ARTICLE’*

SURVEY

A Study of 12
Specifications of the
Library Problem

This study of 12
specifications for a
seemingly simple
database problem
demonstrates many
approaches to classify
informally stated
problem requirements.

66

Jeannette M. Wing, Camegie Mellon University

he library problem was originally
Tposed seven years ago as a simple ex-

ercise in using a formal specification
method and language. But its simplicity is
deceptive, as 12 specifications proposed to
solve the problem show.

This article compares the specifications
according to how they addressed prob-
lemsofthelibraryexample toillustrate the
imprecision of naturaldanguage specifica-
tions and how 12 different approaches to
the same set of informal requirements re-
veal many of the same problems. I admit
that the revelation of a problem may be
due to the authors’ cleverness and not to
the particular approach theyuse; however,
each approach undoubtedly helped prod
each author into considering certain
aspects of the informal requirements —
perhaps at the expense of other aspects.

My comparison highlights what issues
should be addressed in refining an infor-
mal set of requirements and how these is-
sues are resolved in different specification

0740-7459/88/0700/0066/$01.00 ©1988 1EEE

approaches. Thus, for each case, the inter-
esting result of the specification exercise is
not the specification itself but the insight
gained about the specificand. This insightis
evidence thatbenefits can be gained by sys-
tematically applying formal, or even infor-
mal, specification methods.

History. Richard Kemmerer first posed
the library problem in 1981 as part of his
formal-specifications class at the Univer-
sity of California at Santa Barbara. He in-
troduced the problem to Susan Gerhart
(now with MCC’s Software Technology
Program) in 1982 when they team-taught
an extension class at the University of Cal-
ifornia at Los Angeles.

In 1984, Gerhart used the problem as a
focal point of discussion for the tools
group during the second Workshop on
Modelsand Languages for Software Speci-
fication and Design.' In 1985, Kemmerer’s
paper on testing formal specifications? in-
cluded a specification of the problem,

IEEE Software

written in the Ina Jo specification lan-
guage.

Finally, in 1986, the organizers of the
fourth workshop on specifications and de-
sign encouraged authors to address a set of
four problems, one of which was the li-
brary problem, in their position papers.
Of the final batch of papers published in
the workshop proceedings, 12 addressed
the library problem. (The box on p. 80
summarizes the papers.)

This article discusses only those 12, al-
though other library specifications have
been written but not formally published.
These specifications include Gerhart’s
written in Affirm,* Martin Feather’s writ-
ten in Gist,* and Steve King and Ib Sgren-
son’swritten in Z.°

Problem definition. Exactly what is the
library problem? In the call for papers®
thatresulted in the 12 specifications, it was:

“Consider a small library database with
the following transactions:

“I. Check out a copy of a book. Return
a copy of a book.

“2. Add a copy of a book to the library.
Remove a copy of a book from the library.

“3. Get the list of books by a particular
author or in a particular subject area.

“4. Find out the list of books currently
checked out by a particular borrower.

“5. Find outwhat borrowerlastchecked
out a particular copy of a book.

“There are two types of users: staff users
and ordinary borrowers. Transactions 1, 2,
4, and 5 are restricted to staff users, except
that ordinary borrowers can perform
transaction 4 to find out the list of books
currently borrowed by themselves. The
database must also satisfy the following
constraints:

“e All copies in the library must be avail-
able for checkout or be checked out.

“@ No copy of the book may be both avail-
able and checked out at the same time.

“e Aborrower may not have more than a

July 1988

predefined number of books checked out
atone time.”

This definition was different from Kem-
merer’s original statement in several ways:

® The original asked you to consider a
“university library database.”

® The original did not restrict transac-
tion 1, checkout and return, to only staff
users.

* The original had a fourth constraint: A
borrower may not have more than one
copy of the same book checked outatone
time.

Some of the 12 papers’ authors were fa-
miliar with Kemmerer’s original state-

The authors of most of
the papers used the
library problem to
exemplify their points
of view about software
specification.

ment, which naturally added to the varia-
tion among the interpretations of the
problem.
Specification
approaches

The intention of most of the 12 papers
was not to give a straightforward specifica-
tion of the library problem but to use it to
exemplify an author’s point of view about
software specification. Authors of those
papers used the library problem to make
their points more concrete. Some papers
used the library problem toillustrate a par-
ticular specification method or language,
but even in some of those papers, the
authors gave only fragments of a larger
specification.

Because some of the papers do not in-
tend to give explicit specifications, let

alone complete ones, I cannot make a true
comparison of the specifications. I also do
not compare papers because they cover a
wide variety of topics, ranging from the use
of domain knowledge for writing specifi-
cations to the formal definitions of their
sufficiency and completeness. You should
refer to the individual papers for more in-
formation about the different authors’
views on software specification and design.

However, all the authors wrote of the
problems they encountered with the li-
brary example while applying their speci-
fication method or language to itin an ef-
fort to refine the informal requirements.
Thus, this article compares the 12 papers
according to how the different specifica-
tion methods or languages gave the
authors insight into the library problem.

Idistinguish between the specificand —
that which is being specified — and the
specification — the text that describes the
specificand. Here, I take the specificand to
be the behavior of a library as informally
conveyed by the problem definition in the
call for papers.

Table 1 summarizes the papers accord-
ing to their level of formality, which phases
of the software life cycle the authors ad-
dress, the papers’ key ideas, and the con-
crete specification language used, if any.
Inall the tablesin thisarticle, the informa-
tion on the first four papers is shaded in
gray to indicate they used informal ap-
proaches; the other eight used formal ap-
proaches.

Formality. A specification is formal if it
hasaprecise and unambiguous semantics.
A precise and unambiguous semantics is
given by mathematics usually in the form
of a set of definitions, a set of logical
formulas, or an abstract model. These
three approaches to giving formal seman-
tics roughly correspond to the deno-
tational, axiomatic, and operational ap-
proaches of giving semantics to programs.

If an abstract model of the specification

67

Table 1.

Summary of the papers.
(The papers shaded in gray in this and subsequent tables used informal approaches; the others used formal approaches.)
Paper Formality Lifecycle phase Keyidea Language/project
Kerth informal requirements through structured analysis and —
informal specification human interface

Fickas Al requirements through usage scenarios Kate
formal specification

Richetal. Al requirements through Requirements Programmer’s
formal specification Apprentice Apprentice

Lubars Al specification through design schema —_
design

Dubois/ logic requirements through metaspecification —

van Lamsweerde formal specification

Wing logic requirements through benefit of formalism Larch
formal specification

Rudnicki logic analysis testing and proving Ina Jo

Yue logic analysis sufficient completeness Gist

and pertinence
Levyetal. logic and requirements through multiple methods Sasco
executable formal specification

Terwilliger/ logic and design through code Annaand Prolog Please

Campbell executable

Lee/Sluizer executable requirements through models of behavior SXL
formal specification

Rueher executable design through code rapid prototyping and Prolog

graphical Prolog

isamachine-executable interpreter (like a
Prolog interpreter), I consider the specifi-
cation to be executable. Less obvious is
that a specification in logic may also be ex-
ecutable, although its execution may in-
volve the search of a solution space and
hence may be infeasible for nontrivial ex-
amples, as the original workshop discus-
sion cautioned.! In this article, I do not
classify such specifications as executable.

A formal specification is usually written
in a concrete language, which is like
adding syntactic sugar on top of mathe-
matics. If this language has a precisely de-
fined syntax and semantics, a specification
written in it is formal. Informality is intro-
duced by the reliance on English and un-
interpreted diagrams when writing and
giving the specification semantics.

Of the four informal specifications pre-
sented in the papers, three use applica-
tion-domain knowledge (indicated as “Al”
in Table 1). Allfour are presented with tool
support in mind so that some amount of
machine processing, like pattern-match-
ing on keywords, could be performed on
the specifications.

The underlying basis for all but two
(Lee/Sluizer and Rueher) of the formal

68

specifications is full, first-order predicate
logic. These specifications use precondi-
tions and postconditions to specify state
transitions; they use other assertions, rang-
ing from algebraic equations to first-order
logical formulas, to specify state invariants
and other system constraints. Postcondi-
tions refer to both initial and final states of
an object. Some specifications are explicit
as to which objects are not modified in a
state transition.

Levy et al. use a Lisp interpreter to exe-
cute their specifications, performing only
partial evaluation for incompletely de-
fined functions. The three other execu-
table specifications used Prolog.

The Terwilliger/Campbell technique
starts with a logic-based language but re-
stricts the generated specifications to Pro-
log, resulting in an executable Prolog im-
plementation. They acknowledged the
loss of logical power because, in pure
Horn clause programming, there isnoway
to specify explicitly that a formula is false.
Prolog’s solution is to use negation-as-
failure under the closed-world assump-
tion: A fact that is not provably true is as-
sumed to be false.

Lee and Sluizer chose Prolog as simply

the implementation language of their
specification language, SXI.. While Prolog
and SXL have some features in common,
they are entirely separate languages with
differentsemantics. For example, SXL has
no concept of backtracking, which is fun-
damental in Prolog; SXL uses forward-
chaining rules, which are absent in Prolog.

Rueher uses Prolog as both an imple-
mentation and specification language.
Thus, his logic was restricted to Horn
clauses and was further corrupted by his
indirect use of assert and retract predi-
cates, which modify the initial set of Prolog
facts.

The virtues of formal specifications have
been argued elsewhere.” I have also ar-
gued theirvirtuesfor thelibrary problem.?

Life-cycle phase. Most of the authors as-
sumed a traditional software life<cycle de-
velopment process broken into several
phases:

* stating informal requirements,

e writing aspecification (informal or for-
mal or both),

* developing a design,

¢ writing the code, and

IEEE Software

* testing, validating, or verifying the
code.

They did vary their emphases, however:

* One paper (Kerth) focused on
elaborating informal requirements; I con-
sider “elaborated requirements” to be an
informal specification.

¢ Six papers addressed the transition
from informal requirements to formal
specifications; however, two (Fickas and
Rich etal.) stopped short of giving formal
specifications.

® One paper (Lubars) focused on the
transition from informal specifications to
design.

¢ Two papers (Terwilliger/Campbell
and Rueher) focused on the transition
from design to code.

® Two papers (Rudnicki and Yue) pro-
posed analyzing the specification itself,
both during and after its development.

¢ The three papers that used Prolog
(Terwilliger/Campbell, Lee/Sluizer, and
Rueher) advocated rapid prototyping and
regarded an executable specification as a
prototype.

® Two papers (Dubois/van Lamsweerde
and Levyetal.) addressed the specification
process itself and how to specify the ac-
tions, such as refinement and abstraction,
performed during specification.

The more aspecification lookslike code,
the easier it might be for a programmer to
transform it into an efficient imple-
mentation or verify an implementation.
On the other hand, the specification
might be harder for a nonprogrammer to
read, and it very likely would contain pre-
mature design decisions. In fact, Fickas
and Rich etal. were concerned with howto
make the specification resemble the infor-
mal requirements — nothow to make it re-
semble code.

Specification details

I distinguish between a specification
method and the specification itself, that
piece of text that results from following a
method. Table 2 categorizes the papers’
specifications along three lines:

¢ whether the specification is operation-
oriented or data-oriented (object-
oriented),

¢ whether it is composed of separate,

modules, and
® whether graphics or diagrams are used

July1988

to aid readability.
The first two criteria are purely subjec-
tive,

Orientation. Specification methods,
which mimic traditional programming
methods, tend to focuson either asystem’s
operations or its data.

An operation-oriented method identi-
fies the system’s key functions and de-
scribes each function’s1/0 behavior. Data
mightbe treated asglobally accessible, and
their behavior is either left unspecified or
described through simplistic models; ini-
tial conditions are typically stated expli-
citly.

A data-oriented method identifies the
key types of data that the system manipu-
lates and describes an object’s behavior by
describing the operations that may access
it. The system’s functionality is either left
unspecified or indirectly described
through the interactions of the operations
of the different data types; initial condi-
tionsare typically stated implicitly through
create operations on objects.

For the library example, a typical opera-
tion-oriented method would describe the
1/0 behavior of each transaction (such as
check out a copy and add a copy) but
mightleave implicit the books’ properties.

A data-oriented method would describe
what libraries, books, and users are, but it
might leave implicit the library system’s
overall I/O behavior.

Table 2 shows that three specifications
are not just operation-oriented.
Dubois/van Lamsweerde paid equal at-
tention to both data and operations, while
Wing and Rueher both focused on data.
Dubois/van Lamsweerde and Wing
specified the semantics of data in terms of
algebraic abstractdata types. Because Rue-
her’s ultimate concern was to transform a
high-level design into code, he generated
from his Prolog specification a high-level
design consisting of Ada package defini-
tions for types; data semantics were still in
terms of Prolog predicates.

The other nine specifications focused
more on specifying the effects of the
operations, not on the properties of the
data. Of course, this orientation could be
attributed to the operational (transac-
tional) presentation of the call for papers
and not to the orientation of the authors’
specification method.

In fact, a specification method’s orienta-
tion may be different from the resulting
specification’s orientation. For example,
contrary to what Table 2 might imply, two
other specification methodscould be used

Table 2.
Summary of the specifications.

Paper Orientation Modularity Readability
Kerth operation — graphics
Fickas operation — —

Rich etal. operation — —

Lubars operation — schemata
Dubois/ both yes —

van Lamsweerde

Wing data yes Venn diagrams
Rudnicki operation — —

Yue operation — —

Levy etal. operation yes —
Terwilliger/ operation yes —
Campbell

Lee/Sluizer operation — —_

Rucher data — graphics

69

A glimpse at the 12 papers
The 12 papers were published in Proceedings of the Fourth Inter-

national Workshop on Software Specification and Design (CS Press,
Los Alamitos, Callif., 1987).

Kerth. For specifying real-life systems, Norman Kerth noted in
“The Use of Multiple Specification Methodologies on a Single Sys-
tem” (pp. 183-189) the inadequacy of the structured analysis design
method as described by Tom DeMarco! and augmentsitwith athree-
dimensional Human Interface Perspective, which contains

~acollection ofgraphical views thatlook roughly like screen menus
from which you select what function to do next,

« a view-transition diagram that represents the control flow as you
move from one view to another as different functions are selected,
and

« a textual description of the user interface’s behavior, including
what normal or undesirable events occur when keystrokes are
entered or the mouse is clicked on options.

Fickas. In “Automating the Analysis Process: An Example” (pp.
58-67), Stephen Fikas described the components of a system called
Kate that helps automate the transformation of informal require-
ments into a formal specification. The paper showed how to criticize
refinements of informally stated requirements through domain
knowledge, usage scenarios, and intermediate summaries. Fickas
also relied on human experts (professional librarians) to help critique
a spegcification and make Kate smarter by enlarging its knowledge
database.

Rich etal. Inthe context of the ongoing Programmer’s Apprentice
research project at the Massachusetts Institute of Technology,
Charles Rich, Richard Waters, and Howard Reubenstein described
in “Toward a Requirements Apprentice” (pp. 79-86) the use of are-
quirements apprentice to help a user convert an initial informal re-
quirement into a formal specification.

The assistant relies on simple deductive methods applied to ex-
tensive domain knowledge represented as clichés. Forexample, the
library example uses clichés about repositories (where objects like
books are stored), information systems (programs for storing and re-
porting data), and tracking systems (programs for keeping track of
the current state of objects like the physical library repository).

Lubars. In “Schematic Techniques for High-Level Support of Soft-
ware Specification and Design” (pp. 68-75), Mitchell Lubars ad-
dressed design reusability by defining abstract graph
representations of designs and then instantiating them to yield
specific designs. He instantiated an inventory-control scheme with
domain knowledge (library databases) to model the library.

Dubois/van Lamsweerde. In “Making Specification Processes
Explicit” (pp. 169-177), Eric Dubois and Axel van Lamsweerde ad-
dressed how to specify the process of specifying. Based on a dual
object model and operation model of specification, they suggested
two metamodels where the specification process is made explicit:
The process model captures the steps used by a specifier while con-
structing a specification; the method model captures the control in-
formation and rationale used for the steps taken, yielding an overall
specification strategy.

Wing. In “ALarch Specification of the Library Problem” (pp. 34-41),
| demonstrated the benefits of formal specifications by identifying
many problems with informal statements of requirements such asin
the library example. | presented a specification of the library using

Larch, which combines algebraic and predicative specification tech-
niques into one framework.

Rudnicki. In “What Should Be Proved and Tested Symbolically in
Formal Specifications?” (pp. 190-195), Piotr Rudnickiargued that er-
rors in specifications be detected by both testing and proving proper-
ties about them by hand (his emphasis). Each test case is related to
some property that might best be simulated through symbolic exe-
cution of the specification or might more easily be provable from the
specification itself, he said. His specification is based on Kemmerer's
Ina Jo specification.

Yue. In “What Does It Mean to Say that a Specification Is Com-
plete?” (pp. 42-49), Kaizhi Yue formally defined two properties —
sufficient completeness and pertinence of a set of goals — that
capture the notion of whether a specification contains enough, butno
more than necessary, information to achieve the goals. He described
how to analyze a specification in terms of these properties, using a
Gist specification of the library problem as an example.

Levy et al. Like Dubois and van Lamsweerde, Nicole Levy, A. Pi-
ganiol, and J. Souquieres were interested in the specification
process itself. In “Specifying with Sasco” (pp. 236-241), they briefly
describe Sasco, a system to support the evolution of an informal de-
scription into a formal specification. Through operations like refine-
ment, enrichment, reuse, and abstraction, Sasco supports a
multimethod approach to specification, where “method” means a de-
scription of the process of specifying. So, instead of being limited to
just one approach like top-down or data-oriented, Sasco supports
several specification approaches.

Terwilliger/Campbell. In “Please: A Language for Incremental
Software Development” (pp. 248-256), Robert Terwilliger and Roy
Campbell presented Please, an executable specification language
that combines Anna (annotated Ada) and Prolog. Please models
data with Ada types and specifies transactions with both Ada proce-
dures and annotations that define preconditions and postconditions
and auxiliary predicates. Preconditions and postconditions are writ-
ten in terms of Horn clauses, so they can be directly translated into
Prolog and executed.

Lee/Sluizer. In “SXL: An Executable Specification Language,”
Stanley Lee and Suzanne Sluizer asserted that building and analyz-
ing models as practiced in traditional engineering disciplines should
bedonein software engineering as well. They presented SXL, an ex-
ecutable specification language based on a state-transition model.
SXL uses transition rules via preconditions and postconditions to
specify allowed behavior; it uses logical invariants to specify required
behavior. The invariants are automatically enforced during model
execution.

Rueher. In “From Specification to Design: An Approach Based on
Rapid Prototyping” (pp.126-133), Michel Rueher presented a
graphical syntax for Prolog, which is used as an executable specifi-
cation language. He endorsed rapid prototyping through executable
specifications, obtained by using Prolog as both his specification and
implementation language.

Reference

1. T. DeMarco, Structured Analysis and Systems Specification, Yourdon
Press, New York, 1979.

70

IEEE Software

to generate specifications that are just
data-oriented or both operation-oriented
and data-oriented. Levy et al. support a
multimethod approach where the user is
free to choose one method or design his
own. And, although the specification in
Terwilliger/Campbellfocused onlyon the
operations of interest, their system’s use of
Anna, and hence Ada, could be used in a
data-oriented manner.

Forlarge, complex, and realistic systems,
favoring one orientation over the other is
too naive. A dual specification method
(like in Dubois/van Lamsweerde) or,
more generally, a multimethod approach
(like in Levy et al.) is more appropriate.
But giving a formal meaning to a specifica-
tion that results from a mix of methods re-
mains a challenge for researchers.

Modularity. For programs and large-sys-
tem design, the benefits of modularity —
such as increased modifiability, reusability,
and readability — are well-known. For
specifications, they are equally important.
Various modularity techniques — such as
inheritance, type abstraction, and pa-
rameterization — thatare commonly used
to structure programs today are equally
useful for building specifications.
Moreover, a modular, formal specification

can be used to do proofs in piecesand thus
help isolate parts of the requirements that
are responsible for certain design deci-
sions.

On the other hand, a method that sup-
ports modularity is not a panacea: First, as
with any method, it is possible to misuse it.
Second, it may be hard to avoid spreading
some design decisions throughout an en-
tire specification, like deciding that only
one staff person may be hired to run a li-
brary.

Table 2 indicates which formal-specifica-
tion approaches explicitly support modu-
lar construction of specifications. A dash
for a formal specification indicates that a
paper used a single specification to de-
scribe the entire system’s behavior. For the
informal-specification papers, not enough
information was provided for me to deter-
mine whether any of the informal tech-
niques explicitly supports modularity.

Graphics. Kerth’s approach used graph-
ics to specify the interface between a user
and the library system. Lubars used sche-
matic diagrams (labeled circles and
labeled arrows) to describe different kinds
of database systems and their instances.
Wing used Venn diagrams to illustrate the
subset relations between different kinds of

users and between different kinds of
books. Rueher added a graphical syntax
for Prolog with the intent ofimproving not
onlythe readability butalso the debugging
of a Prolog program.

Kerth'suse of graphics especially helped
me understand his model of the library
problem. He presented a collection of
views of Apple Macintosh-like screen dis-
plays at different levels of the system hier-
archy to simulate what a user would see on
a terminal. He also used a state-transition
diagram to depict the flow from view to
view as different transactions are per-
formed.

Comparison

The process of refining the informal re-
quirements of the library example toward
a more detailed informal specification or
toward a formal specification revealed
different kinds of problems with informal
descriptions, such asinconsistencies, over-
sights, ambiguities, and incomplete-
nesses. Here, I consider only ambiguities
and incompletenesses.

Ambiguities. Table 3 summarizes how
each paper treated the five major ambigui-
ties I found. A dash for a paper that pre-
sented a formal specification indicates

Table 3.

Ambiguities.
Paper Library User Book Available Last checked out
Kerth yes =2 book # copy — —_
Fickas — >2 — redundant last = current
Richetal. yes — book # copy — —_
Lubars yes — — — last = current
Dubois/ yes >2 book # copy implies in library —
van Lamsweerde
Wing — >2 book # copy implies in library last = current
Rudnicki — = book # copy redundant —
Yue yes — book # copy — —
Levyetal. yes =2 book # copy implies in library —
Terwilliger/ — =2 book = copy impliesin library last = current
Campbell
Lee/Sluizer yes =2 book # copy impliesin library last # current
Rueher yes = book = copy impliesin library last # current

July 1988

71

that insufficient information was given for
me to make an interpretation. Entries for
informal specifications indicate what an
author explicitlystated in the paper. While
I could infer information from a formal
specification and often did not rely on
what the authors said explicitly in text, I
chose not to try to infer from informal
specifications.

The five major ambiguities were:

1. What is a library? Table 3 indicates
with “yes” which authors explicitly distin-
guished a library database from the entire
library system. A library database includes
records of books (like author and title,and
perhaps copy number) and records of
users (like name and status). Transactions
are performed on the database explicitly
by some implicit set of users. An entire li-
brary system includes not only a library
database (also called “inventory,” “reposi-
tory,” and “card catalog”) but also the

people using the library, the books on the .

shelves, and the transactions involving all
these objects.

The distinction between a library
database and a library system arises from
deciding what part of the library concept
is part of the specificand (the library) and
what is part of the specificand’s environ-
ment.

If the library is just the database, the en-
vironment must include the people who
have access to the database (those who per-
form transactions on it).

If the library is the entire system, includ-
ing the people and books, the environ-
mentof the database becomes a partof the
library system itself; the library’s environ-
ment would then be the rest of the univer-
sity (if a university library) or perhaps
other public services (if a public library).

Though some of the authors described
this ambiguity, none of the specifications
made clear the distinction between the
speciﬁcand and its environment. In fact,
the Gist specification language® — which
Yue used —models what it calls “closed sys-
tems,” intentionally blurring the distinc-
tion between a system and its immediate
environment.

2. What is a user? Most specifications as-
sumed that library users are divided into
two disjoint classes: those with the privi-
leged library-staff status and those without
(ordinary borrowers). Table 3 indicates

72

with “=2” which specifications divided
users into exactly two classes.

There are, however, otherreasonable in-
terpretations of what a user is:

® Assuming a distinction between a li-
brarysystemand alibrary database, one in-
terpretation (in Dubois/van Lams-
weerde) is that a system user may be
different from a database user. In this case,
a database user is not necessarily the same
as a person with staff status because an or-
dinary borrower mightuse the database to
find out what books he has checked out.

* Wing distinguished between someone
affiliated with the library and someone
who is not; only those affiliated with the li-
brary can have both staffand ordinary sta-
tus, depending on the action they take.

® A third interpretation (in Fickas) is
based on the original problem definition,
which qualified the library to be a univer-
sity library database. Fickas reported thata
professional librarian interpreted “users”

Most specifications
assumed that library
users are divided into two
disjoint classes: those
with privileged status
and those without.

to mean ordinary borrowers and “staft” to
mean organizational staff: university staff
as opposed to university faculty or stu-
dents. In this case, staff people would pre-
sumably be more privileged than profes-
sors.

A consistent interpretation of both “li-
brary”and “user”is crucial to interpret the
restriction that transaction 1 (check out
and return a book) be performed by staff
users:

¢ A straightforward interpretation of the
restriction is that only staff members may
check out or return a book and that ordi-
nary borrowers may not do either. This in-
terpretation leads to the unreasonable sit-
uation where ordinary borrowers can find
out what books they have checked out but
can never have checked out any books. An
answer to a “list checked out books” query

would always result in an empty list!

* A more reasonable interpretation is
that only staff members may check out or
return a book but that they do so on behalf
ofordinary borrowers. Here, three objects
are involved: the book, the staff member,
and the borrower.

¢ A third possibility exists: A careful read-
ing of Kemmerer’s original problem defi-
nition led me to believe that this restric-
tion was an unintentional mistake in the
call for papers.

3. Whatis a book?Most specifications dis-
tinguish carefully between a book and a
copy of a book. A book might be modeled
as having an author and a title (and per-
haps, a subject). Copies of a book are as-
sumed to be physically distinct from one
another and thus are uniquely identifia-
ble. Copies with the same author and title
are then considered to be the same book.

Table 3 indicates whether the specifica-
tion associates a unique identifier with the
ideaofa “book,” thus equating the notions
of “book” and “copy” or whether itassoci-
ates a unique identifier with the idea of a
“copy,” thus modeling abook as a set of co-
pies. In two cases (in Lee/Suizer and
Wing), the unique identifier is not expli-
citly modeled but assumed to be associ-
ated with each physical entity in the sys-
tem.

Deciding what “book” means affects the
meaning of the rest of the specification.
For example, what is returned by transac-
tion 4 (list books), which refers to “books,”
not “copies of books™ The statement of
transaction 4 could have been sloppily
written because if it had said “copies of
books,” it would be consistent with other
uses of “copy of book.” If so, the term
“book” instead of “copy of book” would
have sufficed and books would be unique-
ly identifiable. On the other hand, per-
haps the transaction is not meant to distin-
guish between the numerous copies a
borrower may have of the same book.

Another possibility exists: The call for
paperslacked Kemmerer’s original fourth
constraint, which said thata user may have
onlyone copy ofabook checked outatany
time. This constraint is consistent with the
informal statement of transaction 4 in the
call for papers because it would make it
clear that the transaction need not be con-
cerned with returning copy numbers as

IEEE Software

well as book identities (author and title).

4. What does “available” mean? Two
papers (Rudnicki and Fickas) consider
constraints 1 and 2 as stating the same
thing (indicated as “redundant” in Table
3). A book is either available or checked
out; it cannot be both. (The constraints
were that all copies of a book be available
or be checked out and that no copy of a
book be simultaneously available and
checked out.)

Other authors (see “implies in library”
in Table 3), however, distinguish not only
whether a book is available but whether it
is even associated with the library at all (it
could be in a bookstore or privately
owned). Thus, if a book is available (or
checked out), it must be associated with
the library. There may be books not associ-
ated with the library that are neither avail-
able nor checked out. This interpretation
Is consistent with constraints 1 and 2, yet
they do not cause one to be a restatement
of the other.

As an aside, Fickas noted that besides
being available or checked out, there are
other states, such as being lost or stolen,
that a library book might be in.

5. What does “last checked out” mean?
Fickas’s professional librarian noted that
of the books on the shelves it is not inter-
esting to find out who last borrowed them,
so “last”must mean “currently.” Authors of
three other papers also equate the notion
of “last checked out” with “currently
checked out,” although a distinction is im-
plied by the difference in wording be-
tween transactions 4 and 5 (list books and
find out who last checked out a book).
Equating the notions means that transac-
tion 5 returns a current borrower.

Lee and Sluizer, however, interpreted
“last checked out” to be different from
“currently checked out” by making the set
of books currently checked out a subset of
books that are last checked out: If some-
one currently has abook checked out, that
person must also be the last person to have
checked out the book. In Lee/Sluizer,
transaction 5 returns either the current
borrower if the book is checked out or the
last borrower if the book is not checked
out.

Rueher also interpreted “last checked
out” to be different from “currently
checked out.” His paper’s transaction 5,

however, faithfully reflects the informal
specification and returns the lastborrower
of only available books (and no current
borrowers).

Incompletenesses. There are many
kinds of incompletenesses in the informal
requirements. Table 4 summarizes the six
major incompleteness categories. I do not
address undefined terms like “title” and
“subject,” which could also be classified as
akind of incompleteness.

1. Initialization. As Table 4 indicates,
three papers explicitly characterized what
properties must hold in the initial state of
the system. In the state-transition models
in Rudnicki and Lee/Sluizer, properties
that must hold in the initial state are expli-
citly written in the specification.
Lee/Sluizer specified that initially there
exists a normal user, a staff user, an avail-
able book, and the book’s entry in a card
catalog (the library database). Rudnicki
specified that the library starts out with no
books, no user has any books, and all
books have the status of being not checked
out. Rudnicki further proved from his
specification that to start any interesting

Table 4.
Incompletenesses.
Initial- Missing Error Missing
Paper ization operations handling constraints Change of state Nonfunctional
Kerth — — error — — human factors
Fickas — — signals -—_ — system
Rich etal. —_ yes pre +error — — —
Lubars — — pre — update records liveness
Dubois/ — — signals yes — system
van Lamsweerde
Wing yes yes pre +signals yes explicit change only —
Rudnicki yes — pre yes eplicitno change system
Yue —_ — pre — — liveness
Levyetal — yes pre no explicit change only liveness
Terwilliger/ —_ _ pre no — —
Campbell
Lee/Sluizer yes yes pre yes implicit no change system
Rueher — — error no — programmer
interface

July 1988

73

activity in the library system, a user of staff
status must exist. That person can then
add a book to the library, which can then
be checked out, later returned, and so on.

Wing included a library-create opera-
tion that establishes the initial condition as
stated in Rudnicki’s specification.

2. Missing operations. Some papers
noted the inadequacy of the given set of
transactions and proposed adding some
missing operations. For example, two
operations would be useful if a distinction
between a book and a copy is made: (1)
Add a new book, as opposed to a copy of a
book (in Levy et al. and Lee/Sluizer), and
(2) remove all copies, as opposed to a
single copy, of a book (in Rich et al.) and
thus remove the existence of a book (aset
of copies).

Two operations would be needed to es-
tablish a state from which library activity
can begin: (1) Create alibraryand (2) add
astaff user (both in Wing).

Two operations are strictly not neces-
sary: (1) Add a regular user and (2) re-
move a user (both in Wing). But without
the first, there would be no need to distin-
guish between two types of users if the
operation of adding a staff user is in-
cluded. Including the second makes the
set of transactions more closely reflect re-
alityand more symmetrical if operations to
add users are included.

3. Error handling. The informal require-
ments do not state what should happen if
an error is encountered, like trying to re-
turn abook that hasnotbeen checked out.
A specification could either strengthen
the precondition of a transaction to pre-
vent the error from arising or strengthen
the postcondition by explicitly specifying
behaviors for the exceptional cases.

In strengthening the postcondition, you
could use a single, catchall error or treat
each exceptional case individually. Table 4
indicates whether the specification han-
dles errors by strengthening only the pre-
condition (“pre”), using a single catchall
error (“error”), tuning error handling for
different situations (“signals”), or some
combination of preconditions and error
handling.

Some of the errors that the authors ad-
dressed include:

¢ Checkout: Make sure the book being
checked outisnotalready checked out (in

74

Kerth, Lubars, Wing, Terwilliger/Camp-
bell, Lee/Sluizer, and Rueher). Make sure
the book is part of the set of library books
(in Rich et al., Wing, Terwilliger/Camp-
bell, and Lee/Sluizer).

* Return: Make sure the book is checked
out by the user returning the book (in
Wing, Rudnicki, and Rueher). Here, you
could argue that this is not necessarily an
error because it may not matter who re-
turns a book, just as long as it is returned.

* Add book: Make sure the book does
not exist (in Kerth, Yue, and Rueher). Ifa
distinction is made between a book and a
copy, then adding a copy should check to
see if the book exists (in Levy et al. and
Lee/Sluizer) or it should explicitly state
that a new entity is added (in Wing and
Lee/Sluizer).

® Remove book: Make sure the book ex-
ists (in Kerth) or is available, implying that

The informal
requirements do not
state what should happen
if an error is encountered,
like trying to retum a
book that hasn’t been
checked out.

it exists (in Wing, Terwilliger/ Campbell,
Lee/Sluizer, and Rueher).

Finally, for completeness, specifications
should treat type errors. Ifan argumentor
result of an operation is of the wrong type,
the specification contains an incon-
sistency. All the methods do implicit type
checking through the declarations of the
types of an operation’s arguments and re-
sults. This type information is implicitly
conjoined to the preconditions and post-
conditions of individual operations or de-
fined in the underlying semantics by using
predicate logic with typed variables.

4. Missing constraints. In an informal
sense, all authors added more constraints
to the three in the call for papers, simply by
informally elaborating the requirements
or making them more precise. The
domain-knowledge papers added
domain-specific constraints by, for in-
stance, introducing knowledge about in-

formation-retrieval systems for which a li-
brary is a special instance.

In a more formal sense, however, you
can define a constraint to be a state invari-
ant to be maintained across state transi-
tions in the execution of individual trans-
actions. For those with formal
specifications, Table 4 indicates which
authors explicitly added more constraints
to the call for papers. Examples of con-
straints that were added are:

¢ A borrower may not have more than
one copy of the same book checked outat
atime (in Wing and Rudnicki).

e There is a one-to-many relation be-
tween a book and its copies in the library
(in Dubois/van Lamsweerde and
Lee/Sluizer).

¢ There is a one-to-one relation between
a book and its last borrower (in
Lee/Sluizer).

For the latter two constraints,
Lee/Shuizer guarantees that, to maintain
the invariant, an object (such asa card-cat-
alog entry) is automatically deleted when
necessary (suchaswhenabookis removed
from the library).

In a formal specification, state invariants
like the above constraints are typically
specified as a separate global condition
and implicitly conjoined to the precondi-
tions and postconditions of each opera-
tion. Such global invariants are often dis-
covered while specifying an individual
operation. For example, an implicit (un-
modified) precondition may be found to
bejustan instance of a more general invar-
iant, or a specific error case can more
generally be subsumed by an invariant.

Conversely, you can distribute an invari-
ant to just the pertinent operations by af-
fixing the appropriate precondition and
postcondition. For example, the call for
paper’s third constraint, which limited
how many books a borrower may have,
showed up explicitly in the specification of
the checkout operation but not in the add
or remove operations. Thus, it is often dif-
ficult to determine whether a constraint is
missing in general or whether an opera-
tion’s precondition or postcondition must
be strengthened.

5. Specifying change of state. Some specifi-
cations were precise as to what objects
change from state to state.

In the Ina Jo specification, as used by

|EEE Software

both Rudnicki and Kemmerer, the explicit
NC’(x) assertion says that x’svalue does not
change from the current state to the next.

Lee/Sluizer said that “each postcondi-
tion includes only changes to the system
state: Values that are not explicitly men-
tioned are unchanged.” In the Larch
specification (as used in Wing), a modifies
[x, ..., x] clause states that the only ob-
Jectswhose values may change are those in
theset /x, ..., x,}.

Lubars mentioned the notion of explicit
“update records,” which implies that all
changes in state must be recorded expli-
citly. With a way to state explicitly what has
changed or to state implicitly what has not,
you can make precise a constraint like
“The responsibility of a user for a book
changes when the user checks out or re-
turns the book” (in Wing, Rudnicki, and
Lee/Sluizer).

6. Specifying nonfunctional behavior. The
papers explicitly addressed three kinds of
nonfunctional behavior: human interac-
tion with the library system, system con-
straints, and liveness.* Only one paper
(Kerth) addressed human factors by de-
scribing 2 menu-driven interface to depict
how people would interact with the sys-
tem.

Two system constraints left unspecified
are the user’s borrowing limit and the li-
brary’s size. Many authors introduced an
uninterpreted variable like “max” or
“limit” to denote the borrowing limit but
placed no further constraints on it.
Dubois/van Lamsweerde, however, con-
strained it to be nonnegative. Rudnicki
moreover constrained it to be positive, not
simply nonnegative — a restriction he dis-
covered when testing his specification.
Lee/Shiizer actually provided a limit (five
books) to make the specification concrete
and fully executable.

Fickas described at length the implica-
tion of removing the borrowing-limit con-
straint. For example, he said that placing a
borrowing limit may prevent a user who
needs more books than allowed from
achieving his goal. He also questioned

*Liveness is the quality of making sure something good
happens (as opposed to safety, which is the quality of
making sure nothing bad happens). Liveness ensures,
for example, that a calculation’s results are returned
(safety ensures only that the calculation is performed
and thatis performed accurately, not thatitis used).

July 1988

what “small” means. “Small library
database” (as specified in the call for
papers) could mean a small-library
database, a small library-database, a small-
time system, or asimple problem involving
alibrary database, he said.

Three papers described progress as a
desired liveness property of the library sys-
tem. Lubars assumed that the class of in-
ventory system he instantiated to get a li-
brary system is one for which goods
(books) are returned as opposed to one
for which they are not (like food).

Yue explored the constraint on bor-
rowers even further. He argued that pro-
gress could be impeded if either of two sit-
uations arises:

¢ A user wants to check out a book and

The library problem is
deceptively simple
because real libraries
are not simple and a
specification that works
for a small library may not
apply to a large one.

has a maximum number already. He is
forced to return a book first.

¢ A user wants to check out a book, but it
is not available because someone else has
checked it out.

To solve the second, the library could
simply keep adding books — an unrealis-
tic solution. Yue solved both problems at
once by adding the constraint that a bor-
rower may not keep a book forever, later
refining “forever” to “a predefined period
oftime.”

Dubois/van Lamsweerde did not de-
scribe liveness explicitly, but it did intro-
duce enough formalism (a sequence of
times, in particular) so that it could char-
acterize liveness properties. For instance,
itused these times to determine whether a
book had been returned by checking to
see that each returned date associated with
the bookisless than the lastcheckoutdate.

Observations
I chose only a subset of the ambiguities
and incompletenesses in the informal

statementbecause those chosen represent
the ones brought out most often by all 12
papers. The ones I did not present would
have revealed nothing further about one
specification method over another. The
statement of the library problem is decep-
tively simple. On one hand, its simplicity
lends itself nicely to illustrating different
specification methods and languages in
the length of a workshop paper (six to
eight pages). It is simple enough for one
person to understand and it is easy to ex-
plain to others. Forinstance, in explaining
the pitfalls ofinformal requirements, I can
appeal to your intuition about libraries.
On the other hand, its simplicity is decep-
tive in two ways:

® Real libraries are not simple. They in-
volve more than just people, books, and a
database. They have policies according to
who the borrower is, what kind of book it
is, what time of year itis, and, of course, ex-
ceptions to all these policies.

¢ Just because a specification method or
language can be applied to a small library
does not mean it can scale up and be ap-
plied to a larger system or to a more com-
plicated one. This second deception is
compounded by the firstifyoudo nothave
the luxury to go to expertsfor their advice,
the time to research the literature, or the
opportunity to examine existing systems.”

None of the specifications addressed in
any detail, if at all, many realistic system
properties, including:

¢ Concurrency: What happens if two
checkout transactions occur simultane-
ously?

¢ Reliability: What happens if the library
database-management system crashes?

® Fault-tolerance: What happensifabor-
rower decides to abort in the middle of a
transaction?

¢ Security: How does the system authen-
ticate the identity of borrowers?

Other issues that arise in any realistic
database-management system must also
be considered in a more complete specifi-
cation, including version control, report
generation, and managerial policies.

Finally, two broad classes of’ specification
approaches are missing from those pre-
sented in the 12 papers. First, although the
problem is about a database, no database
approach such as semantic data modeling
is represented. Second, except for struc-

75

tured analysis (in Kerth), no commercially
used method such as Jackson’s Structured
Programming!’is represented.

These other approaches are probably
missing because their users did not partic-
ipate in the workshop and because of the
program committee’s biases. The work-
shop draws together participants who have
a common interest in software specifica-
tion and design and who tend to take an
academic view of the software-design
process. It is likely that people from the
database community or industrial sector
would noteven consider submitting a posi-
tion article. A more complete comparison
of specification methods would neces-
sarily include these missing approaches.

ne lesson Ilearned from the infor-

mal techniques is that injecting

domain knowledge adds reality
and complexity to a specificand. If such
knowledge exists and if it can be added sys-
tematically, then incorporating a knowl-
edge-based specification technique like
Fickas’s in the overall software-develop-
ment process would be beneficial.

The formal specification techniques do
not radically differ from one another. In
fact, I was surprised by both the similarity
among the state-transition models and the
similarity among the logic-based models.
(Perhaps I should not have been sur-
prised, since all formal techniques are
based on some common set of mathemati-
cal concepts.)

The popular, and generally accepted,
technique for specifying an operation’sef-
fects is to use preconditions and postcon-
ditions. There is lessagreement on how to
specify data. Algebraic and set-theoretic
approaches are common, but the domi-
nant approach of the 12 papers presented
ismodel-oriented, where youmight model
a set of books by a list of books and a book
by a record of three components (title,
author, and copy number). Such models
are either overly restricted or imple-
mentation-biased.

I am confident that existing formal
specification techniques can be used to
identify many, but notall, deficienciesin a
set of informally stated requirements, to
handle simple and small problems, and to
specify the functional behavior of sequen-
tial systems.

76

Exceptforperhapsthelast, these are not
new conclusions. In fact, they are reassur-
ing and confirm claims made by many in
the formal specification community. How-
ever, many challenges remain and are of
interest to those active in software specifi-
cation and design:

* demonstrating that existing tech-
niques scale up or scaling up the tech-
niques themselves,

* specifying nonfunctional behavior
such as concurrency, reliability, perfor-
mance, and human factors,

* combining different techniques such
as a knowledge-based one with a more
standard logic-based one, or an operation-
oriented one with a data-oriented one,

¢ building tools, and

¢ integrating specification techniques
with the entire software-development ef-
fort.

Finally, a reminder to the 12 papers’
authors: It is the responsibility of an advo-
cate of a particular specification method
to tell potential users not only what the
method is good for but also what it is not
good for. Students (and readers) should
not expect the method to be suitable for
classes of applications and properties out-
side of the method’s intended ones. How-
ever, students of a particular specification
method should also not be expected to
guess what those suitable classes are —
teachers (and authors) must state the limi-
tations of their methods. <

Acknowledgments

I thank Dick Kemmerer and Susan Gerhart
for introducing the library problem, keeping
it alive, and relaying its history to me; Mehdi
Harandi for encouraging me to write this ar-
ticle based on the oral summary I gave at the
fourth workshop on specifications and design;
and the anonymous referees for their useful
criticisms. Finally, I thank all the authors of the
12 papers for their timely response to my ap-
peal for comments on and corrections to an
early draft of thisarticle.
This research was partly sponsored by IBM and
the Defense Dept.’s Advanced Research Proj-
ects Agency under order 4864, amendment 20,
contract F-33615-87-C-1499, monitored by the
Avionics Laboratory at the Air Force Wright
Aeronautical Laboratories. The National
Science Foundation provided additional sup-
port under grant CCR-8620027.

References

1. R.G. Babb III et al., “Workshop on Models
and Languages for Software Specification
and Design,” Computer, March 1985, pp.
103-108.

2. RA. Kemmerer, “Testing Formal Specifica-
dons to Detect Design Errors,” IEEE Trans.
Software Eng., Jan. 1985, pp. 3243.

3. D.R Musser, “Abstract Data-Type Specifica-
ton in the Affirm System,” IEEE Trans. Soft-
ware Eng., Jan. 1980, pp. 24-32.

4. M. Feather, “Language Support for the
Specification and Development of Com-
posite Systems,” ACM Trans. Programming
Languages and Systems, April 1987, pp. 198-
239.

5. B. Sufrin et al., “Notes for a Z Handbook,
Part 1: The Mathematical Language,” tech.
report, Programming Research Group,
Computing Lab, Oxford Univ., Oxford,
England, Aug. 1984.

6. “Problem Set for the Fourth International
Workshop on Software Specification and
Design,” ACM Software-Engineering Noles,
April 1986, pp. 94-96.

7. D.L. Parnas, “The Use of Precise Specifica-
tions in the Development of Software,” in
Information Processing 77, North-Holland,
Amsterdam, 1977, pp. 861-867.

8. J.M. Wing, “A Larch Specification of the Li-
brary Problem,” Proc. Fourth Int'l Workshop
Software Specification and Design, CS Press,
Los Alamitos, Calif., 1987, pp. 3441.

9. D.L. Pamas, “Software Aspects of Strategic
Defense Systems,” American Scientist, Sept.-
Oct. 1985, pp. 432:440.

10. M.A. Jackson, Principles of Program Design,
Academic Press, Orlando, Fla., 1975.

Jeannette M. Wing is an assistant professor of
computer science at Carnegie Mellon Univer-
sity. Her research interests include formal
specifications, programming languages, con-
current and fault-tolerant distributed systems,
and visual languages. She contributed to the
design of the Larch family of specification lan-
guages and now codirects the Avalon and Mir6
projects at Carnegie Mellon.

Wing received a BS, MS, and PhD in com-
puter science from the Massachusetts Institute
of Technology. She is a member of the ACM.

Address questions about this article to the
author at Computer Science Dept., Carnegie
Mellon University, Pittsburgh, PA 15213-3890;
CSnet jeannette.wing@cs.cmu.edu.

IEEE Software

