1076 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 9. SEPTEMBER 1990

Using Larch to Specify Avalon/C++ Objects

JEANNETTE M. WING, MEMBER, IEEE

Abstract—This paper gives a formal specification of three base Ava-
lon/C++ classes; recoverable, atomic, and subatomic. Programmers
derive from class recoverable to define persistent objects, and from
either class atomic or class subatomic to define atomic objects. The
specifications, written in Larch, provide the means for showing that
classes derived from the base classes implement objects that are per-
sistent or atomic, and thus exemplify the applicability of an existing
specification method to specifying ‘‘nonfunctional’’ properties. Writ-
ing these formal specifications for Avalon/C ++’s built-in classes has
helped to clarify places in the programming language where features
interact, to make unstated assumptions explicit, and to characterize
complex properties of objects.

Index Terms—Atomicity, Avalen, C ++, distributed systems, fault-
tolerance, formal methods, Larch, object-oriented programming,
specification, transactions.

I. INTRODUCTION

ORMAL specification languages have matured to the

point where industry is receptive to using them and
researchers are building tools to support their use. They
have been used successfully for specifying the input-out-
put behavior, i.e., functionality, of programs, but less
often for specifying a program’s ‘‘nonfunctional’” prop-
erties. For example, the functionality of a program that
sorts an array of integers might be informally specified as
follows: given an input array A of integers, an array B of
integers is returned such that B’s integers are the same as
A’s, and B’s are arranged in ascending order. Nothing is
said about the program’s performance, such as whether
the algorithm for sorting should be O(n) or O(n?). Per-
formance is an example of a ‘‘nonfunctional’’ property.
Other “*nonfunctional’’ properties are degree of concur-
rency, reliability, safety, and security.

This paper demonstrates the applicability of formal
specifications to the ‘‘nonfunctional’’ properties, persis-
tence and atomicity. Atomicity, which subsumes persis-
tence, requires that an object’s state be correct in the pres-
ence of both concurrency and hardware failures. The cor-
rect behavior of these objects is fundamental to the cor-
rectness of the programs that create, access, and modify
them.

Our basic approach is to use standard first-order logic
to specify properties of atomic objects, and to specify an

Manuscript received October 15, 1989: revised May 1. 1990. Recom-
mended by N. G. Leveson. This work was supported by the Defense Ad-
vanced Research Projects Agency (DOD), ARPA Order 4976, monitored
by the Air Force Avionics Laboratory under Contract F33615-87-C-1499
and in part by the National Science Foundation under Grant CCR-8620027.

The author is with the School of Computer Science. Carnegie Mellon
University, Pittsburgh, PA 15213.

IEEE Log Number 9037085.

object’s ‘‘nonfunctional’’ properties indirectly in terms of
its functionally defined properties. This approach is sim-
ilar to that taken in the work done on specifying a fault-
tolerant flight control system [20], safety-critical nuclear
control software [5], [23], and secure operating systems
[2], [22], respectively, for the ‘‘nonfunctional’’ proper-
ties of fault-tolerance, safety, and security. As for these
other examples, general-purpose methods are used to
specify properties of specific systems. An alternative ap-
proach is to use or devise a method for a particular prop-
erty, much like probability and queueing theory are used
to model hardware reliability.

Section II describes in more detail a context in which
atomic objects are used: fault-tolerant distributed sys-
tems. Sections III, IV, and V present a concrete program-
ming language interface to such objects and formal spec-
ifications of this interface. Section VI summarizes the
lessons learned from writing these specifications for-
mally. The results are gratifying: they provide evidence
that an existing specification method is suitable for de-
scribing a new class of objects; they validate the correct-
ness of the design and implementation of a key part of a
large software development project; and not surprisingly,
they demonstrate that the process of writing formal spec-
ifications greatly clarifies our understanding of complex
behavior. Finally, Section VII concludes with remarks
about current and future work.

II. BACKGROUND

A. Abstract Context: Transaction Model of Computation

A distributed system runs on a set of nodes that com-
municate over a network. Since nodes may crash and
communications may fail, such a system must tolerate
faults; processing must continue despite failures. For ex-
ample, an airline reservations system must continue serv-
icing travel agents and their customers even if an airline’s
database is temporarily inaccessible; an automatic teller
machine must continue dispensing cash even if the link
between the ATM and the customer’s bank account is
down.

A widely accepted technique for preserving data con-
sistency and providing data availability in the presence of
both concurrency and failures is to organize computations
as sequential processes called transactions. A transaction
is a sequence of operations performed on data objects in
the system. For example, a transaction that transfers $25
from a savings account S to a checking account C might
be performed as the following sequence of three opera-

0098-5589/90/0900-1076$01.00 © 1990 IEEE

WING: USING LARCH TO SPECIFY AVALON/C++ OBJECTS

tions on S and C (both initially containing $100):
{S =$100 A C = $100}
Read(S)
Debit (S, $25)
Credit(C, $25)
{S =$75 A C = 8125}

In contrast to standard sequential processes, transactions
must be atomic, that is serializable, transaction-consis-
tent, and persistent.' Serializability means that the effects
of concurrent transactions must be the same as if the
transactions executed in some serial order. In the above
example, if two transactions, T'1 and T2, were simulta-
neously transferring $25 from S to C, the net effect to the
accounts should be that § = $50 and C = $150 (that is,
as if T1 occurred before T2 or vice versa). Transaction-
consistency means that a transaction either succeeds com-
pletely and commits, or aborts and has no effect. For ex-
ample, if the transfer transaction aborts after the Debit but
before the Credit, the savings account should be reset to
$100 (its balance before the transfer began). Persistence
means that the effects of committed transactions survive
failures. If the above transfer transaction commits, and a
later transaction that modifies S or C aborts, it should be
possible to “‘roll back’” the state of the system to the pre-
vious committed state where § = $75 and C = $125.

Weihl proves that the (global) atomicity of the entire
system is guaranteed if each object accessed within trans-
actions is (locally) atomic [27]. An atomic object is an
instance of an abstract data type with the additional prop-
erty that it ensures the serializability, transaction-consis-
tency, and persistence of all the transactions that use its
operations. For example, if the bank account is repre-
sented by an atomic object, then any set of transactions
that accesses the object is guaranteed to be serializable,
transaction-consistent, and persistent. The advantage of
constructing a system by focusing on individual objects
instead of on a set of concurrent transactions is modular-
ity: we need only ensure that each object is atomic to en-
sure the global atomicity of the entire system. Thus, we
transform the problems of specifying, designing, imple-
menting, and reasoning about an entire distributed system
into the more manageable problems of specifying, de-
signing, implementing, and reasoning about each of the
objects in the system.

B. Concrete Context: Avalon

The Avalon Project, conducted at Carnegie Mellon
University, provides a concrete context for this work. We
have implemented language extensions to C++ [26], [8]

'Unfortunately, no standard terminology is used for the terms transac-

tion-consistent and persistent. Transaction-consistent is sometimes called
failure atomic. total, or simply atomic. Persistent is sometimes called re-
coverable, permanent, or resilient. In this paper, we use terminology con-

sistent with Avalon terminology as published in [8].

1077

and Common Lisp [25], [6] to support application pro-
gramming of fault-tolerant distributed systems. Avalon
relies on the Camelot System [24], also developed at
CMU, to handle operating-system level details of trans-
action management, internode communication, commit
protocols, and automatic crash recovery.

A program in Avalon/C++ consists of a set of servers,
each of which encapsulates a set of objects and exports a
set of operations and a set of constructors. A server re-
sides at a single physical node, but each node may be
home to multiple servers. An application program may
explicitly create a server at a specified node by calling one
of its constructors. Rather than sharing data directly,
servers communicate by calling one another’s operations.
An operation call is a remote procedure call with call-by-
value transmission of arguments and results.

Avalon/C++ includes a variety of primitives (not dis-
cussed here) for creating transactions in sequence or in
parallel, and for aborting and committing transactions.
Each transaction is identified with a single process (thread
of control). Typically, a transaction executes by invoking
an operation on an object (encapsulated by some server)
receiving results when the operation terminates, then in-
voking another operation on a possibly different object
(encapsulated by a possibly different server), receiving re-
sults when it terminates, etc. It then commits or aborts.

Transactions in Avalon/C++ may be nested. A sub-
transaction’s commit is dependent on that of its parent;
aborting a parent will cause a committed child’s effects to
be rolled back. A transaction’s effects become permanent
only when it commits at the top level. Each transaction
has a unique parent, a (possibly empty) set of siblings,
and sets of ancestors and descendants. A transaction is
considered its own ancestor or descendant.

Avalon/C++ provides transaction semantics by re-
quiring that all objects shared by transactions be atomic.
The Avalon/C+ + base hierarchy consists of three classes
(Fig. 1), each of which provides primitives for imple-
mentors of derived classes to ensure the nonfunctional
properties of objects of the derived classes. Programmers
derive from cither class atomic or class subatomic to de-
fine their own atomic objects. In practice, sometimes it
may be too expensive to guarantee atomicity at all levels
of a system; instead it is often useful to implement atomic
objects from nonatomic objects, those which guarantee
only persistence. Programmers need only derive from
class recoverable to define persistent objects.

In Avalon/C ++ when a transaction commits, the run-
time system assigns it a timestamp generated by a logical
clock [18]. Atomic objects are required to ensure that all
transactions are serializable in the order of their commit
timestamps, a property called hybrid atomicity [27]. This
property is automatically ensured by two-phase locking
protocols [9], as obeyed by objects derived from class
atomic. However, objects derived from class subatomic
obtain additional concurrency by testing timestamp or-
dering at runtime. The key difference between class
atomic and class subatomic is that class subatomic gives

1078

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 9. SEPTEMBER 1990

class recoverable

/

class atomic

™~

class subatomic

Fig. |. Inheritance hierarchy of the three Avalon/C ++ base classes.

programmers a finer-grained control over synchronization
and crash recovery.

The main technical contribution of this paper is the for-
mal specification of the interfaces of the three base Ava-
lon/C++ classes, presented in Sections III, IV, and V.
There are two purposes for writing this specification: to
help Avalon/C++ programmers and to help Avalon/
C++ implementors.

e (lients of these base classes need to know the effects

of each of the classes’ exported operations in order
to ensure correct usage. Instead of reading the code
or in addition to reading informal commentary,
clients can read these formal specifications and know
what they must establish when invoking an operation
and whar is guaranteed to hold when it returns.
Clients need not know at all how these effects are
achieved.
Moreover, clients can use these specifications to rea-
son, informally or formally, about their code that uses
these interfaces. They can perform such reasoning
locally and independently of the proof that the im-
plementation satisfies the specification.

¢ Implementors of these base classes need to know what

they must guarantee to their clients. They need not
know who their clients are or why their clients will
use these classes. They are free to focus on imple-
menting these interfaces.
Implementors can also take these specifications as the
“‘contract’’ they must satisfy. They prove their im-
plementations satisfy the specifications of these
classes independently of any of the classes’ uses.

These remarks are applicable in general to the use of
any interface specification. For Avalon/C++, the most
important audience is the clients. The base classes are im-
plemented once and for all (unless there is to be more than
one implementation of Avalon/C++ or a similarly de-
signed language), but are used over and over again,
through C++ inheritance, as the means to define new
classes. By specifying the base classes’ interfaces, we
provide the means for showing that classes derived from
the base classes define objects that are persistent or
atomic.

C. Specification Language: Larch

The formal specification language used in this paper is
Larch [16], though others such as VDM (4], Z [1], or OBJ
[12], might also be suitable. Larch was designed to spec-
ify the functionality of sequential programs, in particular,
properties of abstract data types. A Larch specification
has two parts: 1) an interface, written in a predicative
language using pre- and postconditions, describes the ef-

fects on program state as operations are executed (e.g.,
an object’s change in value or allocation of new storage);
and 2) a trait, written in the style of an algebraic speci-
fication, describes intrinsic properties that are indepen-
dent of the model of computation (e.g., elements in sets
are unordered and not duplicated). The advantage gained
in using Larch is this explicit separation of concerns be-
tween state-dependent and state-independent properties.
Readers familiar with Larch can skip the next subsection
and go to Section II-C-2 in which we add extensions to
deal with concurrency. Two other papers in this issue also
discuss aspects of Larch [15], [11]. ‘

1) Overview of Larch/C++ and the Larch Shared
Language:

Larch interfaces describe the effects of a C++ class’s
operations. For example, Larch/C++ interfaces for a
constructor, insertion, and deletion operations are given
for a C++ intset class shown in Fig. 2. Aside from the
header, an operation’s interface specification can have
three clauses: requires, modifies, and ensures.

A requires clause states the precondition that must hold
when an operation is invoked. We interpret an omitted
requires clause as equivalent to ‘‘requires true.”’ None
of the operations in the intset example have explicit re-
quires clauses, which means they can be invoked in any
state.

A modifies (object_list) clause asserts that an opera-
tion may possibly change the value of any of the objects
listed in object_list; it is a strong indirect assertion about
which objects may not change in value. This assertion is
implicitly conjoined to the operation’s postcondition in
the ensures clause. We borrow the reserved C ++ symbol
this to denote the object at which a class operation is in-
voked; as in C++, rhis is an implicit argument formal to
each operation of a class.? An omitted modifies clause is
equivalent to the assertion modifies nothing, meaning no
objects are allowed to change in value.

An ensures clause states the postcondition that the op-
eration must establish upon termination. We use the re-
served symbol return as an implicit result formal to de-
note the object returned as a result of executing an
operation. An unprimed argument formal, e.g., this and
e, in a postcondition stands for the value of the object
when the operation begins. A primed argument formal,
e.g., this’, or primed result formal, i.e., refurn’, stands
for the value of the object at the end of the operation.

Finally, a new (object_list) predicate, which typically
appears in a constructor’s postcondition, asserts that fresh
storage is allocated for each object listed in object_list.

*C++'s this denotes the pointer to the object: we use it to denote the
object itself since we are almost always interested in the object being pointed
to, and not the pointer itself.

WING: USING LARCH TO SPECIFY AVALON/C++ OBJECTS

class intset based on S from Set (Int for E)

intset()
ensures new (retumn) A rewum’ = {}

insert(int ¢)
modifies (this)
ensures this’ = add(this, e)

delete(int e)
modifies (this)
ensures this’ = rem(this, e)

Fig. 2. Larch/C++ interfaces for intsets.

For example, one effect of calling the intset constructor
operation is that an intset object that did not exist upon
invocation now exists upon return.’ Its value is the empty
set ({}).

We use the vocabulary of traits to write the assertions
in the pre- and postconditions of an object’s operations;
we use the meaning of equality to reason about its values.
Hence, the meaning of add and = in insert’s postcondi-
tion is given by the Set trait of Fig. 3. In a trait, the set
of operators and their signatures following introduces de-
fines a vocabulary of terms to denote values. For exam-
ple, {} and add({}, 5) denote two different intset values.
The set of equational axioms following the asserts clause
provides an equivalence relation on the terms, and hence
on the values they denote. For example, from Set, we
could prove that rem(add (add(add(emp, 3), 4), 3), 3)
= add(emp, 4). The generated by clause of Set asserts
that {} and add are sufficient operators to generate all
values of sets. Formally, it introduces an inductive rule
of inference that allows us to prove properties of all terms
of sort S. The partitioned by clause adds more equiva-
lences between terms. Intuitively it states that two terms
are equal if they cannot be distinguished by any of the
operators listed in the clause. For example, sets are par-
titioned by € because sets are equal if and only if their
members are the same; we can use this property to show
that order of insertion of elements in a set does not matter.

A trait T1 can include another trait 72, thereby adding
to T1 what appears in T2. Larch also supports renaming
of sort and operator identifiers through for clauses. Our
specifications of the Avalon/C++ classes will use the Set
trait through trait inclusion, usually with some renaming
of the sort identifiers E and S; we will also show uses of
the subset operator (<) as defined in the Set trait.

Further details of Larch are provided as necessary. See
[17] for a more complete discussion.

2) Extensions for Concurrency:

Following [3], we make three extensions to Larch in-
terfaces for the transaction model of computation.

¢ A when clause states a condition on the state of the
system that must hold before the operation proceeds.
Specifying this condition is often necessary since the

*Note that we overload the symbol rerurn since in a new predicate return
stands for the returned object, and elsewhere in a postcondition, return’
stands for the value of the returned object: hence, it makes no sense for
return to appear undecorated when not in the object list of a new predicate.

1079

Set: trait

introduces
{}:—=S
add: S,E—S
rem:S,E—5 S
€:E,S —Bool
_& :S,S - Bool

asserts
S generated by ({}, add)
S partitioned by (€, <)
forall (s, s1: S, e, el: E)

rem({ },e) == {}

rem(add(s, e), e1) == if ¢ = el then rem(s,e!) else add(rem(s.el).e)
e€ [} =="false

e€ add(s,el)==e=el veeEs

(} g s==true

add(se) G sl=ee slAasgsl

Fig. 3. Larch traits for sets.

state of the system may change between the point of
invocation (when the precondition must hold) and the
actual point of execution of the operation (when the
when-condition must hold).

e It is implicit that each operation must be operation-
consistent, that is, it completes entirely or has no ob-
servable effect.* No intermediate states are observa-
ble between a state in which the when-condition holds
and a state in which the postcondition holds. For an
operation op that is a sequence of other operation-
consistent operations op; that may be interleaved with
operations of other transactions and have observable
effects, we specify op’s effects as the composition of
named operations op;’s, each of which is specified
as any operation-consistent operation. The only ex-
ample of this kind of operation in this paper is the
pause operation on subatomic objects found in Sec-
tion V.

e Self is used to denote the transaction invoking the
operation.

III. CLAass RECOVERABLE

Conceptually, there are two kinds of storage for ob-
jects: volatile storage whose contents are lost upon
crashes, and stable storage whose contents survive crashes
with high probability. (Stable storage may be imple-
mented using redundant hardware [19] or replication [7].)
Recoverable objects are allocated in volatile storage, but
their values are logged to stable storage so that recovery
from crashes can be performed. If every recoverable ob-
ject is written to stable storage after modifying operations
are performed on it in volatile storage, then its state may
be recovered after a crash. Recovering an object’s state
simply requires ‘‘replaying’’ the log, which is a sufficient
method for recovering an object’s state.

However, recovering an object’s state entirely from the
log is a time-consuming process. Camelot speeds up crash

*Again, we use terminology from [8]. but more standard terminology
would call this property aromic, as in atomic operation or atomic action
13]. Since we use ‘‘atomic’’ for transactions, we needed to introduce a
different term. Note that since a transaction is a sequence of operations.
operation-consistency is a weaker property than transaction-consistency; it
permits the partial effects of aborted transactions to be observed. while
transaction-consistency does not.

1080

recovery by dividing local storage into two classes, vol-
atile storage and nonvolatile storage, and by distinguish-
ing between two crash modes, node failures and media
failures. In a media failure, both volatile and non-volatile
storage are destroyed, while in a node failure, only vol-
atile storage is lost. In practice, node failures are far more
common than media failures. To optimize recovery from
node failures, a protocol known as write-ahead logging

[14] is used. An object is modified in the following steps:

1) The page(s) containing the object are pinned in vol-
atile storage; they cannot be returned to nonvolatile stor-
age until they are unpinned.

2) Modifications are made to the object in volatile
memory.

3) The modifications are logged on stable storage.

4) The page(s) are unpinned.

The first step of the protocol ensures that the pages con-
taining the object are not written to nonvolatile storage
while a modifying operation is in progress. This protocol
ensures that a recoverable object can be restored to a con-
sistent state quickly and efficiently. Upon crash recovery,
the status of each transaction is determined, and by com-
paring what is in nonvolatile storage to what is in stable
storage, we can ‘‘redo’’ the effects of committed trans-
actions and ‘‘undo’’ the effects of aborted ones. (For more
details, see [24].) Notice the modifications must still be
logged to stable storage to protect against the occurrence
of a media failure.

A. Avalon Class Definition

The programmer’s interface to a recoverable object is
through the Avalon/C+ + class header shown in Fig. 4.

Informally, the pin operation causes the pages in vola-
tile storage containing the object to be pinned; unpin
causes the modifications to the object to be written to sta-
ble storage, and unpins its pages. A recoverable object
must be pinned before it is modified, and unpinned after-
wards. For example if x is a recoverable object, a typical
use of the pin and unpin operations within a transaction
would be:

start { //begin transaction

Xx.pin();
//modify x here
x.unpin();

) //end transaction

After a crash, a recoverable object is restored to a pre-
vious state in which it was not pinned. Transactions can
make nested pin calls; if so, then the changes made within
inner pin/unpin pairs do not become permanent, i.e.,
written to stable storage, until the outermost unpin is ex-
ecuted. Classes derived from recoverable inherit pin and
unpin operations, which can be used to ensure persistence
of objects of the derived class.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 9. SEPTEMBER 1990

class recoverable {

public:

void pin(); // Pins object in volatile storage.

void unpin(); // Unpins and logs object to stable storage.
}

Fig. 4. Avalon class recoverable.

B. Larch Specification

The specification shown in Fig. 5 captures the follow-
ing three properties of recoverable objects:

1) Only one transaction can pin an object at once.

2) The same transaction can pin and unpin the same
object multiple times.

3) Only at the last unpin does the object’s value get
written to stable storage.

We now walk through the specification in detail. The
top part of the specification contains Larch interface spec-
ifications for a constructor given by the class name, re-
coverable, and the two operations, pin and unpin. The
bottom part contains the Larch trait RecObj, which gives
meaning to the assertion language of the interface speci-
fications.

We see in RecObj that the state of a recoverable object
is a triple of its value in memory, a single transaction
identifier, and a pin count:

R tuple of value: Memory, pinner: Tid, count: Card

We use the built-in tuple schema, given in Appendix II,
to introduce the sort R for terms denoting states of re-
coverable objects.

Memory itself is modeled as a pair of values, one each
for volatile and stable storage:

Memory tuple of volatile: M, stable: M

Now let us turn to the three operations defined for class
recoverable. The constructor’s postcondition ensures that
new storage is allocated for the returned object and ini-
tializes its pin count to zero.

Pin’s postcondition specifies how the state of a recover-
able object changes. Pin might terminate with an error
condition signaled to the invoker to indicate that the ob-
ject to be pinned is already pinned by some other trans-
action. We use the reserved signal to denote the object
whose value ranges over an enumeration of error condi-
tions.” Pin’s postcondition makes use of the auxiliary
function, pn, defined in the trait RecObyj:

pn(r, t) ==
if r.count > 0
then if r.pinner = t
then count_ gets(r,r.count + 1)
else r
else count_gets(pinner_gets(r, t), 1)

It takes a recoverable object’s state (of sort R) and a trans-
action identifier (of sort 7id) and returns a (new) state for

SUsing signal is suggestive of exception handling. which is not sup-
ported in C++.

WING: USING LARCH TO SPECIFY AVALON/C++ OBJECTS

class recoverable based on R from RecObj

recoverable()

ensures new (return) A retum’.count = 0

void pin()
modifies (this)
ensures this’ = pn(this, self) A
this.pinner # self = signal = already_claimed

void unpin()
requires pinned(this) A this.pinner = self
modifies (this)
ensures this’ = un(this, self)

RecObj: trait
includes
R tuple of value: Memory, pinner: Tid, count: Card
Memory tuple of volatile: M, stable: M

introduces
pn: R, Tid - R // pin
un: R, Tid - R // unpin
pinned: R — Bool
asserts for all (r: R, t, t1: Tid, m: Memory, c: Card)
pa(r, t) =
if r.count >0 // is already pinned?
then if r.pinner =t // by same transaction
then count_gets(r, r.count + 1) // increment count
elser // otherwise, leave unchanged
un([m, tl, c],) =
ifc=1 //if last unpin
then [stable_gets(m, m.volatile), t1, 0] // write to stable storage
else [m, t1, c-1] // or just decrement count

pinned(r) == r.count > 0

Fig. 5. Larch specification of class recoverable.

a recoverable object. If the count (r.count) is nonzero,
then the object must be pinned. If the object is pinned by
a transaction (r.pinner) that is the same as the transaction
(1) attempting to pin the already pinned object, then the
count is incremented; otherwise, the object is left un-
changed. If the object is not already pinned, then its state
is initialized with the pinning transaction’s identifier and
a count of 1.

Unpin’s precondition requires that an object not be un-
pinned unless it is already pinned; moreover it must be
pinned by the calling transaction. Un is defined as fol-
lows:

un([m, tl, c], t) ==
ifc =1
then [stable_gets(m,m.volatile), t1, 0]
else [m, tl, c—1]

Unlike pn, it is unnecessary for un to check if the object
is already pinned and if the transaction (¢1) that currently
has the object pinned is the same as the unpinning trans-
action (t); unpin’s precondition checks for this case. Un
simply checks if there is only one outstanding call to pin
(¢ = 1), in which case the value of the object in volatile
storage is written to stable storage; otherwise, the count
is decremented. We defer discussion of this assymmetry
between pin and unpin to Section VI.

Note that pin and unpin each has a modifies clause,
indicating that this, but no other object, may be modified.

C. Deriving from Class Recoverable

A typical use of class recoverable is to define a derived
class for objects that are intended to be persistent. For

1081

example, suppose we derive a new class, rec_int, from
recoverable:

class recov_int: public recoverable{
// private representation

public:
/I operations on recov_ints

}

If Int is the sort identifier associated with values of re-
coverable integer objects, then the identifier M that ap-
pears in the RecObj specification would be renamed with
Int. The header for the Larch interface specification for
the recov_int class would look like:

class recov_int based on R from RecObj (Int for M)
// . . . specification of recov_int’s operations . . .

IV. CLASss ATOMIC

The second base class in the Avalon/C++ hierarchy is
atomic. Atomic is a subclass of recoverable, specialized
to provide two-phase read/write locking and automatic re-
covery. Locking is used to ensure serializability, and an
automatic recovery mechanism for objects derived from
aromic is used to ensure transaction-consistency. Persis-
tence is ‘‘inherited’’ from class recoverable since pin and
unpin are inherited through C++ inheritance.

A. Avalon Class Definition

Fig. 6 gives the class header for atomic.

Atomic objects should be thought of as containing
long-term locks. Under certain conditions, read_lock
(write_lock) gains a read lock (write lock) for its caller.
Transactions hold locks until they commit or abort.
Read_lock and write_lock suspend the calling transaction
until the requested lock can be granted, which may in-
volve waiting for other transactions to complete and re-
lease their locks. If read_lock or write_lock is called while
the calling transaction already holds the appropriate lock
on an object, it returns immediately.

B. Larch Specification

Fig. 7 gives the Larch interfaces and trait for class
atomic. As indicated in the trait At7omObj, an atomic ob-
ject is a recoverable object, along with a set of transac-
tions that hold read locks on the object and a set of trans-
actions that hold write locks on it:

A tuple of ob: R, readset: Readers, writeset: Writers

Even though only one writer can be modifying the state
of an atomic object at once, we keep track of a set of
transactions with write locks because a child transaction
can get a write lock if its parent has one. The constructor
for atomic initializes both the sets of readers and writers
to be empty.

The transaction tree ts of type tidTree is global infor-
mation:

class tidTree based on TransIdS from TransldTree
// ... TransldTree defined in Appendix I . . .
global ts: tidTree

1082

class atomic: public recoverable {
public:
void read_lock();
void write_lock();

// Obtain a long-term read lock.
// Obtain a long-term write lock.

Fig. 6. Avalon atomic class.

class atomic based on A from AtomObj

atomic()
ensures new (retumn) A return’.readset = { | A return’.writeset = { }

void read_lock()
when this. writeset C ancestors(ts, self)
modifies (this)
ensures this’ = add_readerthis, self)
void write_lock()
when this.readset C ancestors(ts, self) A this.writeset ¢ ancestors(ts, self)
modifles (this)
ensures this' = add_writer(this, self)

AtomObj: trait

incudes
RecObj, Set (Tid for E, Readers for S), Set (Tid for E, Writers for S)
A tuple of ob: R, readset: Readers, writeset: Writers

introduces
add_reader: A, Tid - A
add_writer: A, Tid = A

asserts for all (a: A, tid: Tid)
add_reader(a, tid) = readset_gets(a, add(a.readset, tid))
add_writer(a, tid) == writeset_gets(a, add(a.writeset, tid))

Fig. 7. Larch specification of class atomic.

Appendix I gives traits for defining a transaction tree, pro-
viding functions like ancestors, which returns the set of
transactions that are ancestors of a given transaction (in-
cluding itself). We declare the transaction tree global only
for convenience; such objects could be passed as explicit
arguments to each operation.

Read_lock’s when-condition states that a transaction can
get a read lock if all transactions holding write locks are
ancestors; write_lock’s when-condition states that a trans-
action can get a write lock if all transactions holding read
or write locks are ancestors. These two requirements re-
flect the conditions of Moss’s locking rules for nested
transactions [21], which we implemented for Avalon/
C++.

As usual, the postconditions look simple; the trait’s
add_reader and add_writer functions do the actual work,
by adding the calling transaction to the appropriate set.
Notice that since readset (writeser) is a set, adding a
transaction that already is in it has no effect. Thus, if the
calling transaction already has a read (write) lock on the
object, no change is made; otherwise, it obtains a read
(write) lock.

C. Deriving from Class Atomic
Suppose we now define an atomic_int class as follows:

class atomic_int: public atomic {

int val; // representation
public:

int operator =(int rhs); // overloaded assign-
// ment

operator int(); /loverloaded coercion

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 9. SEPTEMBER 1990

As for the previous recov_int example, when giving the
Larch interface specification for the atomic_int class, we
rename the sort identifier M, introduced in the RecObj trait
and included in the AromObj trait,:

class atomic_int based on A
from AtomObj (Int for M)
/1 . . . specifications of atomic_int’s operations . . .

Now let us specify atomic_int’s coercion operation,
which takes an atomic_int and returns a regular C+ + int:

atomic_int::operator int()
when this.writeset S ancestors(ts, self) A
(~ pinned(this.ob) V this.ob.pinner = self)
modifies (this)
ensures this’ = add_reader(this, self) A
return’ = this.ob.value.volatile

The second conjunct of the postcondition makes the cli-
mactic point: the value (of sort Int) of the returned int
object return is the volatile storage’s value (of sort Int) of
the recoverable object component of the atomic_int this.
We retrieve the value from volatile storage because we
can assume the when-condition: if the object is pinned
(but not yet unpinned by self), then we want this’s most
recent value; if the object is unpinned, then the values in
volatile and stable storage would be identical.

Let us examine how the derived class uses the inherited
operations, relying on their specifications. An Avalon/
C+ + implementator of atomic_int can use wrire_lock and
read_lock of class atomic and pin and unpin of class re-
coverable to ensure the serializability, transaction-consis-
tency, and persistence of atomic_ints. (Thus, atomic_int
class’s clients can assume these properties hold for all
atomic_ints.) For example, here is how the coercion op-
eration would be implemented in Avalon/C+ +:

atomic_int::operator int() {
read_lock(); //get read lock on
//representation object

return val; //return its value

}

Using the specification of class atomic’s read_lock oper-
ation, we can show 1) the coercion operation’s when-con-
dition trivially implies read lock’s when-condition; and
2) read_lock’s postcondition guarantees the calling trans-
action has a read lock on the atomic_int object. These two
properties imply that val, the int representation of an
atomic_int will not be read and returned until the calling
transaction obtains a read lock on the atomic_int, and
moreover, no concurrent transactions have locks on it.

V. CLASS SUBATOMIC

The third, and perhaps most interesting, base class in
the Avalon/C++ hierarchy is subatomic. Like atomic,
subatomic provides the means for objects of its derived
classes to ensure atomicity. While atomic provides a quick
and convenient way to define new atomic objects, sub-
atomic provides more complex primitives to give pro-

WING: USING LARCH TO SPECIFY AVALON/C++ OBJECTS

grammers more detailed control over their objects’ syn-
chronization and recovery mechanisms by exploiting type-
specific properties of objects. For example, a queue ob-
ject with enqueue and dequeue operations can permit en-
queuing and dequeueing transactions to go on concur-
rently, even though those transactions are both *‘writers.”’
In defining an atomic_queue class by deriving from class
atomic, such concurrency would not be possible; deriving
from class subatomic makes it possible. See [8] for details
and other examples.

A. Avalon Class Definition

Fig. 8 gives the class header for subatomic.

A subatomic object must synchronize concurrent ac-
cesses at two levels: short-term synchronization ensures
that concurrently invoked operations are executed in mu-
tual exclusion, and long-term synchronization ensures that
the effects of transactions are serializable. Short-term syn-
chronization is used to guarantee operation-consistency of
objects derived from subatomic.

Subatomic provides the seize, release, and pause op-
erations for short-term synchronization. Each subatomic
object contains a short-term lock, similar to a monitor lock
or semaphore. Only one transaction may hold the short-
term lock at a time. The seize operation obtains the short-
term lock, and release relinquishes it. Pause releases the
short-term lock, waits for some duration, and reacquires
it before returning. Thus, these operations allow trans-
actions mutually exclusive access to subatomic objects.
Seize, release, and pause are protected members of the
subatomic class since it would not be useful for clients to
call them.® To ensure transaction-consistency, subatomic
“provides commit and abort operations. Whenever a top-
level transaction commits (aborts), the Avalon/C++ run-
time system calls the commit (abort) operation of all ob-
jects derived from subatomic accessed by that transaction
or its descendants. Abort operations are also called when
nested transactions ‘‘voluntarily’’ abort. Since commit and
abort are C++ virtual operations, classes derived from
subatomic are expected to reimplement these operations.
Thus, subatomic allows type-specific commit and abort
processing, which is useful and often necessary in imple-
menting user-defined atomic types efficiently.

B. Larch Specification

Figs. 9 and 10 give the Larch interfaces and trait for
class subatomic. As indicated in the trait SubAtomObj, a
subatomic object is a recoverable object, along with the
transaction holding the short-term lock, and a set of trans-
actions that are waiting to acquire it.

S tuple of ob: R, locker: Tid, waiters: Waitset

Initially, as specified in the constructor, no one holds the
short-term lock on the object.

“That is, only implementors of a new class derived from subatomic need
to call seize, release. and pause—when implementing the operations of the
new class; clients of the new class, however. never need to call seize.
release. or pause explicitly.

1083

class subatomic: public recoverable {

protected:

void seize(); // Gains shont-term lock.

void release(); // Releases short-term lock.

void pause(); // Temporarily releases short-term lock.
public:

// Called after transaction commit.
// Called after transaction abort.

virtual void commit(trans_id& t);
virtual void abort(trans_id& t);
}

Fig. 8. Avalon subatomic class.

class subatomic based on S from SubAtomObj

subatomic(}
ensures new (retum) A ~locked(return’)
void seize()
when ~locked(this)
modifies (this)
ensures locked(this’) A this’.locker = self

void release()
requires
modifies
ensures

locked(this) A this.locker = self
(this)
(this.waiters = {] = ~locked(this’)) A
(this.waiters # {} =
(3 tid: Tid) (tid € this.waiters A
locked(this’) A this’ Jocker = tid A
this’ . waiters = rem_waiter(this, tid)))

void pause()
compeosition of relinquish; reacquire end

requires locked(this) A this.locker = self
modifies (this)
operation relinquish
ensures (this.waiters = {} =

(~locked(this’) A this’.waiters = add_waiter(this, self))) A
(this. waiters # { } =
(3 tid: Tid) (tid € this.waiters A

focked(this’) A this’ locker = tid A

this’. waiters = add_waiter(rem_waiter(this, tid), self)))

operation reacquire
when ~locked(this) A this.locker = self
ensures locked(this’) A this’ locker = self A
this’.waiters = rem_waiter(this, self)

virtual void commit(trans_id& t)
requires committed(ts, t)
ensures true

virtual void abort(trans_id& t)
requires aborted(ts, t)
ensures true

Fig. 9. Larch specification of class subatomic (interfaces).

SubAtomObyj: trait
includes
RecObj, Transld, Set (Tid for E, Waitset for S)
S tuple of ob: R, locker: Tid, waiters: Waitset
introduces
add_waiter: S, Tid = S
rem_waiter: S, Tid = §
locked: S — Bool
asserts for all (s: S, tid: Tid)
add_waiter(s, tid) == waiters_gets(s, add(s. waiters, tid))
rem_waiter(s, tid) == waiters_gets(s, rem(s. waiters, tid))

Fig. 10. Larch specification of class subatomic (trait).

Seize’s when-condition states that a transaction must
wait until no transaction holds the short-term lock on the
object before acquiring the lock. The postcondition states
that the calling transaction obtains the short-term lock on
the object, and the object is now locked.

1084

Release’s precondition requires that the calling trans-
action be the one that has the lock on the object and that
the object be locked. The postcondition states that either
the object is no longer locked or if some other transaction
is waiting to obtain the lock, it is given the lock.

Pause’s precondition is similar to release’s. The rest of
its specification, however, is unlike all the others. Pause’s
effects are specified in terms of the sequential composi-
tion of two operations, each of which can be interleaved
with operations of other transations. First, pause relin-
quishes the short-term lock as release does. However, re-
linquish’s postcondition differs from release’s in one crit-
ical way: the calling transaction is added to the waiting
set of transactions upon relinquishing the lock. The sec-
ond operation in the sequence, reacquire, is delayed until
either some other transaction has released the lock and
given it back to self or no one has a lock on the object at
all. Its postcondition ensures that the original caller of
pause again possesses the short-term lock upon return.

The specifications of commir and abort deserve special
attention. Each is called with a trans_id argument denot-
ing some transaction that has committed (aborted) in the
given (global) transaction tree ts. The implicit ‘‘modifies
nothing’’ assertion states that no change to the object is
allowed. This seemingly strong assertion reflects the in-
tention that commit and abort operations are to have only
“‘benevolent’’ side effects on the object’s state, meaning
that the abstract state of the object remains the same,
though the representation state may change. Indeed, typ-
ical Avalon/C++ implementations of commit operations
simply discard redundant state information stored in the
representation object, not affecting the abstract state at all.
Typical implementations of abort operations use this re-
dundant state information to undo tentative changes per-
formed by the aborting transaction (and any of its descen-
dants that have committed with respect to it).

Deriving from class subatomic is similar to deriving
from class recoverable or class atomic and is omitted for
brevity.

VI. OBSERVATIONS
A. Abour Avalon

The exercise of formally specifying the Avalon/C+ +
classes revealed unstated assumptions about the actual
implementation and made Avalon/C++’s fundamental
semantics more precise.

One unstated assumption in the underlying operating
system (Camelot) is reflected in the implementation, but
was never made explicit until we wrote the formal speci-
fication for class recoverable. The Avalon/C++ imple-
mentation precludes the possibility of concurrent pins to
the same object by different transactions; Camelot forbids
this situation because it assumes that any transaction that
pins an object intends to modify it. This assumption is one
example of where crash recovery and concurrency cannot
be separated when reasoning about Avalon programs.
Without concurrency, we can give a meaning to persis-
tence; without crash recovery, we can give a meaning to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL

16. NO. 9. SEPTEMBER 1990

the correct synchronization of processes. But to support
both, there are points where we must consider both per-
sistence and synchronization together.

Another kind of unstated assumption discovered by
writing this specification is implicit preconditions. For
example, whereas pin has no precondition, unpin does.
This assymmetry in the specifications reflect the assym-
metry that exists in the actual implementation. An earlier
version of the specification of unpin did not have a pre-
condition, but not until the implementor was shown this
(incorrect) version was the unstated precondition re-
vealed. In fact, upon seeing the assymmetry in the current
version of the specification, the implementor realized that
the precondition on unpin could easily be removed by per-
forming a run-time check, as is already done for pin, and
signaling an exception instead.” In general, there is a
tradeoff between imposing a precondition on the caller and
implementing a run-time check; if it can be proven that
all uses of an operation are guaranteed to satisfy an im-
plicit precondition, no run-time check is needed.

Specifying the class atomic helped make the rules for
obtaining long-term locks more precise. It also made ex-
plicit, by modeling a set of writers, not just a single writer,
the property that more than one transaction might hold a
long-term write lock on an object at once. Recall this sit-
uation can arise because of nested transactions. On the
other hand, the specification of class subatomic made ex-
plicit that only one transaction (the locker) can have the
short-term mutual exclusion lock on an object at once.

Specifying the class subatomic helped identify a subtle
source of a potential deadlock situation. As specified in
Fig. 9, if there are waiters, pause will not return until
some transaction, tid, other than the calling one, self,
grabs the short-term lock and returns, thereby releasing
the lock. If 7id does not return (perhaps it is waiting for
some synchronization condition to become true), then self
will not be able to return since it will be unable to reac-
quire the lock. In fact, this situation can arise in the cur-
rent Avalon/C++ implementation and was discovered
only through trial and error when debugging some simple
examples. Had we done the specification beforehand, we
could more easily have anticipated this problem.

B. Abour Larch

Since Larch uses a two-tiered approach, people often
ask ““What goes in the interfaces and what goes in the
traits?’’ There are some guidelines, but no hard-and-fast
rules; decisions are based purely on taste and readability.
An interface must specify the pre- and postconditions of
an object’s operation. Assertions in these conditions de-
termine what operator symbols to define in the underlying
traits. At the same time, traits are meant to be as abstract
and general as possible, and not necessarily specific to a
particular interface. For any given Larch specification,

"The astute reader may have noticed that un's second argument, a ves-
tage of the earlier specification. was ignored in its definition: if the pre-
condition for unpin is removed. then the second argument is necessary.

WING: USING LARCH TO SPECIFY AVALON/C++ OBJECTS

there are some traits that are general, e.g., for specifying
sets, groups, and partial orders, and hence, reusable by
not just different interfaces but also by different interface
languages (e.g., the Set trait we used is equally useful for
a Larch/Ada interface language). There are also traits that
will be closely tied to a particular interface, where we
intentionally choose to be less general than possible, e.g.,
omitting an explicit check in the definition of un in the
RecObj trait since the precondition for the unpin operation
makes it unnecessary to do so.

Following this traditional spirit of Larch for the Ava-
lon/C++ example, we relegated most of the complexity
of a specification to the traits. The rule-of-thumb is: If the
predicates in the pre- and postconditions become un-
wieldly then introduce a trait operator to capture the in-
tended property. However, one place where that cannot
easily be done is in specifying nondeterminism. Since
traits define (deterministic) functions, interfaces are re-
sponsible for specifying nondeterministic behavior. For
example, the use of the existential quantifier in the post-
conditions of release and pause is unavoidable.

Not surprisingly, Larch needed to be extended to deal
with concurrency, as exemplified here for Avalon/C++
and in [3] for Modula-2+. The two most important ex-
tensions are: 1) the need to specify an operation’s effects
through the specification of a sequence of other opera-
tions, and 2) the when clause used for stating a third kind
of condition in addition to pre- and postconditions. As an
aside, this when-condition influenced the Avalon/C++
designers who added a when statement to the language.
This statement, which makes appropriate calls to seize,
release, and pause, is akin to a conditional critical region.

One critical class of properties that cannot be stated in
Larch/C ++, even as currently extended, is liveness. For
example, we cannot say that an object’s commit or abort
operation will eventually be called. Unfortunately, many
programs may be correct with respect to safety but can
deadlock or livelock in practice. In particular, typical im-
plementations of operations of classes derived from sub-
atomic test at run-time whether some transaction has com-
mitted; obtaining the short-term lock often requires that
this test succeed. So, sometimes no progress can be made
until some transaction has committed. We have seen in
the previous section that deadlock may arise in the imple-
mentation, and how the specification permits this behav-
jor. Although Larch/C ++ was never intended to address
liveness properties, such properties are important for
practical reasons, especially in the context of concurrent
transactions.

VII. FINAL REMARKS

The specifications presented here represent ongoing
work. Though the specification of Avalon/C++ is in-
complete, we have specified a critical piece of it since all
user-defined classes derive from the built-in ones. Know-
ing that a fundamental part of Avalon/C++’s semantics
is implemented correctly is a reassurance to us as Avalon
implementors as well as to all Avalon programmers.

1085

Further work on the specification of Avalon/C++’s in-
tricacies would include: 1) Avalon/C++’s transaction
model of state, which must include two kinds of store,
volatile and stable. It must also include the entire trans-
action tree, the status of each transaction in the tree, and
the sets of locks each transaction holds. 2) System-wide
commit and abort operations, which must be defined on
behalf of a transaction committing or aborting. For ex-
ample, the system-wide commit operation would take a
transaction identifier and a timestamp, modifying the sta-
tus of some transaction in the transaction tree. 3) A sys-
tem-wide recover operation, which would define the ef-
fects of recovering from a crash. We would need to modify
the specification for a recoverable object by keeping track
of the entire history of operations performed on it in order
to capture the set of possible values such an object can
have [28]. 4) Avalon/C++’s built-in class, trans_id,
which has operations for creating transaction identifiers
and testing whether two transactions are serialized with
respect to each other. Appropriate trait functions would
be added to the trait TransldTree of Appendix I to facil-
itate the specfication of trans_id.

As we generate specifications, we also would like to
prove theorems about the objects being specified. For ex-
ample, from the specification in Figs. 9 and 10 we can
prove that the transaction (rid) given the lock upon return
from release is different from the calling transaction
(self). The proof of this property depends on the follow-
ing property of subatomic objects: (V s: S) locked(s) =
(s.locker ¢ s.waiters).

We have used the Larch Prover [10], whose input is
similar to Larch traits, to prove the correctness of a non-
trival implementation of a highly concurrent FIFO queue
[29], [13]. The queue derives from class subatomic and
we proved it satisfies the hybrid atomicity property, re-
quired of all Avalon objects.

The results of this paper should be of interest to both
the fault-tolerant distributed systems community and the
formal methods community. For the former, our specifi-
cations are a first attempt at formally specifying interfaces
to a transaction-based programming language. Properties
of transactions have never before been studied from a for-
mal specification viewpoint.

For the formal methods community, especially those
interested in formal specifications, we close with a sum-
mary of this paper’s contributions:

1) Larch is grounded in standard first-order predicate
logic with equality. We showed how to use Larch to spec-
ify indirectly some ‘‘nonfunctional’” properties of an ob-
ject, persistence and atomicity, through its functionally
defined properties. Our formal specification approach
complements, but does not replace, alternative ap-
proaches, including informal methods and property-spe-
cific techniques (e.g., hazard analysis).

2) Unlike most other literature on Larch, we have fo-
cused on interfaces, not traits. In particular, we have in-
formally introduced a Larch/C + + interface language and
Larch interface language extensions for dealing with con-

1086

currency. We illustrated how to use Larch by specifying
interfaces of Avalon/C++ modules, thereby providing a
basis for reasoning about Avalon/C+ + programs. People
who write software reference manuals can write similar
stylized specifications for their software interfaces.

3) We added to a small, but growing, set of nontrivial
specification case studies. These examples show that the
process of formalization can reveal a better understanding
of what is being specified, in our case, Avalon/C + + base
classes and more generally, the Avalon/C++ program-
ming language itself. Writing these formal specifications

TidStatus: trait
includes TimeStamp
introduces
co: Time — S
ac: > S
ab: = S
asserts S generated by (co, ac, ab)

TransId: trait
includes TidStatus, Uniqueld
Tid tuple of name: Id, status: S
introduces
create: Id — Tid
commit: Tid, Time — Tid
abort: Tid — Tid
t_committed: Tid — Bool
t_aborted: Tid — Bool
asserts for all (t: Tid, id: Id, ti: Time)
create(id) == [id, ac]
commit([id, ac], ti) == [id, co(ti)]
abort([id, ac]) == [id, ab]
abort([id, ab]) == [id, ab]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL.

16. NO. 9. SEPTEMBER 1990

made unstated assumptions explicit and helped clarify
places in the language where features interact.

APPENDIX |
TRANSACTIONS AND THE TRANSACTION TREE

Below is a Larch trait that specifies a transaction’s state.
We assume the existence of a TimeStamp trait used for
generating timestamps of sort Time, and a Uniqueld trait
used for generating unique identifiers of sort /d. A trans-
action can be either committed, active, or aborted. Only
committed transactions are given timestamps.

// Committed at the given time.
/] Active.
// Aborted.

// Create with a unique id.

// Commit a transaction at the given time.
/] Abort a transaction.

// Has this transaction committed?

// Has this transaction aborted?

// Aborting an aborted transaction has no effect.

t_committed(t) == t.status # ac A t.status # ab

t_aborted(t) == t.status = ab
implies
forall (id: Id, ti, til: Time)

converts (create, commit, abort, t_committed, t_aborted)
exempting (commit([id, ab]), commit([id, co(ti)], til), abort([id, co(ti)]))

TransIdTree: trait

includes Transld, Tree (Tid for N, TransIdS for T)

introduces
committed: TransidS, Tid — Bool
aborted: TransIdS, Tid — Bool
asserts for all (ts: TransIdS, t: Tid)

committed(ts, t) ==t € ts A t_committed(t)

aborted(ts, t) ==t € ts A t_aborted(t)

Tree: trait
includes Set (N for E, Nodes for S)
introduces
emp: =T
add_node: T, N —>T
add_branch: T, T =T
root: T N
_€__:N,T—Bool
des: T, N, N — Bool
ancestors: T, N — Nodes

asserts
T generated by (emp, add_node, add_branch)
for all (t,t1,2: T, n, nl, n2: N)

// Has transaction committed in tree?
// Has transaction aborted in tree?

// N-ary tree. Each node can have 2 0 children.

// Make an empty tree.

// Make node new root of tree.

// Graft a branch to first tree.

[/ Get root node of a non-empty tree.
// Is node in tree?

// Is second node a descendant of first?
// Get set of ancestor nodes of a node.

WING: USING LARCH TO SPECIFY AVALON/C++ OBIECTS

root(add_node(t, n)) ==
root(add_branch(tl, t2)) == root(t1)

n € emp == false
ne€ add_node(t,nl)=ne tvn=nl
ne add_branch(tl,2)==ne tl vne t2

des(emp, nl, n2) == false
des(add_node(t, n), nl, n2) ==
(nl=nAnl=n2)v
(nl=nAn2et)v
des(t, nl, n2)
des(add_branch(tl, t2), nl, n2) ==
(nl =root(tl) An2 € 2) v
des(tl, nl, n2) v
des(t2, nl, n2)

n € ancestors(tl, nl) == des(tl, n, nl)

implies forall (t: T)
converts (root, __€ __, des, ancestors)

exempting (root(emp), add_branch(emp, t))

ApPENDIX 11
TuPLES

Tuples are a shorthand for a trait defined as follows.
For each tuple of the form
Stupleof f;: S, - - -, f;: S,

Append to the function declarations of the enclosed trait:

introduces
[‘-]:S],...,Sn_'s
--f: S~ S

fi_gets: S, S, = S

forl =i <n.
Append to the set of equations of the enclosing trait:

asserts
S generated by ([- -])
S partitioned by (.f;, . .., .f)
for all (x;, y;: Sy, - - ., Xp» Yai Sp)
[Xis oo X s XL T = X
fi_gets([xlv e Xy oo e xn]» yl) =
[X],...,y‘l,...,xn]
forl =i <n.
ACKNOWLEDGMENT

Discussions with J. Guttag and J. Horning and the ex-
amples given in [3] inspired my on-the-fly interface lan-
guage design, in particular the Larch extensions for con-
currency. C. Gong and R. Lerner helped check the
specifications. I am grateful to all members of the Avalon
group, in particular, M. Herlihy and D. Detlefs, who
helped design Avalon/C+ +, and D. Detlefs who was in-
strumental in building it. Finally, I thank G. Leavens, J.
Horning, and the anonymous referees for their comments
on this paper.

1087

// Root is newly added node.
// Root is root of first tree.

// nis in tree or is newly added node.
// nis in tree or in grafted branch.

// A node is a descendant of itself.
// n2 is in subtree t of tree rooted at n.

// n2 is in branch of subtree rooted at nl.

REFERENCES

[1] J. R. Abrial, **The specification language Z: Syntax and semantics,”’
Programming Research Group. Oxford Univ., Tech. Rep.. 1980.

[2} T. Benzel, ‘*Analysis of a Kernel verification,’” in SP84. QOakland,

CA, May 1984, pp. 125-131.

A. Birrell, J. Guttag, J. Horning, and R. Levin, **Synchronization

primitives for a multiprocessor: A formal specification.”” in Proc.

Eleventh ACM Symp. Operating Systems Principles, ACM/SIGOPS,

1987, pp. 94-102.

D. Bjomner and C. G. Jones, Eds., Lecture Notes in Computer Sci-

ence. Volume 61: The Vienna Development Method: The Mela-

Language (Lecture Notes in Computer Science, vol. 61). Berlin:

Springer-Verlag, 1978.

5] G. H. Chisholm, J. Kljaich, B. T. Smith, and A. S. Wojcik, **An
approach to the verification of a fault-tolerant, computer-based reac-
tor safety system: A case study using automated reasoning: Volume
1,”> Argonne National Lab., Tech. Rep. EPRI NP-4924, Jan. 1987.

6] S. M. Clamen, L. D. Leibengood, S. M. Nettles, and J. M. Wing,
‘*Reliable distributed computing with Avalon/Common Lisp.”" in
Proc. IEEE Comput. Soc. 1990 Int. Conf. Computer Languages, New
Orleans, LA, Mar. 1990.

|71 D. S. Daniels, **Distributed logging for transaction processing,”’ in

Proc. 1987 ACM Sigmod Int. Conf. Management of Data., ACM, San

Francisco, CA, May 1987.

D. L. Detlefs, M. P. Herlihy, and J. M. Wing, *‘Inheritance of syn-

chronization and recovery properties in Avalon/C+ +,"" Computer,

pp. 57-69, Dec. 1988.

[9] K. P. Eswaran, J. N. Gray, R. A. Lorie, and 1. L. Traiger, ‘‘The
notions of consistency and predicate locks in a database system.™
Commun. ACM, vol. 19, no. 11, pp. 624-633, Nov. 1976.

[10] S. J. Garland and J. V. Guttag, ‘*‘An overview of LP, the Larch
Prover,”’ in Proc. 3rd Int. Conf. Rewriting Techniques and Applica-
tions, Apr. 1989, pp. 137-151.

[11] S. J. Garland, J. V. Guttag, and J. J. Homing, *‘Debugging Larch
shared language specifications,”” IEEE Trans. Software Eng.. this is-
sue, pp. 1044-1057.

[12] K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and J. Meseguer,
““Principles of OBJ2,”" in Proc. ACM Symp. Principles of Program-
ming Languages, Jan. 1985, pp. 52-66.

[13] C. Gong and J. M. Wing, **'Raw code, specification, and proof of the
Avalon queue example,”” Carnegie Mellon Univ., Tech. Rep. CMU-
CS-89-172, Aug. 1989.

[14] . Gray, **Notes on database operation systems,’’ in Operating Sys-
tems: An Advanced Course (Lecture Notes in Computer Science, vol.
60) Berlin: Springer-Verlag. 1978.

3

4

(8

1088

[15] D. Guaspari, C. Marceau, and W. Polak, *‘Formal verification of Ada
programs,’’ IEEE Trans. Software Eng., this issue, pp. 1058-1075.

[16] J. V. Guttag, J. J. Horning, and J. M. Wing. **The Larch family of
specification languages,'" IEEE Software, vol. 2, no. 5, pp. 24-365,
Sept. 1985.

[17] —, “‘Larch in five easy pieces,”’ DEC Systems Research Center,
Tech. Rep. S, July 1985.

[18] L. Lamport, *‘Time, clocks, and the ordering of events in a distrib-
uted system,”’ Commun. ACM, vol. 21, no. 7, pp. 558-565, July
1978.

[19] B. Lampson, ‘‘Atomic transactions,’" in Distributed Systems: Archi-
tecture and Implementation (Lecture Notes in Computer Science, vol.
105). Berlin: Springer-Verlag, 1981, pp. 246-265.

[20] P. M. Melliar-Smith and R. L. Schwartz, ‘‘Formal specification and
mechanical verification of SIFT: A fault-tolerant flight control sys-
tem,”’ IEEE Trans. Comput., vol. C-31, no. 7, pp. 616-630, July
1982.

[21] J. E. B. Moss, *‘Nested transactions: An approach to reliable distrib-
uted computing,”” Massachusetts Inst. Technol. Lab. Comput. Sci.,
Tech. Rep. MIT/LCS/TR-260, Apr. 1981.

[22] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L.
Robinson, **A provably secure operating system: The system, its ap-
plications, and proofs, second edition,’* SRI International, Tech. Rep.
CSL-116, May 1980.

[23] D. L. Parnas, A. J. van Schouwen, and S. P. Kwan, ‘‘Evaluation
standards for safety critical software,”” Queen’s Univ., Kingston, Ont.
Canada, Tech. Rep. 88-220, May 1988.

[24] A. Spector, J. Bloch, D. Daniels, R. Draves, D. Duchamp, J. Eppin-
ger, S. Menees, and D. Thompson, *‘The Camelot project,”” Data-
base Eng., vol. 9, no. 4, Dec. 1986.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO. 9. SEPTEMBER 1990

[25] G. Steele, Jr., Common LISP. Digital, 1984.

[26] B. Stroustrup, The C ++ Programming Language.
Addison-Wesley, 1986.

[27} W. E. Weihl, ‘“‘Specification and implementation of atomic data
types,”’ Ph.D. dissertation, Massachusetts Inst. Technol., 1984.

[28] J. M. Wing, **Verifying atomic data types."’ Int. J. Parallel Pro-
gram., Oct. 1989.

[29] J. M. Wing and C. Gong, ‘‘Machine-assisted proofs of properties of
Avalon programs,”’ Carnegie Mellon Univ., Tech. Rep. CMU-CS-
89-171, Aug. 1989.

Reading, MA:

Jeannette M. Wing (S'76-M'78) received the
S$.B., S.M., and Ph.D. degrees in computer sci-
ence from the Massachusetts Institute of Technol-
ogy, Cambridge.

She is an Associate Professor of Computer Sci-
ence at Camegie Mellon University, Pittsburgh,
PA. Her research interests include formal speci-
fications, programming languages, concurrent and
distributed systems, visual languages, and object
management. She continues to contribute to the
design of the Larch family of specification lan-
guages and, among other research projects, directs the Avalon work at Car-
negie Mellon.

Dr. Wing is a member of the Association for Computing Machinery.

