
In the buffer example of Figure 9 (adapted
from Lamport'?), I use his original nota-
tion, although Lamportintroduced two other
notations in a more recent description of
his method.?

In the example, the functions, buffer,
parg, and gval define the state of the buffer,
which has two operations, PUT and GET,
and an initial size of 0. For this example,
we assume that invocations of different

COMPUTER

operations can be active concurrently, but
at most one invocation of a given operation
can be active at once.

The predicates at(OP), in(OP), and
after(OP) state whether control is at the
point of calling the operation OP, within the
execution of OP, or at the point of return
from OP.

The first pair of safety properties states
that the value of the state function parg is
equal to the input parameter to PUT at the
time of call and equal to NULL upon return.

The second pair states similar properties
for GET. The third pair of properties indi-
cates how the state functions change as a
result of executing PUT and GET: If con-
trol is in PUT, buffer gets updated by
appending the non-NULL message to its
end; if control is in GET and the buffer is
non-empty, buffer gets updated by remov-
ing its first message, whichis GET s return
value gval. (The * denotes appending an
element to a sequence.)

The fourth and fifth properties are live-
ness properties requiring that PUT return
whenever there are fewer than min mes-
sages in the buffer and that GET return
whenever the buffer is non-empty. (The
temporal logic operator ~> stands for
“leads to.”) These requirements ensure that
progress is made, that once control is with-
in the PUT (or GET) operation, control
will reach its corresponding return point.
The fifth implies that messages received
(through PUT) are eventually transmitted
(through GET) since, if control is in GET,
it must eventually return.

Unlike the temporal logic and CSP ex-
amples — but like the Z, VDM, and Larch
examples — the last example uses key-
words and distinct clauses for highlighting
a model of state (state functions), state
initialization (initial conditions), and state
changes (allowed changes to). Again, un-
like the temporal logic and CSP examples,
it uses similar notational conveniences to
highlight synchronization conditions (the
enabling predicates to the left-hand side of
—) and safety and liveness constraints on
the processes’ behaviors. Hence, this last
example shows a combination of linguistic
features borrowed from formal methods
used to specify sequential programs and
others used to specify concurrent ones.

Bounds of formal
methods

Between the ideal and real worlds.
Formal methods are based on mathematics
but are not entirely mathematical. Formal-

September 1990

state functions:

buffer : sequence of message
parg : message or NULL
gval : message or NULL

initial conditions:
lbufferl = 0
safety properties

1. (a) at(PUT) = parg = PUT.PAR
(b) after(PUT) = parg = NULL
2.(a) al(GET) = gval = NULL
(b) after(GET) = GET.PAR = gval
3. allowed changes to buffer
parg when in(PUT)
gval when in(GET)

liveness properties

module BUFFER with subroutines PUT, GET

(a) o[BUFFER]:in(PUT) A parg # NULL —
parg’ = NULL A buffer’ = buffer * parg

(b) a[BUFFER]:in(GET) A gval = NULL A \bufferi>0 —
gval’ # NULL A buffer = gval’ * buffer’

4.in(PUT) A lbufferl< min ~> after(PUT)
5.in(GET) A lbufferl> 0 ~> after(GET)

Figure 9. Transition axiom specification of an unbounded buffer.

methods users must acknowledge the two
important boundaries between the mathe-
matical world and the real world.

Users cross the first boundary in codify-
ing the customer’s informally stated re-
quirements. Figure 10 illustrates this map-
ping, where the cloud symbolizes the
customer’s informal requirements and the
oval symbolizes a formal specification of
them.

This mapping from informal to formal is
typically achieved through an iterative
process not subject to proof. A specifier
might write an initial specification, discuss
its implications with the customer, and
revise it as a result of the customer’s feed-
back.

At all times, the formal specification is
only a mathematical representation of the
customer’s requirements. On one hand,
any inconsistencies in the requirements
would be faithfully preserved in the spec-
ifier’s mapping. On the other, the specifier
might incorrectly interpret the requirements

and formally characterize the misinterpre-
tation. For these reasons, it is important
that specifiers and customers interact.

Specifiers can help customers clarify
their fuzzy, perhaps contradictory, notions;
customers can help specifiers debug their
specifications. The existence of this
boundary should not be surprising because
people use formal methods.

The second boundary is crossed in the
mapping from the real world to some ab-
stract representation of it. Figure 11 illus-
trates this mapping, where the cloud sym-
bolizes the real world and the oval
symbolizes an abstract model of it.

The formal specification language en-
codes this abstraction. For example, a for-
mal specification might describe proper-
ties of real arithmetic, abstracting away
from the fact that not all real numbers can
be represented in a computer. The formal
specification is only a mathematical ap-
proximation of the real world. This bound-
ary is not unique to formal methods or

19

Informal
requirements

Formal
specification

Abstract
model

Figure 10. Mapping informal require-
ments for a formal specification.

computer science in general; it is ubiqui-
tous in all fields of engineering and applied
mathematics.

Assumptions about the environment.
Another kind of boundary is often neglect-
ed, even by experienced specifiers. It’s the
boundary between a real system and its
environment. A system does not run in
isolation; its behavior is affected by input
from the external world, which in turn
consumes the system’s output.

Given that you can formally model the
system (in terms of a specification lan-
guage’s semantic domain), then, if you can
formally model the environment, you can
formally characterize the interface between
a system and its environment. Most formal
methods leave the environment’s specifi-
cation (formal or otherwise) outside the
system’s specification. An exception is the
Gist language used to specify closed sys-
tems. In theory, a complete Gist specifica-
tion includes not only a description of the
system’s behavior, but also of its clients
and other environmental factors like hard-
ware.

A system’s behavior as captured in its
specification is conditional on the environ-
ment’s behavior:

Environment = System

This implication says that if the environ-
ment satisfies some precondition, Envi-
ronment, then the system will behave as
specified in System. If the environment
fails to satisfy the precondition, then the
system is free to behave in any way.

Environment is a set of assumptions.

20

Figure 11. Mapping the real world to
an abstract model.

Whereas a system specifier places con-
straints on the system’s behavior, the spec-
ifier cannot place constraints on the envi-
ronment but can only make assumptions
about its behavior. For example, in the
temporal logic specification of the un-
bounded buffer, the assumption that mes-
sages are unique is an obligation the envi-
ronment is expected to satisty, not a property
the buffer is expected to satisfy nor a con-
straint the system specifier can place on the
environment.

A specifier often makes implicit as-
sumptions about a system’s environment
when specifying something like a proce-
dure in a programming language because
the environment is usually fixed or at least
well-defined.

A procedure’s environment is defined in
terms of the programming language’s in-
vocation protocol. A procedure’s specifi-
cation will typically omit explicit mention
of the language’s parameter passing mech-
anism, or, for a compile-time type-checked
language, that the argument types are cor-
rect. The specifier presumably knows the
details of the programming language’s pa-
rameter-passing mechanism and assumes
the programmer will compile the proce-
dure, thereby doing the appropriate type
checking.

However, when specifying a large, com-
plex software or hardware system, the
specifier should take special care to make
explicit as many assumptions about the
environment as possible. Unfortunately,
when specifying a large system, specifiers
too often forget to explicitly state the cir-
cumstances under which the system is ex-
pected to behave properly.

In reality, it is impossible to formally
model many environmental aspects such
as unpredictable or unanticipated events,
human error, and natural catastrophes
(lightning, hurricanes, earthquakes). Haz-
ard analysis, as a complementary tech-
nique to formal methods, can identify a
system’s safety-critical components. For-
mal methods can then be used to describe
and reason about these components, where
reasoning holds only for those system in-
put parameters that are made explicit.

n a strict mathematical sense, formal

methods differ greatly from one an-

other. Not only does notation vary,
but the choice of the semantic domain and
definition of the satisfies relation both make
a tremendous difference between what a
specifier can easily and concisely express
in one method versus another. An idiom in
one language might translate into a long
list of unstructured statements in another
or might not even have a counterpart.

But, in a more practical sense, formal
methods do not differ radically from one
another. Within some well-defined mathe-
matical framework, they let system devel-
opers couch theirideas precisely. The more
rigor applied in system development, the
more likely developers are to state require-
ments correctly and to get the design right
and, of course, the more precisely they can
argue the correctness of the implementa-
tion.
In conclusion, existing formal methods

can be used to

* identify many, though not all, defi-
ciencies in a set of informally stated
requirements, detect discrepancies be-
tween a specification and an imple-
mentation, and find errors in existing
programs and systems;

* specify medium-sized and nontrivial
problems, especially the functional
behavior of sequential programs, ab-
stract data types, and hardware; and

« provide a deeper understanding of the
behavior of large, complex systems.

Many challenges remain. In an effort to
push against some of the current pragmatic
bounds (in contrast to the two theoretical
bounds covered in the previous section),
the formal methods community is actively
pursuing the following goals:

* specifying nonfunctional behavior such
asreliability, safety, real time, performance,
and human factors;

¢ combining different methods, such as

COMPUTER

a domain-specific one with a more general
one, or an informal one with a formal one;

 building more usable and more robust
tools, in particular tools to manage large
specifications and tools to perform more
complicated semantic analysis of specifi-
cations more efficiently, perhaps by ex-
ploiting parallel architectures and parallel
algorithms;

« building specification libraries so sys-
tems and their components can be reused
based on information captured in their
specification (general libraries, like the
Larch handbook* and the Z mathematical
toolkit,® and domain-specific ones like that
for oscilloscopes, are recent examples);

« integrating formal methods with the
entire system development effort, for ex-
ample, to provide a formal way to record
design rationale in the system develop-
ment process;

» demonstrating thatexisting techniques
scale up to handle real-world problems and
to scale up the techniques themselves; and

« educating and training more people in
the use of formal methods. W

Acknowledgments

1thank several people, including John Guttag
and Jim Horning, who introduced me to formal
specifications. They have been instrumental in
shaping my opinions about the role formal
methods can and should play in system develop-
ment. I am grateful to Susan Gerhart for afford-
ing me this opportunity to express my thoughts
about formal methods. I especially credit Jim
Horning for suggesting this article’s title, a sub-
ject of much controversy, and Joseph Goguen
who has suggested that formal methods can be
given a formal characterization in terms of in-
stitutions where semantic abstraction functions
are institution morphisms. I also thank all those
who attended Formal Methods 89 in Halifax,
Nova Scotia, Canada, for helpful feedback and
discussion. Finally, I thank Mark Ardis, Dan
Craigen, Susan Gerhart, Joseph Goguen, Bob
Harper, Jim Horning, Leslie Lamport, and David
Parnas for their critical comments on an earlier
draft of this article.

References

1. B.Meyer, “OnFormalismin Specification,”
IEEE Software, Jan. 1985, pp. 6-26.

2. L. Lamport, “A Simple Approach to Speci-

fying Concurrent Systems,” Comm. ACM,
Vol. 32, No. 1, Jan. 1989, pp. 32-45.

September 1990

3. J.V. Guuag, J.J. Horning, and J.M. Wing,
“Some Remarks on Putting Formal Specifi-
cations to Productive Use,” Science of
Computer Programming, North-Holland,
Vol. 2, No. 1, Oct. 1982, pp. 53-68.

4. J.V. Guttag, J.J. Horning, and J.M. Wing,
“Larch in Five Easy Pieces,” Tech. Report
5,DEC Systems Research Center, July 1985.

5. C.B. Jones, Software Development: A Rig-
orous Approach, Prentice Hall Int’l, 1980.

6. J.M. Spivey, Introducing Z: A Specification
Language and its Formal Semantics, Cam-
bridge Univ. Press, 1988.

7. C.B. Jones, Systematic Software Develop-
ment Using VDM, Prentice Hall Int’1, 1986.

8. J.V. Guttag, J.J. Horning, and J.M. Wing,
“The Larch Family of Specification Lan-
guages,” IEEE Software,Vol.2,No. 5, Sept.
1985, pp. 24-36.

9. R. Koymans, J Vytopil, and W.P. de Roev-
er, “Real-Time Programming and Asyn-
chronous Message Passing,” Proc. Second
ACM Symp. Principles Distributed Pro-
gramming, 1983, pp. 187-197.

10. A. Pnueli, “Applications of Temporal Logic
to the Specification and Verification of Re-
active Systems: A Survey of Current Trends,”
in Current Trends in Concurrency: Over-
views and Tutorials, W.-P. de Roever and
G. Rozenberg, eds., Lecture Notes in Com-
puter Science 224, Springer-Verlag, N.Y.,
1986, pp. 510-584.

11. C.A.R. Hoare, Communicating Sequential
Processes, Prentice Hall Int’l, 1985.

12. L. Lamport, “Specifying Concurrent Pro-
gram Modules,” ACM Trans. Programming
Languages and Systems, Vol. 5, No. 2, Apr.
1983, pp.190-222.

Further reading

Specifying sequential programs and
data abstractions. Two key ideas to good
program design are modularity and ab-
straction. In addition to VDM, Z, and Larch,
the methods presented in five of the papers
below (Futatsugi et al.; Luckham and von
Henke; Nakajima et al.; Robinson and
Roubine; and Wing) focus on specifying
modules (for example, functions, proce-
dures, and packages, of sequential pro-
grams). Besides procedural abstraction, data
abstraction can greatly enhance a program’s
design. The use of data abstraction for
structuring programs motivated much work
in the late 70s and early 80s on algebraic
specification techniques, the focus of the
remaining papers in this section.

Burstall, R. M., and J.A. Goguen, “The Seman-
tics of Clear, A Specification Language,” in
Proc. 1979 Copenhagen Winter School Abstract
Software Specification, Lecture Notes in Com-
puter Science 86, Springer-Verlag, 1980, pp.
292-332.

Ehrich, H.-D., “Extensions and Implementa-
tions of Abstract Data Type Specifications,” in
Math. Foundations Computer Science 1978
Proc., Lecture Notes in Computer Science 64,
Springer-Verlag, Poland, 1978, pp. 155-164.

Ehrig, H., and B. Mahr, Fundamentals of Alge-
braic Specification 1, Springer-Verlag, Berlin,
198s.

Futatsugi, K., et al., “Principles of OBJ2,” in
Proc. ACM Principles of Programming Lan-
guages, 1985, pp. 52-66.

Goguen, J.A., et al., “Abstract Data Types as
Initial Algebras and Correctness of Data Repre-
sentations,” in Proc. Conf. Computer Graphics,
Pattern Recognition, and Data Structures, ACM,
May 1975, pp. 89-93.

Guttag, J.V., Specification and Application
Programming Abstract Data Types, PhD thesis,
Univ. of Toronto, Toronto, Canada, Sept. 1975.

Kamin, S., “Final Data Types and Their Speci-
fication,” ACM Trans. Programming Languag-
es and Systems, Vol. 5,No. 1, Jan. 1983, pp. 97-
121.

Luckham, D.C., and F.W. von Henke, “An
Overview of Anna, A Specification Language
for Ada,” IEEE Software, Vol. 2, No. 2, Mar.
1985, pp. 9-23.

Nakajima, R., M. Honda, and H. Nakahara,
“Hierarchical Program Specification and Veri-
fication — A Many-Sorted Logical Approach,”
Acta Informatica, Vol. 14, 1980, pp. 135-155.

Robinson, L., and O. Roubine, “Special — A
Specification and Assertion Language,” Tech.
Report CSL-46, Stanford Research Inst., Menlo
Park, Calif., Jan. 1977.

Wand, M., “Final Algebra Semantics and Data
Type Extensions,” J. Computer and System Sci-
ences, Vol. 19, No. 1, Aug. 1979, pp. 27-44.

Wing, J.M., “Writing Larch Interface Language
Specifications,” ACM Trans. Programming
Languages and Systems, Jan. 1987, pp. 1-24.

Zilles, S.N., “Abstract Specifications for Data
Types,” IBM Research Lab, San Jose, Calif.,
1975.

Program refinement, transformation,
and verification. Two complementary
techniques for developing provably cor-
rect programs are refinement and verifica-
tion. Refinement is a process of adding
more and more implementation details (for
example, choosing a particular algorithm
or data representation) until an acceptably
efficient implementation is achieved. Of-

21

ten these refinement steps are a result of
applying transformations that are guaran-
teed to preserve the program’s correctness
from one level to the next. Verification is
the process of proving thata given program
satisfies a given specification.

Balzer, R., “Transformational Implementation:
An Example,” IEEE Trans. Software Eng., Vol.
7, No. 1, Jan. 1981, pp. 3-14.

Bauer, F.L.,etal., The Munich Project CIP, Vol.
1: The Wide Spectrum Language CIP-L, Lecture
Notes in Computer Science 183, Springer-Ver-
lag, 1985.

Burstall, R. M., and J. Darlington, “A Transfor-
mation System for Developing Recursive Pro-
grams,” J. ACM, Vol. 24, No. 1, Jan. 1977, pp.
44-67.

Constable, R, et al., Implementing Math. with
the Nuprl Proof Development Environment,
Prentice Hall, 1986.

Dijkstra, E-W., A Discipline of Programming,
Prentice Hall, 1976.

Goldberg, A.T., “Knowledge-Based Program-
ming: A Survey of Program Design and Con-
struction Techniques,” IEEE Trans. Software
Eng., Vol. 12, No. 7, 1986, pp. 752-768.

Hoare, C.A.R., Notes on Data Structuring, Ac-
ademic Press, 1972, pp. 83-174.

Hoare, C.A.R., “Proof of Correctness of Data
Representations,” Acta Informatica, Vol. 1, No.
1, 1972, pp. 271-281.

Lee, P, et al., “The Ergo Support System: An
Integrated Set of Tools for Prototyping Integrat-
ed Environments,” in Proc. Third ACM SIGSoft
Symp. Software Development Environments,
Boston, Nov. 1988, pp. 25-34.

Manna, Z., and R. Waldinger, “A Deductive
Approach to Program Synthesis,” Trans. Pro-
gramming Languages and Systems, Vol. 2, No.
1, Jan. 1980, pp. 90-121.

Martin-Lof, P., “Constructive Mathematics and
Computer Programming,” in Sixth Int’l Con-
gress Logic, Methodology, and Philosophy of
Science, North-Holland, Amsterdam, 1973, pp.
153-175.

SannellaD., and A. Tarlecki, “Program Specifi-
cation and Development in Standard ML,” in
Proc. Symp. Principles Programming Languag-
es, 1985, pp. 67-77.

Scherlis, W.L., and D. Scott, “First Steps To-
ward Inferential Programming,” in Proc. IFIPS
83, Paris, 1983, pp. 199-212.

Models and logics for specifying con-
current and distributed systems. Unlike
the situation for sequential programs and
data abstractions for which there is some
consensus on underlying formal models,

22

little consensus exists today on general
models of concurrent and distributed sys-
tems or logics for reasoning about their
properties. The references below present a
wide range of approaches to supplement
the CSP, temporal logic, and Lamport’s
state transition approaches used in this
article. Not surprisingly, the particular
choice of model or logic can greatly affect
the ease in expressing and/or proving some
property of a given system.

Apt, K.R,, N. Francez, and W.P. de Roever, “A
Proof System for Communicating Sequential
Processes,” ACM Trans. Programming Lan-
guages and Systems, Vol. 2, No. 3, July 1980,
pp. 359-385.

Broy, M., “A Fixed Point to Applicative Multi-
programming,” in Theoretical Foundations
Programming Methodology, M. Broy and G.
Schmidt, eds., Reidel Publishing, 1982, pp. 565-
623.

Chandy, K.M., and J. Misra, Parallel Program
Design, Addison-Wesley, 1988.

Feather, M., “Language Support for the Specifi-
cationand Development of Composite Systems,”
ACM Trans. Programming Languages, Vol. 9,
No. 2, Apr. 1987, pp. 198-234.

Harel, D., “On Visual Formalisms,” Comm. ACM,
Vol. 31, No. 5, 1988, pp. 514-530.

“Information Systems Processing — Open Sys-
tems Interconnection — LOTOS,” Tech. report,
Int’l Standards Organization, 1987.

Lynch, N., and M. Tuttle, “Hierarchical Cor-
rectness Proofs for Distributed Algorithms,”
Tech. report, MIT Laboratory for Computer
Science, Cambridge, Mass., Apr. 1987.

Manna, Z., and A. Pnueli, “Verification of Con-
current Programs, Part I: The Temporal Frame-
work,” Tech. Report STAN-CS-81-836, Dept.
of Computer Science, Stanford Univ., June 1981.

Milner, A.J.R.G., A Calculus of Communicating
Systems, Lecture Notes in Computer Science 92,
Springer-Verlag, 1980.

Nielsen, M., et al., “The Raise Language, Meth-
od, and Tools,” Formal Aspects Computing,
Vol. 1, 1989, pp. 85-114.

Owicki, S., and D. Gries, “Verifying Properties
of Parallel Programs: An Axiomatic Approach,”
Comm. ACM, Vol. 19, No. 5, May 1976, pp.
279-285.

Owicki, S., and L. Lamport, “Proving Liveness
Properties of Concurrent Programs,” ACM Trans.
Programming Languages and Systems, Vol. 4,
No. 3, July 1982, pp. 455-495.

Peterson, J.L., “Petri Nets,” Computing Sur-
veys, Vol. 9, No. 3, Sept. 1977.

Pratt, V., “Modeling Concurrency with Partial
Orders,” Int’lJ. Parallel Programming,Vol. 15,
No. 1, Feb. 1986, pp. 33-71.

Zave, P., “An Operational Approach to Require-
ments Specification for Embedded Systems,”
IEEE Trans. Software Eng., Vol. 8, No. 3, May
1972, pp. 250-269.

Specification, verification, and test-
ing tools. Many formal methods provide
semantic analysis tools because the under-
lying semantics of their languages is suffi-
ciently restricted so that reasoning in terms
of specifications becomes tractable. As
specifications grow in length and com-
plexity, such tools become invaluable to
the specifier. Many of the theorem-prov-
ing or proof-checking tools described in
the papers below deal with some subset or
small extension of first-order logic. The
model checking, simulation, and testing
tools typically deal with a finite or bound-
ed state space, and hence can also be used
as effective semantic analyzers.

Abrial, J.-R., “B User Manual,” Tech. report,
Programming Research Group, Oxford Univ.,
1988.

Boyer, R.S., and I S. Moore, A Computational
Logic, ACM monograph series, Academic Press,
New York, 1979.

Clarke, E-M., E.A. Emerson, and A.P. Sistla,
“Automatic Verification of Finite-State Con-
current Systems Using Temporal Logic Specifi-
cations,” ACM Trans. Programming Languages
and Systems, Vol. 8, No. 2, 1986, pp. 244-263.

Craigen, D. etal., “m-EVES: A Tool for Verify-
ing Software,” in Proc. 10th Int’l Conf. Soft-
ware Eng., Singapore, Apr. 1988, CS Press, Los
Alamitos, Calif., Order No. 849, pp. 324-333.

Garland, S.J., and J.V. Guttag, “An Overview of
LP, The Larch Prover,” in Proc. Third Int’l Conf.
Rewriting Techniques and Applications, Chapel
Hill, N.C., 1989, pp. 137-151.

Goguen, J.A., “OBJ as a Theorem Prover with
Applications to Hardware Verification,” Tech.
Report SRI-CSL-88-4R2, Stanford Research
Inst., Menlo Park, Calif., Aug. 1988.

Good, D.I, R.L. London, and W.W. Bledsoe,
“An Interactive Program Verification System,”
IEEE Trans. Software Eng.,Vol. 1,No. 1, 1979,
pp- 59-67.

Gordon, M., “HOL.: A Proof-Generating System
for Higher-Order Logic,” in VLSI Specification,
Verification, and Synthesis, Kluwer, 1987,

Gordon, M.J., A.J. Milner, and C.P. Wadsworth,
Edinburgh LCF, Lecture Notes in Computer
Science 78, Springer-Verlag, 1979.

Harel, D. et al., “Statemate: A Working Envi-
ronment for the Development of Complex Reac-
tive Systems,” in Proc. 10th IEEE Int’l Conf.
Software Eng., Apr. 1988, CS Press, Los Alam-
itos, Calif., Order No. 849.

COMPUTER

T

Kapur, D., and D. Musser, “Proof by Consisten-
cy,” Artificial Intelligence, Vol. 31, 1987, pp.
125-157.

Kemmerer, R.A., and S.T. Eckmann, “A User’s
Manual for the Unisex System,” Tech. report,
Dept. of Computer Science, Univ. Calif., Santa
Barbara, Calif., Dec. 1983.

Lescanne, P., “Computer Experiments with the
REVE Term Rewriting System Venerator,” in
Proc. 10th Symp. Principles Programming Lan-
guages, Austin, Texas, Jan. 1983, pp. 99-108.

Levitt, K.N., L. Robinson, and B.A. Silverberg,
“The HDM Handbook,” Tech. Report Vols. 1-3,
SRI Int’l, Menlo Park, Calif., 1979.

Locasso, R., et al., “The Ina Jo Reference Man-
val,” Tech.Report TM-(L)-6021/001/000, Sys-
tem Development Corp., Santa Monica, Calif.,
1980.

McMullin, P.R., and J.D. Gannon, “Combining
Testing with Formal Specifications: A Case
Study,” IEEE Trans. Sofrware Eng., Vol. 9, No.
3, May 1983.

Rosenblum, D.S., and D.C. Luckham, “Testing
the Correctness of Tasking Supervisors with
TSL Specifications,” in Proc. ACM SIGSoft 89
(Third Symp. Software Testing, Analysis, and
Verification), No. TAV-3, 1989, pp. 187-196.

Examples. All the work referenced be-
low is cited at the end of the “Uses” section
of this article. Many draw upon the hard-
ware domain. See Clarke and Grumberg’s
paper for a survey of even more hardware
examples.

Bevier, W.R,, “A Verified Operating System
Kernel,” Tech. Report 11, Computational Log-
ic, Inc., Mar. 1987.

Browne, M.C., E.M. Clarke, and D. Dill,
“Checking the Correctness of Sequential Cir-
cuits,” in Proc. IEEE Int’l Conf. Computer De-
sign, 1985, pp. 545-548.

Burrows, M., M. Abadi, and R. Needham, “A
Logic of Authentication,” in Proc. Symp. Oper-
ating Systems, 1989.

Clarke, E.M., and O. Grumberg, “Research on
Automatic Verification of Finite-State Concur-
rent Systems,” Ann. Review Computing Science,
Vol. 2, 1987, pp. 269-290.

Collins, B.P., J.E. Nicholls, and I.H. Sorensen,
“Introducing Formal Methods: The CICS Expe-
rience with Z,” Tech. Report TR 12.260, IBM,
United Kingdom Labs, Hursley, 1987.

Cullyer, W.J., “Implementing Safety-Critical
Systems: The Viper Microprocessor,” in VLSI
Specification, Verification, and Synthesis, Klu-
wer, 1987.

Delisle, N., and D. Garlan, “Formally Specify-
ing Electronic Instruments,” in Proc. Fifth Int'l

24

Workshop Software Specification and Design,
Pittsburgh, 1989, pp. 242-248.

Garland, S.J., J.V. Guttag, and J. Staunstrup,
“Verification of VLSI Circuits Using LP,” in
Proc. IFIP WG 10.2, Fusion Hardware Design
and Verification, North-Holland, 1988.

Heydon, A., et al., “Constraining Pictures with
Pictures,” in Proc. IFIPS 89, San Francisco, Aug.
1989,

Hunt, W.A_, “The Mechanical Verification of a
Microprocessor Design,” Tech. Report 6, Com-
putational Logic, Inc., 1987.

Moore, A.P., “Investigating Formal Specifica-
tion and Verification Techniques for Comsec
Software Security,” in Proc. 1988 Nat’l Com-
puter Security Conf., Oct. 1988.

Narendran, P., and J. Stillman, “Formal Verifi-
cation of the Sobel Image Processing Chip,” in
Current Trends Hardware Verification and Au-
tomated Theorem Proving,G. Birtwistleand P.A.
Subrahmanyam, eds., Springer-Verlag, 1989,
pp. 92-127.

Woodcock, J.C.P., “Transaction Processing
Primitives and CSP,” IBM J. Research and De-
velopment, Vol. 31, No. 5, 1987, pp. 535-45.

Informal and semiformal methods.
Less formal methods can play an important
role in software development, too. Some of
the papers below present traditional design
methods that are gaining popularity in in-
dustry today. Some describe ways to deal
with system complexity through hierarchi-
cal structuring techniques. Some borrow
ideas from the area of artificial intelli-
gence. In addition, I include a reference to
Leveson’s work on hazard analysis.

Alford, M., “SREM at the Age of Eight: The
Distributed Computing Design System,” Com-
puter, Apr. 1985, pp. 36-46.

DeRemer, F., and H.H. Kron, “Programming-
in-the-Large Versus Programming-in-the-
Small,” IEEE Trans. on Software Eng., June
1976.

Fickas, S.,”Automating the Analysis Process:
An Example,” in Proc. Fourth Int’l Workshop
Software Specification and Design, Apr. 1987,
pp. 79-86.

Jackson, M.A., Principles Program Design,
Academic Press, London, 1975.

Katzan, H., Systems Design and Documenta-
tion: An Introduction to the HIPO Method, Van
Nostrand Reinhold, New York, 1976.

Leveson, N.G., “Software Safety: What, Why,
and How,” ACM Computing Surveys, Vol. 18,
No. 2, June 1986, pp. 125-163.

Parnas, D.L., “A Technique for Software Mod-

ule Specification with Examples,” Comm. ACM,
Vol. 15, No. 5, May 1972, pp. 330-336.

Rich, C., R.C. Waters, and H.B. Reubenstein,
“Toward a Requirements Apprentice,” in Proc.
Fourth Int’l Workshop Software Specification
and Design, Apr. 1987, pp. 79-86.

Swartout, W., “The Gist Behavior Explainer,”
in Proc. Am. Assoc. Artificial Intelligence Conf.,
Aug. 1983, pp. 402-407.

Yourdon, E., and L.L. Constantine, Structured
Design: Fundamentals Discipline of Computer
Programs and Systems Design, Yourdon Press,
New York, 1978.

Jeannette M. Wing is an associate professor of
computer science at Carnegie Mellon Universi-
ty. Her research interests include formal speci-
fications, programming languages, concurrent
and distributed systems, visual languages, and,
most recently, object management. Her current
research project at CMU involves the applica-
tion of language semantics to the search and
retrieval of objects. She directs the Avalon
Project, which focuses on language support for
reliable distributed systems, and codirects the
Mir6 Project, which focuses on specifying secu-
rity constraints in a visual language. She contin-
ues to contribute to the design and use of the
Larch family of specification languages.

Wing received SB, SM, and PhD degrees in
computer science from the Massachusetts Insti-
tute of Technology. She is a member of the
IEEE, the IEEE Computer Society, and ACM.

The author can be contacted at the School of
Computer Science, Carnegie Mellon Universi-
ty, Pittsburgh, PA 15213-3890.

COMPUTER

