Specifying Recoverable Objects

Jeannette M. Wing
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper describes the results of an exercise in writing formal specifications. The specifications capture
the system-critical recoverability property of data objects that are accessed by fault-tolerant distributed
programs. Recoverability is a ‘‘non-functional’’ property requiring that an object’s state survives
hardware failures.

This exercise supports the claim that applying a rigorous specification method can greatly enhance one’s
understanding of software’s complex behavior. The specifications enabled us to articulate precisely
questions about an unstated assumption in the underlying operating system, incompleteness in the
implementation of recoverable objects, implementation bias in the language design, and even
incompleteness in the specifications themselves.

Biographical Sketch

Jeannette M. Wing is an Assistant Professor of Computer Science at Carnegie Mellon University. She
received her S.B. and S.M. in Electrical Engineering and Computer Science in 1979, and her Ph.D.
degree in Computer Science in 1983, all from the Massachusetts Institute of Technology. Her research
interests include formal specifications, language design, concurrent and distributed systems, and visual
languages. She was a key designer of the Larch family of specification languages and is internationally
recognized in the field of formal specifications. Her current research activity includes the design and
implementation of Avalon/C++, a programming language for fault-tolerant distributed computing.

317

Specifying Recoverable Objects

Jeannette M. Wing!

Department of Computer Science
Camnegie Mellon University
Pittsburgh, PA 15213

1. Introduction

Formal specification languages have matured to the point where industry is receptive to using them and
researchers are building tools to support their use. People use these languages for specifying the input-
output behavior, i.e., functionality, of programs, but have largely ignored specifying a program’s ‘‘non-
functional’’ properties. For example, the functionality of a program that sorts an array of integers might
be informally specified as follows: given an input array A of integers, an array B of integers is returned
such that B’s integers are the same as A’s, and B’s are arranged in ascending order. Nothing is said about
the performance of the program like whether the algorithm for sorting should be O(n) or O(n?).
Performance is one example of a non-functional property.

In this paper, I will demonstrate the applicability of formal specifications to the non-functional property,
recoverability. Recoverability requires that an object’s state survives hardware failures. The correct
behavior of these objects is fundamental to the correctness of the programs that create, access, and modify
them. Sections 1.1 and 1.2 describe in more detail the context in which recoverable objects are used:
fault-tolerant distributed systems. Section 2 describes how they are implemented at both the operating-
system and programming-language levels.

The work described here is both theoretical and experimental in nature since the application of a formal
(theoretical) specification language can itself be viewed as an experiment. Section 3 describes this
specification exercise. The results of writing out specifications formally, summarized in Section 4, are
extremely gratifying: they provide evidence that an existing specification language and method is suitable
for describing a new class of objects; they validate the correctness of the design and implementation of a
key part of an ongoing software development project; and not surprisingly, they demonstrate that the
process of writing formal specifications greatly clarifies one’s understanding of complex behavior.

1.1. Abstract Context: Fault-tolerant Distributed Systems

A distributed system runs on a set of nodes that communicate over a network. Since nodes may crash and
communications may fail, such a system must tolerate faults; processing must continue despite failures.
For example, an airline reservations system must continue servicing travel agents and their customers
even if an airline’s database is temporarily inaccessible, an automatic teller machine must continue
dispensing cash even if the link between the ATM and the customer’s bank account is down.

A widely-accepted technique for preserving data consistency and providing data availability in the

“This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 4864
(Amendment 20), under contract F33615-87-C-1499 monitored by the Avionics Laboratory, Air Force Wright Aeronautical
Laboratories, Wright-Patterson AFB and in part by the National Science Foundation under grant CCR-8620027.

The views and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the US Government.

318

presence of failures and concurrency is to organize computations as sequential processes called
transactions. A transaction is a sequence of operations performed on data objects in the system. For
example, a transaction that transfers $25 from a savings account, S, to a checking account, C, might be
performed as the following sequence of three operations on § and C (both initially containing $100):

{S = $100 A C = $100}

Read(s)
Debit(s, $25)
Credit(C, $25)

{S=875 AC = $125}

In contrast to standard sequential processes, transactions must be serializable, total, and recoverable.
Serializability means that the effects of concurrent transactions must be the same as if the transactions
executed in some serial order. In the above example, if two transactions, T1 and T2, were simultaneously
transferring $25 from S to C, the net effect to the accounts should be that S = $50 and C = $150 (that is,
as if T1 occurred before T2 or vice versa). Totality means that a transaction either succeeds completely
and commits, or aborts and has no effect. For example, if the transfer transaction aborts after the Debit
but before the Credit, the savings account should each be reset to $100 (its balance before the transfer
began). Recoverable means that the effects of committed transactions survive failures. If the above
transfer transaction commits, and a later transaction that modifies S or C aborts, it should be possible to
“‘roll back’’ the state of the system to the previous committed state where S = $75 and C = $125.

It can be guaranteed that the integrity of the entire system is maintained if each object accessed within
transactions is atomic. That is, each object is an instance of an abstract data type with the additional
requirement that it must ensure the serializability, totality, and recoverability of all the transactions that
use its operations. For example, as long as the bank account’s Read, Debit, and Credit operations are
implemented ‘‘correctly,”’ then any set of transactions that access the account will be serializable, total,
and recoverable. The advantage of constructing a system by focusing on individual objects instead of on
a set of concurrent transactions is modularity: one need only ensure that each object is atomic to ensure
the more global atomicity property of the entire system.

Informally, a recoverable object is an object whose state can be restored to a previously ‘‘checkpointed’’
state if a node crash occurs. After a crash, a recoverable object is restored to a state that reflects only
completed operations; the effects of operations in progress at the time of the crash are never observed.
The restored state of a recoverable object must moreover reflect all operations performed by transactions
that committed before the crash. Note that since a recoverable object’s state may also reflect completed
operations of aborted transactions, e.g., those active transactions that are automatically aborted at the time
of the crash, recoverability is a weaker consistency property than totality. In the above bank account
example, suppose immediately after the Debit a checkpoint of the system is made, and then while the

Credit is in progress a crash occurs. The recoverable state of the system would be where S = $75 and
C = $100.

The non-functional property of objects this paper focuses on is the recoverability aspect of atomic objects.

319

1.2. Concrete Context

The Avalon Project, co-managed by the author and Maurice Herlihy at Carnegie Mellon University,
provides a concrete context for this work. We are implementing language extensions to C++ [10] to
support application programming of fault-tolerant distributed systems. We rely on the Camelot System
[9], also being developed at CMU, to handle operating-systems level details of transaction management,
inter-node communication, commit protocols, and automatic crash recovery.

The formal specification language used in Section 3’s specifications is Larch [7], though others such as
Gypsy [5], VDM [2], Z [1], and OBJ [4], might also be suitable. The advantage gained in using Larch is
the explicit separation between specifying state-dependent behavior (for example, side effects and
resource allocation) and state-independent behavior (for example, the last-in-first-out property of stacks).

Where appropriate the details of Avalon, Camelot, and Larch are given, but the implications of the results
of the specification exercise are independent of these projects.

A chart of the various people involved, the level (language or system) at which they are involved, and
kinds of questions they address is shown below:

Person(s) Language/System Questions Addressed
Specifier Larch ‘What is a recoverable object?

‘What are the effects of its operations?

Language implementor Avalon How is a recoverable object represented in memory?
How are its operations implemented?

Operating system builders Camelot How is memory managed?
What protocol is used to recover memory after crashes?

2. Recoverable Objects
In order to appreciate the issues that arose in the specification of recoverable objects, in particular with

respect to their implementation, it helps to understand their physical storage implementation (Camelot)
and their programmer interface (Avalon).

2.1. The Operating System’s View

Conceptually, there are two kinds of storage for objects: local storage whose contents are lost upon
crashes, and stable storage whose contents survive crashes with high probability. (Stable storage may be
implemented using redundant hardware [8] or replication [3].) Recoverable objects are allocated in local
storage, but their state is written to stable storage so that recovery from crashes can be performed. If
every recoverable object is logged to stable storage after modifying operations are performed on it in local
storage, then its state may be recovered after a crash by ‘‘replaying’’ the log. Replaying the log is a
sufficient method for restoring a object’s state.

However, recovering the state of an object entirely from the log is a time-consuming operation. Camelot
speeds up crash recovery by dividing local storage into two classes, volatile storage and non-volatile
storage, and by distinguishing between two crash modes, node failures and media failures. In a media
failure, both volatile and non-volatile storage are destroyed, while in a node failure, only volatile storage
is lost. In practice, node failures are far more common than media failures. To optimize recovery from
node failures, a protocol known as write-ahead logging [6] is used. An object is modified in the

320

following steps:
1. The page(s) containing the object are pinned in volatile storage; they cannot be returned to
non-volatile storage until they are unpinned.
2. Modifications are made to the object in volatile memory.
3. The modifications are logged on stable storage.

4. The page(s) are unpinned.
The first step of the protocol ensures that the pages containing the object are not written to non-volatile
storage while a modifying operation is in progress. This protocol ensures that a recoverable object can be
restored to a consistent state quickly and efficiently. Upon crash recovery, the status of each transaction
is determined, and by comparing what is in non-volatile storage to what is in stable storage, one can
“redo’’ the effects of committed transactions and ‘‘undo’’ the effects of aborted ones. (For more details,

see [9]). Notice that modifications must still be logged to stable storage to protect against the occurrence
of a media failure.

2.2. The Programmer’s View -

The programmer’s interface to a recoverable object is through the Avalon class header shown in Figure
2-1.

class recoverable {
public:

void pin(int size); // Pins object in physical memory.

void unpin(int size); // Unpins and logs object to stable storage.

}

Figure 2-1: Recoverable Class Definition

Informally, the pin operation causes the pages containing the object to be pinned, as required by the
write-ahead logging protocol, while unpin logs the modifications to the object and unpins its pages. A
recoverable object must be pinned before it is modified, and unpinned afterwards. For example if x is a
recoverable object, a typical use of the pin and unpin operations within a transaction would be:
start { //begin transaction
x.pi.r'l‘();
// modify x here
x.unpin()

}; }./'end transaction

After a crash, a recoverable object will be restored to a previous state in which it was not pinned.
Transactions can make nested pin calls; if so, then the changes made within inner pin/unpin pairs do not
become permanent, i.e., written to stable storage, until the outermost unpin is executed.? Classes derived
from class recoverable inherit pin and unpin operations, which can be used to ensure recoverability for

2Calls to pin and unpin must balance much like left and right parentheses should.

3

objects of the derived class.

The purpose of the specification exercise was to specify formally the effects of the pin and unpin
operations, and hence the properties recoverable objects preserve.

3. Specifications

This section presents a sequence of three specifications as the different versions evolved during the
specification process. The first version is more general than the second, but unimplementable. The third
version removes an implementation bias that appears in both the first and second.

3.1. Version 1
The first version (see Figure 3-1) captures the following two properties of recoverable objects:
1. Each transaction can pin and unpin the same object multiple times.

2. Only at the last unpin does the object’s value get written to stable storage.

First, we walk through the specification step-by-step. The following Larch interface specifications
specify, using pre-and post-conditions, the effects of the pin and unpin operations:

pin = oper (x: recoverable)
post x’ = pn(x, self)

unpin = oper (x: recoverable)
pre pinned(x)
post X’ =un(x, self)
Self denotes the transaction (intuitively, the thread of control) that calls the operation. The precondition
for pin is identically equal to true, meaning that a transaction can call pin in any state. The precondition
for unpin requires that an object cannot be unpinned unless it is already pinned, given by the predicate of
the same name.

The postconditions of the pin and unpin operations state what the changed value of a recoverable object
is: x stands for the object’s value in the initial state (upon invocation) and x’ stands for its value in the
final state (upon return). The postconditions make use of two auxiliary functions, specified in the Larch
RecObj trait. Pn and un have the following signatures:

pn: R, Tid - R
un: R, Tid — R

where R and Tid are sort identifiers. Pn and un each take a recoverable object’s value and a transactlon
identifier and return a (new) value for a recoverable object.

In any given state, a recoverable object’s value is determined by the states of the transactions that have
pinned it and the actual value of the object in memory. Thus, it is useful to ‘“model’’ the value of a
recoverable object as a pair of a Table and Memory.

Pair (R for T, Table for T1, Memory for T2)

where the for clauses rename sort identifiers (T, T/, and T2) that appear in one specification (Pair) used
in another (RecObj).

The table component, indexed by transaction identifiers, keeps track of the number of times each
transaction pins and unpins an object. The memory component keeps track of the actual value (with sort

322

class recoverable: interfaces
based on R from RecObj

pin = oper (x: recoverable)
post x’ = pn(x, self)

unpin = oper (x: recoverable)
pre pinned(x) // cannot unpin something that’s not already pinned
post x’ = un(x, self)

RecObj: trait
includes
Pair (R for T, Table for T1, Memory for T2)
TableSpec (Table for T, Tid for Index, Card for Val)
Triple (Memory for T, M for T1, M for T2, M for T3, v for first, n for .second, s for .third)
introduces
pn: R, Tid = R
un: R, Tid - R
pinned: R — Bool
asserts for all (m: Memory, tb: Table, t: Tid, r: R)

pn(<tb, m>, t) =
iftetb // already pinned?
then <change(tb, t, eval(tb, t)+1), m> // increment count
else <add(tb, t, 1), m> // initialize it
un(<tb, m>, t) =
if eval(tb, t) = 1 /f if last unpin
then <remove(tb, t), <m.v, m.v, m.v>> // write to stable storage
else <change(tb, t, eval(tb, f)-1), m> /f or just decrement count

pinned(<tb, m>) = ~isEmpty(tb)

Figure 3-1: Specification of Class Recoverable: Version 1

323

M) of the object, as stored in each of the three levels of storage: volatile (v), non-volatile (n), and
stable (s).

TableSpec (Table for T, Tid for Index, Card for Val)
Triple (Memory for T, M for T1, M for T2, M for T3, v for .first, n for .second, s for .third)

The meaning of pn is given by the following equation:

pn(<tb, m>, t) =
ifte tb
then <change(tb, t, eval(tb, t)+1), m>
else <add(tb, t, 1), m>

If the object (the pair <tb, m>) is already pinned by the given transaction (¢), then ¢’s count is incremented
in the table; otherwise a new entry is added to the table where the count is initialized to 1.

The meaning of un is as follows:

un(<tb, m>, t) =
ifeval(tb,t) =1
then <remove(tb, t), <m.v, m.v, m.v>>
else <change(tb, t, eval(tb, t)-1), m>
Upon unpinning an object, for a given transaction (¢), if its count of pins is down to 1, the object’s value
in volatile storage should be written to non-volatile and stable storage; otherwise, the count should merely
be decremented by 1 and no change should be made to memory.

Putting all these pieces together results in the full specification shown in Figure 3-1. The Appendix
contains the Pair, TableSpec, and Triple specifications.

3.2. Version 2

The specification of the previous section was shown to the implementor of class recoverable (Figure 2-1)
in order to verify that indeed the implementation satisfies the specification. The implementor
immediately noticed what he thought was an error in his implementation: The specification permits
different transactions to pin the same object at the same time, whereas the implementation does not. The
implementor proceeded to change his implementation to satisfy the specification, but then realized that
the specified semantics was unimplementable! The underlying operating system (Camelot) forbids more
than one transaction to pin an object (as represented as pages in volatile memory) at once. It assumes that
any transaction pinning an object will modify that object and thus would want to prevent any other
transaction from simultaneously accessing that object. A pinned object is a write-locked one as well.
Thus, it was impossible to implement the less restrictive, but desired, semantics of pin; in short, the
specification was ‘‘correct,”’ but unimplementable.

The revised specification (Figure 3-2), which is more restrictive but implementable, captures this third
property of recoverable objects:

3. Only one transaction can pin an object at once.

This specification is simpler to understand than the previous one because there is less information to keep
track of. In essence, the table of transaction identifiers and their corresponding pin counts reduces to a
single transaction and its count.

The specifications for pin and unpin change slightly:

324

class recoverable: interfaces
based on R from RecObj

pin = oper (x: recoverable) signals (already_claimed)
post x’ = pn(x, self) A
x.trans # self = signal already_claimed

unpin = oper (x: recoverable)
pre pinned(x) A x.trans = self
post x’ = un(x, self)

RecObj: trait

includes ‘
Triple (R for T, Tid for T1, Memory for T2, Card for T3, trans for .first, count for .third)
Triple (Memory for T, M for T1, M for T2, M for T3)

introduces
pn: R, Tid = R
un: R, Tid - R
pinned: R — Bool

asserts for all (m: Memory, m1, m2, m3: M, c: Card, tl, ¢2: Tid)
pn(<tl,m,c>,t2) =

ifc>0 // is already pinned?
theniftl =12 // by same transaction

then <t1, m, c+1> // increment count

else <t1, m, c> // otherwise, leave unchanged
else <t2, m, 1> // initialize it

un(<tl, <ml, m2, m3>, c>,t2) =

iftl =12 // don’t have to check if pinned already
thenifc=1 // if 1ast unpin

then <tl, <ml1, ml, m1>, 0> // write to stable storage

else <tl, <ml, m2, m3>, c-1> // or just decrement count
else <tl, <m1, m2, m3>, ¢> // no change

pinned(r) = r.count > 0

Figure 3-2: Specification of Class Recoverable: Version 2

325

pin = oper (x: recoverable) signals (already_claimed)
post x’ = pn(x, self) A ‘
x.trans # self = signal already_claimed

unpin = oper (x: recoverable)
pre pinned(x) A x.trans = self
post x’ = un(x, self)
Pin might terminate with an error condition signaled to the invoker to indicate that the object to be pinned
is already pinned by some other transaction. Unpin requires not only that its argument is already pinned,
but that it is pinned by the calling transaction.

Since concurrent pins by different transactions are not allowed, it is unnecessary to keep track of a table
of pin counts per transaction. It suffices to associate with a recoverable object, a single transaction
identifier, its value in memory, and a pin count:

Triple (R for T, Tid for T1, Memory for T2, Card for T3, trans for first, count for .third)
Assume initially that each recoverable object, x, is unpinned, i.e., x.count = 0,

The auxiliary functions, pn and un, change accordingly:
po(<tl, m, c>, 12) =
ifc>0
theniftl =12
then <tl, m, c+1>
else <tl, m, c>
else <t2, m, 1>
If the count (c) is non-zero, then the object must be pinned. If the object is pinned by a transaction (¢/)
that is the same as the transaction (r2) attempting to pin the already pinned object, then the count is
incremented; otherwise, the object is left unchanged. If the object is not already pinned, then its value is
initialized with the pinning transaction’s identifier and a count of 1.
un(<tl, <ml, m2, m3>, ¢>, 12) =
iftl=t2
thenifc=1
then <tl, <m1, ml, m1>, 0>
else <tl, <m1, m2, m3>, c-1>
else <tl, <m1, m2, m3>, c>

Unlike for pn, it is unnecessary for un to check if the object is already pinned since the precondition of
unpin checks for this case. So un first checks to see if the transaction (11) that currently has the object
pinned is the same as the unpinning transaction (£2). If so, then if there is only one outstanding call to pin
(¢ = 1), the value of the object in volatile storage is written to non-volatile and stable storage; otherwise,
the count is decremented. If the unpinning transaction is different from the pinning one, then no change is
made.

An Aside for Larch Readers

A typical use of class recoverable is to define a derived class for a recoverable type of object, say class
rec_foo. If foo is the sort identifier associated with values of objects of type rec_foo, then the identifier M
that appears in the RecObj specification would be renamed with foo. That is, the header for the Larch
interface specification for a rec_foo class would look like:

326

class rec_foo: interfaces
based on R from RecObj (foo for M)

/{ ... specifications of operations for rec_foo objects ...

3.3. Version 3

Notice that nowhere in the previous specification is the distinction between non-volatile and stable
storage used. For example, when an object is finally unpinned, its value is written out to both non-
volatile and stable storage:

un({<tl, <m1, m2, m3>, c>, 2) =

then <tl, <ml, ml, m1>, 0>

The second two components of Memory are treated identically. In unpinning an object, it is necessary
that stable storage be updated using volatile storage’s value, but writing out to non-volatile storage is
strictly not necessary.

This observation reveals an implementation bias in the specification. The underlying operating system
implements memory as a three-level storage hierarchy, and uses the write-ahead logging protocol to
exploit the distinction between volatile and non-volatile storage for crash recovery. Recall, however, that
conceptually a recoverable object has only two possible ‘‘values’’: that in volatile storage and that in
stable storage. It suffices to consider only a two-level storage hierarchy with just volatile and stable
storage. The change to the previous specification is trivial since Memory simply becomes a pair:

Pair (Memory for T, M for T1, M for T2, v for first, s for .second)
and un changes accordingly:

un(<tl, <ml, m2>, ¢c>, 12) =

then <tl, <ml, m1>, 0>
else <tl, <ml, m2>, c-1>
else <tl, <ml, m2>, c>

4. Observations

The different versions of the specification made it possible to articulate precisely questions about the
semantics of recoverable objects as well as questions about the implementation. The feedback between
the specifier and implementor and between the specifier and language designers helped everyone gain
insight about the implementability of the desired semantics, incompleteness in the current
implementation, implementation bias in the language design, and even incompleteness in the
specifications as presented.

4.1. Unstated Assumption

The major observation as a result of this specification exercise is that the specification helped identify an
unstated and critical assumption in the underlying operating system that was reflected in the
implementation. The implementation precluded the possibility of concurrent pins by different
transactions. The underlying system forbids this situation because it assumes that any transaction that
pins an object intends to modify it.

327

This assumption reflects a key point at the operating-system level where recovery and synchronization of
objects are inseparable. Without concurrency, one can give a meaning to recoverability; without
recovery, one can give a meaning to the correct synchronization of processes. But to support both, there
are points when one must consider both recovery and synchronization together. Here is exactly one of
those points. Synchronization of concurrent, modifying transactions is built into the meaning of
recoverability of objects. This point was not well understood by either the language designers or the
language implementors because the assumption was never stated by the underlying operating system
builders. Only through this specification exercise and subsequent discussion between the language
implementors and system builders was this point clarified.

4.2. Incompleteness in the Implementation

When presented with the specification of the unpin operation (any version), the implementor was asked
whether the precondition on unpin (requiring that the object be pinned and that the check is with respect
to the calling transaction) could be removed. That is, should the responsibility of checking the stated
precondition be on the caller of unpin or the implementor? Currently, the responsibility lies with the
caller; however, it could easily be checked at runtime as part of the implementation. If the object is not
pinned or pinned by some other transaction, an appropriate error message could be signaled to the caller,
much like the error condition signaled in the pin opeation. The implementor was alerted to this
assymmeltry in handling error conditions only when the formal specification was presented to him.

4.3. Implementation Bias in the Language Design

The specification also revealed a subtle point of misunderstanding between the language designers and
language implementor. Class recoverable is actually implemented to provide a stronger property,
operation-consistency, than just recoverability. Operation-consistency requires that an object be restored
to some consistent state that reflects all operations of committed transactions plus some prefix of the
sequence of operations performed on the object by transactions active at the time of a crash. Since the
implementation supported this stronger property and since the designers never carefully defined (that is,
specified) recoverability, the meaning of recoverability was confused with the implementation of
recoverability; thus, until this specification exercise was performed, the language designers believed that
operation-consistency was inherent to recoverability.

The nondeterminism inherent in this stronger definition would force the specification to keep track of a
set of possible values (each representing a prefix of operations of uncommitted transactions) in stable
storage (the third component of Memory in Figure 3-2) rather than a single value. When the object’s state
is restored upon recovery, any one of the values in this set would correctly represent a previous operation-
consistent state. One would additionally need to ensure that the restored states of all objects reflect the
same prefix of operations of all uncommitted transactions. For example, if transaction T were active at
the time of the crash and states of objects x and y are restored, if some prefix of T’s operations is reflected
by the x’s restored state, then the same prefix must also be reflected in ¥’s. Note that specifying this
property cannot be done locally, i.e., per object; it is inherently a global property that involves the states
of all objects in the system. One would specify a system-wide operation, recover, which would refer to
the recovered, operation-consistent states of all the system’s objects.

328

4.4. Incompleteness in the Specification

As is, the specification for class recoverable is not complete: initialization of a recoverable object is
unspecified. Informally, a recoverable object is initially some block of memory with no associated
transaction identifier (and of course no pin count) and no initial value. No transaction identifier is
associated with a recoverable object until it is first pinned. Allocation of memory should be specified in
the postcondition for a separate create operation:

create = oper () returns (x: recoverable)
post new x

where ‘‘nmew x’’ is a special Larch assertion stating that x denotes some previously free block of memory.
Also, either pin’s precondition should require that its argument has been previously allocated (making it
the responsibility for the caller to check), or the auxiliary function pn should be modified accordingly
(making it the responsibility of the implementor to check).

5. Concluding Remarks

In some sense the details of the problems discussed in the previous sections are less interesting than the
insights gained from undertaking the process of rigorously specifying recoverability. This process
enabled us to clarify fuzzy notions about recoverable objects; and to state precisely problems revealed in
the specification, design, and implementation and to resolve their discrepancies.

Since this specification exercise was performed in the context of an ongoing large software development
project, it was especially rewarding to identify points of confusion between desired and implementable
semantics, to discover incompleteness in the implementation, and to separate out implementation biases
from the design. A language like Avalon has more complex semantics than a standard sequential
programming language; knowing early on that a fundamental part of its semantics is implemented
correctly is a tremendous reassurance to us and future Avalon programmers. As language implementors,
we promise to provide certain properties of the built-in classes like class recoverable so that when people
use Avalon they need not worry that some error they find in their code might in fact be an error in ours.
In particular, recoverability is a nontrivial, system-critical property of objects. The rest of the Avalon
language class hierarchy derives from class recoverable, both in defining other built-in classes like class
atomic, and in defining user-defined classes like recoverable strings or atomic queues. It is still
impractical and unreasonable to.specify formally large software systems completely, but the benefits of
tackling smaller, system-critical pieces are large.

Finally, as mentioned in the introduction, we are able to demonstrate that formal specification techniques
can be extended naturally to specify non-functional properties like recoverability. We intend to continue
this specification exercise for the other built-in and user-defined classes of Avalon, in particular those that
support other aspects of the atomicity property of objects.

Acknowledgments

I thank Maurice Herlihy for helping me better understand recoverability, David Detlefs for actually
implementing recoverable objects, and Mathew Brozowski for his interest in specifying their behavior.

329

I. Other Specifications Used

TableSpec: trait
introduces
new: — Table
add: Table, Index, Val — Table
_€ _: Index, Table — Bool
remove: Table, Index — Table
eval: Table, Index — Val
change: Table, Index, Val — Table
isSEmpty: Table — Bool
asserts
Table generated by (new, add)
Table partitioned by (_e_, eval)
for all (t: Table, ind, ind1, Index, val, vall: Val)
ind € new = false
ind € add(t, indl, val) = (ind = ind1) I ind € t
eval(add(t, ind, val), ind1) = if ind = ind1 then eval else eval(t, ind1)
remove(add(t, ind, val), ind1) = if ind = ind1
then t
else add(remove(t, ind1), ind, val)
change(add(t, ind, val), ind1, vall) = if ind = ind1
then add(t, ind, vall)
else add(change(t, ind1, vall), ind, val)
isEmpty(new) = true
isSEmpty(add(t, ind, val)) = false
implies converts (_e _, remove, eval, change)
exempting eval(new, ind), remove(new, ind), change(new, ind, val)

Triple: trait
introduces
<, ,>TIL, T2, T3 >T
_first: T—T1
_second: T —T2
_third: T > T3
asserts
T generated by (<_, _, _>)
T partitioned by (first, .second, .third)
for all (a: T1, b: T2, c: T3)
<a, b, c>.first = a
<a, b, c>.second = b
<a, b, c>.third = ¢

Pair: trait
introduces
<, >»T1, T2—>T
_firstt T—> T1
_Second: T — T2
asserts
T generated by (<_, >)
T partitioned by (.first, .second)
for all (a: T1, b: T2)
<a, b>.first=2a
<a, b>.second = b

330

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

References

J.R. Abrial.
The Specification Language Z: Syntax and Semantics.
Technical Report, Programming Research Group, Oxford University, 1980.

D. Bjomner and C.G. Jones (Eds.).

Lecture Notes in Computer Science. Volume 61: The Vienna Development Method. the
Meta-language.

Springer-Verlag, Berlin-Heidelberg-New York, 1978.

D. S. Daniels.

Distributed Logging for Transaction Processing.

In Proceedings of the 1987 ACM Sigmod International Conference on Management of Data.
Association for Computing Machinery, San Francisco, CA, May, 1987.

J.A. Goguen and J.J. Tardo.
An Introduction to OBJ: A Language for Writing and Testing Formal Algebraic Program
Specifications.

In Proceedings of the Conference on Specifications of Reliable Software, pages 170-189. Boston,
MA, 1979.

D.1. Good, R.M. Cohen, C.G. Hoch, L.W, Hunter, and D.F. Hare.

Report on the Language Gypsy, Version 2.0.

Technical Report ICSCA-CMP-10, Certifiable Minicomputer Project, The University of Texas at
Austin, September, 1978.

J. Gray.
Notes on Database Operationg Systems.

In Lecture Notes in Computer Science. Volume 60: Operating Systems. an Advanced Course
Springer-Verlag, Berlin, 1978.

J.V. Guttag, J.J. Horning, and J.M. Wing.
The Larch Family of Specification Languages.
IEEE Software 2(5):24-36, September, 1985.

B. Lampson.
Atomic transactions.

Lecture Notes in Computer Science 105. Distributed Systems: Architecture and Implementation.
Springer-Verlag, Berlin, 1981, pages 246-265.

A. Spector, J. Bloch, D. Daniels, R. Draves, D. Duchamp, J. Eppinger, S. Menees, D. Thompson.
The Camelot Project.
Database Engineering 9(4), December, 1986.

B. Stroustrup.
The C++ Programming Language.
Addison-Wesley, Reading, Massachusetts, 1986.

3

