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Current research in specifications is emphasizing the practical use of formal specifications in program 
design. One way to encourage their use in practice is to provide specification languages that are 
accessible to both designers and programmers. With this goal in mind, the Larch family of formal 
specification languages has evolved to support a two-tiered approach to writing specifications. This 
approach separates the specification of state transformations and programming language dependen- 
cies from the specification of underlying abstractions. Thus, each member of the Larch family has a 
subset derived from a programming language and another subset independent of any programming 
languages. We call the former interface languages, and the latter the Larch Shared Language. 

This paper focuses on Larch interface language specifications. Through examples, we illustrate 
some salient features of Larch/CLU, a Larch interface language for the programming language CLU. 
We give an example of writing an interface specification following the two-tiered approach and 
discuss in detail issues involved in writing interface specifications and their interaction with their 
Shared Language components. 
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1. INTRODUCTION 

1 .l Motivation 

Current research in specifications is emphasizing the practical use of formal 
specifications in the programming process [ 19,201. People have already benefited 
from using informal specifications in most phases of this process. Writing 
informal specifications is widely accepted as a useful way of organizing ideas, 
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documenting design decisions, and informally arguing the correctness of pro- 
grams. Software design methods that include some form of informal specification 
have been in use in industry for some time [9, 30, 34,531. 

Thus far, formal specifications have played a less influential role in the 
programming process than have informal specifications. We believe that using 
formal specifications early in the process (i.e., in the design phase) can be 
especially beneficial. A specification is formal if it is written in a language with 
explicitly and precisely defined syntax and semantics. Hence, one virtue of formal 
specifications is their precision. Precision leaves no room for ambiguity. The 
process of writing formal specifications can often reveal ambiguities in a client’s 
problem statement and errors in a program’s design. Uncovering bugs early can 
thus save the cost of uncovering them later during testing and debugging. 
Precision also implies that we can formally argue the correctness of programs. 
Another virtue of formal specifications is their amenability to machine manipu- 
lation. With help from appropriate machine support (e.g., theorem provers), we 
can handle more specifications, and more complex ones, and thus formally reason 
about a larger set of specifications and programs than if we had to rely on pencil 
and paper only. 

In this paper we focus on the formal specifications of program modules. We 
are interested in specifying program modules as a means of specifying a program 
composed of them. Given a specification of a program module, a program designer 
can choose to use the module without knowing how it is to be implemented. 
Similarly, a programmer can implement the module without knowing how it is 
to be used. Thus, from either the designer’s or implementer’s point of ‘view, 
replacing one correct implementation of the module by another should not affect 
the program’s design. 

1.2 Context: Larch’s Two-Tiered Approach 

The Larch Project, ongoing at the MIT Laboratory for Computer Science 
and the DEC Systems Research Center, is developing tools, languages, and 
techniques intended to aid in the productive use of formal specifications. The 
set of tools includes language-sensitive editors and semantic checkers based 
on a powerful theorem prover [13, 361. The Larch family of specification lan- 
guages [22] includes the design and formal definitions of the Larch Shared 
Language [24] and Larch interface languages [51]. These languages were de- 
signed to support the specification technique called “the two-tiered approach,” 
which was first introduced in [19] and elaborated upon in the author’s Ph.D. 
thesis [51].’ 

The two-tiered approach separates the specification of underlying abstractions 
from the specification of state transformations. The specification of each program 
module has a component on each tier. The Lurch Shared Language is used for 
the component that specifies underlying abstractions, and a Larch interface 
language is used for the component that specifies state transformations. 

’ We refer the reader to [23] for a compendium of five Larch papers bound in one document. Each is 
a minor variation of this paper, [22, 241 or [25]. 
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Writing Larch Interface Language Specifications 3 

We gain the following three advantages in separating a specification into two 
tiers: 

-A separation of concerns. 
-A division of effort. Shared Language components can be written independently 

of interface language components. Thus the task of specifying a program can 
be divided according to the skills of the specifiers on a programming project. 

-Reusability. Shared Language components can be reused by different interface 
language components. Some of them can be developed for particular applica- 
tions; a few central ones can be useful in many applications. 

We believe that for specifications of program modules, the environment in 
which a module is embedded, and hence the nature of its observable behavior, is 
likely to depend in fundamental ways on the semantic primitives of the program- 
ming language. Attempts to hide this dependence will make specifications more 
obscure to both the module’s users and its implementers. Thus, we intentionally 
make an interface language dependent on a target programming language, and 
keep the Shared Language independent of any programming language. To capi- 
talize on our separation of a specification into two tiers, we isolate programming 
language dependent issues-such as side effects, error handling, and resource 
allocation-into the interface language component of a specification. 

We use the term “interface” because an interface specification defines only the 
observable behavior of a program module. Users of a module read its interface 
specification to understand its behavior, without considering its internal struc- 
ture. We use the term “shared” because all the Larch interface languages rely on 
the same language to define underlying abstractions. 

1.3 Focus of this Paper 

This paper focuses on Larch interface language specifications, whereas previous 
papers on the Larch Project have either focused on only Larch Shared Language 
specifications [al, 24, 251, or given only an introductory overview to both 
[22, 281. The purpose of this paper is to explain in more detail what interface 
language specifications are, what they look like, and how they are intended to be 
written, used, and evaluated. A significant subgoal is to explain their interaction 
with Shared Language specifications. More specifically, in Section 2 we present 
an informal description of Larch/CLU, an interface language for the program- 
ming language CLU [38, 401; in Section 3, we illustrate how one might write a 
two-tiered specification incrementally by following the two-tiered approach; in 
Section 4, we discuss some consequences of the two-tiered approach: how the 
two tiers interact and how an interface language supports our approach. In 
Section 5, we discuss further work, and include some suggestions for designing 
one’s own interface language. 

1.4 Related Work 

1.4.1 Specification Approaches. Formal specifications have been used exten- 
sively to describe simple programs and abstract data types, leading to two 
different approaches, sometimes referred to as “operational” and “definitional.” 
A survey of these approaches can be found in [37] and [39]. In the operational 
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approach, one gives a method of constructing the program or abstract data type. 
Examples of the operational approach include Parnas’s work on state-machines 
[44], Robinson and Roubines’s extensions to them with V-, 0-, and OV-functions 
[45], Berzins’s abstract models [4], and Jones’s model-oriented specifications 
[311- 

In the definitional approach of specifying a program or an abstract data type, 
one gives a list of its desired properties, not a method of constructing it. The 
definitional approach can be broken into two categories, sometimes referred to 
as “axiomatic” and “algebraic.” The axiomatic approach stems from Hoare’s 
work on proofs of correctness of programs [26] and of implementations of data 
types [27], where predicate logic pre- and post-conditions are used for the 
specification of the input-output behavior of programs and of each operation of 
an abstract data type. Other work using the axiomatic approach is described in 
[42] and [47]. The algebraic approach uses axioms to specify properties of 
programs and abstract data types, but the axioms are restricted to equations. 
This approach defines data types to be heterogeneous algebras [5]. Much work 
has been done on the algebraic specification of abstract data types [2, 7, 10, 17, 
32, 50, 561, including the handling of error values [2, 14, 331, nondeterminism 
[33], and parameterization [ll, 15,491. 

Our work is related to both the axiomatic and algebraic approaches. In the 
interface language component of a two-tiered specification, we use an axiomatic 
approach. In the Shared Language component, we use an algebraic approach. 

1.4.2 Specification Languages. Some of the more widely known specification 
languages are CLEAR [8], Iota [43], ACT-ONE [12], SPECIAL [45], Z [l, 481, 
VDM’s Meta-IV [6], Ina Jo [46], Gypsy [16], and PAISLey [55]. Of these, the 
ones most closely related to ours are CLEAR, Iota, ACT-ONE, and SPECIAL. 

CLEAR, Iota, and ACT-ONE support the definitional approach of describing 
abstract data types. One important difference between the two languages, CLEAR 
and Iota, and ours is that specifications written in CLEAR or Iota have no simple 
way of specifying side effects and error handling of procedures. We use the 
interface language component of a two-tiered specification to deal with issues 
like side effects and errors. One difference between the two languages, CLEAR 
and ACT-ONE, and ours is that their semantics are described in terms of models 
(e.g., initial algebras), whereas ours are described in terms of theories (e.g., sets 
of first-order formulas). Unlike in Larch, none of CLEAR, Iota, and ACT-ONE 
attempts to separate specifying programming language issues like side effects, 
modularization, and parameterization from specifying fundamental abstractions. 

SPECIAL, Z, Meta-IV, Ina Jo, Gypsy, and PAISLey support the operational 
approach; of these six, only SPECIAL is closely related to our two-tiered 
viewpoint. SPECIAL separates an “assertion” part, analogous to our Shared 
Language component, from a “specification” part, analogous to our interface 
language component. A major difference beween SPECIAL and our work is that, 
in SPECIAL, types used in the specification part are defined in the assertion 
part, whereas we define types in interface language components (“specification” 
parts). Also, in SPECIAL, a type is restricted to be a primitive type, a subtype, 
or a structured type, each of which comes with a set of predefined functions. 
Larch does not restrict the assertion language to be based on a fixed set of 
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primitives, and allows the specifier to use the Shared Language component to 
define exactly the assertion language desired. Since the assertion language in 
SPECIAL is restricted, most of the work of writing a specification is done in the 
specification part. We take the opposite viewpoint and expect most of the 
work of writing a specification to be done in the Shared Language component 
(“assertion” part). 

2. AN INFORMAL LOOK AT THE LARCH/CLU INTERFACE LANGUAGE 

In this section, we intend to give the reader the flavor of an interface language, 
and in particular, one for the programming language CLU. Henceforth we use 
“Larch/CLU” for “the Larch/CLU Interface Language.” Instead of presenting a 
formal description of Larch/CLU, we illustrate its salient features through some 
simple examples. Its complete formal definition can be found in [Xl. 

Since the meaning of a Larch interface language is dependent on both the 
Larch Shared Language and a programming language, before we can describe 
Larch/CLU, we need to describe the Larch Shared Language and CLU. In 
Section 2.1 we present only those details of the Larch Shared Language that are 
essential to understand the examples of interface specifications we present in 
this paper. In Section 2.2 we do the same for CLU.2 We refer the interested 
reader to [24] for further details of the Larch Shared Language; to [40] for details 
about CLU. In Section 2.3 we give an example of a Larch/CLU procedure 
specification, and in Section 2.4 we give an example of a Larch/CLU cluster 
specification. In Section 2.5 we briefly summarize the interface language features 
introduced through the examples. 

2.1 An Overview of the Larch Shared Language 

The unit of encapsulation in the Larch Shared Language is called a trait. 
Figure 1 shows a trait useful for describing values for sets of integers. The 
example is similar to a conventional algebraic specification in the style 
of [18] and [41]. 

A trait contains a set of operator declarations, which follows the keyword 
introduces, and a set of equational axioms, which follows a constrains clause. 
An operator is declared by giving its name along with its signature (the sorts of 
its domain and range). These signatures are used to sort-check terms (expres- 
sions) in much the same way as function calls are type-checked in programming 
languages. Two things that distinguish traits from specifications written in typical 
algebraic specification languages are (1) the name of a trait (e.g., SetOfE) is 
different from all sort and operator identifiers (e.g., SI, E, remove, card), appearing 
within a trait. A trait need not correspond to a single abstract data type, and 
often does not; (2) the constrains list contains all the operators that the 
immediately following axioms are intended to constrain. In the SetOfE trait, the 
constrains list informs us that the axioms are not to put any constraints on 
the properties of if then else, false, 0, +, and =, despite their occurrence in the 
axioms. 

‘In particular, in this paper we ignore the following features of CLU: iterators, own data, and 
parameterized modules. They are all carefully treated in [51]. 
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SetOfE: trait 
includes Integer 
introduces 

empty: + SI 
add: SI, E + SI 
remove: SI, E + SI 
has: SI, E -P Boo1 
isEmpty: SI + Boo1 
card: SI + Int 

constrains empty, add, remove, has, isEmpty, card so that 
SI generated by [empty, add] 
for all [s: SI, e, el: E] 

remove(empty, e) = empty 
remove(add(s, e), el) = 

if e = el then remove(s, el) else add(remove(s, el), e) 
has(empty, e) = false 
has(add(s, e), el) = if e= el then true else has(s, el) 
isEmpty(empty) = true 
isEmpty(add(s, e)) = false 
card(empty) = 0 
card(add(s, e)) = if has(s, e) then card(s) else 1 + card(s) 

Fig. 1. SetOFE trait specification. 

A trait denotes a theory of typed first-order predicate calculus with equality. 
Each equation appearing in a trait is a formula in the trait’s theory. A generated 
by clause adds an inductive rule of inference to a trait’s theory. Saying that sort 
S is generated by a set of operators, Ops, asserts that each term of sort S is 
equal to a term whose outermost operator is in Ops. In the SetOfE example, all 
values of sets of integers can be denoted by terms using only the operators, empty 
and add. Together, the introduces, constrains, and generated by clauses, the 
“inequation” l(true = false), and propositional and quantified tautologies define 
the first-order theory of a trait. 

The Larch Shared Language also provides ways of putting traits together, one 
of which is through an includes clause. A trait that includes another trait is 
textually expanded to contain all operator declarations, constrains clauses, 
generated by clauses, and axioms of the included trait. The meaning of the 
including trait is the meaning of the textually expanded trait. In the SetOfE 
example, the signature and meaning of + comes from the Integer trait. 

2.2 An Overview of CLU 

CLU has the primitive notions of object and state. An object is an entity that can 
be manipulated by a program. Two important properties of an object are its type, 
which never changes, and its value, which may change. A state consists of a set 
of objects, a mapping from program variables (object identifiers) to objects, and 
a mapping from objects to values. Two important observable state changes are 
when a new object is created and when the value of an existing object changes. 
An object whose value can change is said to be mutable; one whose value cannot 
change is said to be immutable. A type is mutable if objects of that type are 
mutable. For example, integers are immutable, but arrays are mutable in CLU. 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 1, January 198’7. 
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choose = proc (s: set) returns (i: int) 
uses SetOfE with [set for SI, int for E] 

requires 1 isEmpty@,,) 
modifies at most [s] 
ensures has&,, i,& A (spost = remove&.,, i,,,)) 

end 

Fig. 2. A choose procedure specification. 

In CLU, an object A can be the value of another object B, in which case we 
say “B contains A.” Sharing of objects arises when two or more objects contain 
the same object. Because of sharing of mutable objects, it is not sufficient that 
the value of a containing object refer to the value of the contained object; it must 
refer to the contained object itself, that is, its identity. Therefore, we must be 
able to distinguish in our specifications between an object’s identity and its value. 

A CLU program consists of a set of modules, each of which is either a procedure 
or a cluster. A procedure performs an action on a set of objects and terminates 
returning a set of objects. Communication between a procedure and its invoker 
occurs through these objects. A cluster names a type and defines a set of 
procedures that create and manipulate objects of that type. Users of this type are 
constrained to treat objects of the type abstractly. That is, objects can be 
manipulated only via the procedures defined by the cluster, so, in particular, 
information about how objects are represented may not be used. 

It is important not to confuse an object and its type, which are CLU concepts, 
with a term and its sort, which are Larch Shared Language concepts. The 
connection between the CLU and the Larch Shared Language concepts is that 
(typed) objects have values that are denotable by (sorted) terms. Through the 
Larch/CLU interface specifications of procedures and clusters, we establish a 
link between the values that objects can have and the terms defined by Shared 
Language components. 

2.3 Larch/CLU Procedure Specifications 

Figure 2 gives a Larch/CLU specification of a choose procedure that selects a 
member of a set, removes it, and returns it. It consists of a header, a link to its 
Shared Language component, and a body. The header indicates that the input 
argument is of type set, and the output result is of type int. The identifiers, s 
and i, denote objects, not values. The link from the interface component to the 
Shared Language component is established by the uses clause, which names the 
used trait, SetOfE, and provides a mapping from type to sort identifiers. The 
body contains a requires/modifies/ensures triple. The precondition in the 
requires clause of choose is an assertion that is satisfied if the initial value of 
the input argument is not empty. The modifies at most clause asserts that the 
choose procedure may mutate no object other than the object bound to s. The 
postcondition in the ensures clause is an assertion about the initial and final 
values of the set object and the final value of the int object. The operator names, 
isEmpty, has, and remove, and the meaning of the equality symbol, =, all come 
from SetOfE. 
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Associated with a procedure specification is the predicate over two states, 

Pre + (Modifies A Post) 

where Pre and Post are the assertions in the requires and ensures clauses, 
respectively, and Modifies is the assertion associated with the modifies at most 
clause. The clause modifies at most [xl, . . . , xn] asserts that the procedure 
changes the value of no object in the environment of the caller except possibly 
some subset of (xl, . . . , xn). 

It is important to notice the following points about a procedure specification: 

(1) We distinguish between an object and its value by using a plain object 
identifier (e.g., s) to denote an object, and a subscripted object identifier 
(e.g., spre) to denote its value in a state. 

(2) We distinguish between the initial and final values of an object by using an 
object identifier subscripted by pre to denote the object’s initial value, and 
subscripted by post to denote its final value. Thus the assertion s,, = spost 
says that the value of the object s is unchanged. 

(3) The headers for a CLU procedure and a CLU procedure specification are 
intentionally similar. The only difference is that object identifiers, such as i, 
are introduced for returned objects in the header of a procedure specification. 
This is to provide a way to denote them in the assertions. 

(4) The name of the used trait denotes the Shared Language component. The 
language of the assertions in the body of the procedure specification derives 
from the language of this Shared Language component. 

(5) The modifies at most clause is an assertion that is given meaning as if it 
were conjoined to the postcondition (see above). It is syntactically separated 
from the precondition to highlight a procedure’s potential side effect on the 
values of objects. It is an example of a special assertion; each interface 
language comes equipped with its own set of special assertions. They can be 
regarded as syntactic sugar for first-order assertions about state. 

2.4 A Larch/CLU Cluster Specification 

Figure 3 gives a Larch/CLU specification for a set cluster. It consists of a header, 
a link to its Shared Language component, and a body. The header consists of the 
type identifier, set, and a list of the procedure identifiers, pair, union, intersect, 
member, and size. Notice that set is the name of a type, not a sort. It is also the 
name of the cluster specification and is different from any trait name. The link 
from the interface component to the shared component is given by the used trait, 
SetOfE, and a provides clause. SetOfE supplies all sort and operator identifiers 
that appear in the assertions of the procedure specifications of the cluster 
specification. For example, the sort identifier, E, which appears in the postcon- 
dition of union, comes from SetOfE and is used for terms denoting integer values. 
The provides clause gives a mapping from the type identifier, set, to the sort 
identifier, SI, which also comes from SetOfE. This type-to-sort mapping deter- 
mines the values over which set objects can range. All set objects are restricted 
to values denotable by terms of sort SI. The provides clause also indicates 
whether the type is mutable or not. The body of a cluster specification consists 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 1, January 1987. 
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set = cluster is pair, union, intersect, member, size 
uses SetOfE with [set for SI, int for E] 
provides mutable set from SI 

pair = proc (i, j: int) returns (9: set) 
ensures (sWl = add(add(empty i ) j )) A new [s] , pm- 9 pre 

end 

union = proc (sl, s2: set) 
modifies at most [s2] 

ensures V j:E [has(s2P,r, j) = (has(sl,,, j) V has(s2,,, j))] 
end 

intersect = proc (sl, s2: set) 
modifies at most [s2] 
ensures V j:E [has(s2,,, j) = (has@,, j) A has(s2,,, j))] 

end 

member = proc (s: set, i: int) returns (b: bool) 
ensures bW, = ha&,,, i,,,) 

end 

size = proc (s: set) returns (i: int) 
ensures iml = card(s,,) 

end 

end set 

Fig. 3. A set cluster specification. 

of specifications of the procedures, which are of the form described for procedure 
specifications. 

Three additional features of Larch/CLU are illustrated in the specification of 
pair: omitted requires clauses, omitted modifies at most clauses, and new 
assertions. First, the omission of a requires clause indicates that the pre- 
condition is true. Second, the omission of a modifies at most clause is the 
same as the explicit presence in the postcondition of the special assertion 
modifies nothing. This assertion states that no objects may be mutated by the 
procedure-for each call, the value of each object must be the same on return as 
on entry. Third, since CLU procedures can create new objects, we use new 
assertions to indicate what objects, if any, are created as a result of invoking a 
procedure satisfying the specification. For example, pair’s specification states 
that it must not return a set object that existed when pair was invoked. 

Let us consider writing a different set cluster specification, sets, that defines 
a different set type-one with a slightly different specification for the intersect 
procedure. Let the specification of set2 be the same as that of set in Figure 3, 
except that intersect2 returns the intersection of its two arguments only if they 
are not disjoint; otherwise it terminates exceptionally, signaling “disjoint.” That 
is, let intersect2 be 

intersect2 = proc (sl, s2: set) signals (disjoint) 
modifies at most [s2] 
ensures 

normally Vj: E[has(s2,,, j) = (has(sl,,, j) A has(s2,,, j))] except 
signals disjoint when -3j: E [has(sl,,, j) A has(s$,, j)] 

ensuring modifies nothing 
end 
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Even though the two set cluster specifications, set and set2, specify different 
types, they both use the same trait, SetOfE. Therefore, set objects defined by set 
of Figure 3 range over values denoted by the same terms as set objects defined 
by set2. This difference illustrates that there is a clear distinction between a sort 
identifier and a type identifier. Although the trait SetOfE introduces the term 
empty of sort SI to denote the “empty” value, no object of type set2 will ever 
have such a value, since only nonempty set objects can be constructed by set2’s 
(constructor) operations, pair, union, and intersect2. 

An additional feature of Larch/CLU is illustrated by intersect2. CLU proce- 
dures may either terminate normally or terminate by signaling an exception. 
Larch/CLU uses the special assertions returns and signals Signal Name to 
denote both kinds of termination. Furthermore, Larch/CLU provides syntactic 
sugar for handling the many possible termination cases in a single assertion 
beginning with the keyword normally. Thus, the postcondition of intersect2 
states that if sl and s2 have no element in common, intersect2 raises the exception 
disjoint and modifies nothing. Otherwise, intersect2 returns normally and modi- 
fies s2 so that its final value is the intersection of the initial values of sl and s2. 
Demarcating these individual cases enhances the readability of the specification 
and disciplines the specifier to consider all possible cases in a stylized way. More 
generally, an assertion of the form 

normally Normal Assn except 
signals Signal Name1 when Except Prel ensuring Except Post, 

. . . 
signals Signal Name,, when Except Pre, ensuring Except Post,, 

is a shorthand for the assertion 

(returns V signals Signal Name, V . . . V signals Signal Name,) A 
(returns 4 (Normal Assn A -(Except Pre, V . . . V Except Pre,))) A 
(signals Signal Name1 + (Except Prel A Except Post,)) A 

. . . 
(signals Signal Name, + (Except Pre, A Except Post,)) 

2.5 Summary of the Language Features Illustrated 

In summary, a Larch/CLU interface language component of a two-tiered speci- 
fication includes 

-a header that is similar or identical to that of a CLU program module; 
-a link that names a used trait and provides type-to-sort mappings; 
-a body that can contain 

first-order assertions based on the used trait; 
-special assertions: new, modifies at most, modifies nothing, 

returns, signals; 
-syntactic amenities like 

a separate modifies at most clause; 
default preconditions and modifies assertions indicated by omitted 

requires and modifies at most clauses; 
a stylized way to handle multiple termination conditions using the 

normally assertion. 
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3. INCREMENTALLY WRITING AN INTERFACE SPECIFICATION 

As mentioned in the Introduction, writing Larch specifications is intended to 
occur during the design process with the help of machine support. In this section 
we illustrate how one writes an interface specification following Larch’s two- 
tiered approach as intertwined with a typical top-down design process. We also 
mention some of the machine support a specifier might expect as a two-tiered 
specification is written. 

3.1 Following the Approach 

We sketch below a typical top-down design strategy that could be used in 
following the two-tiered approach. 

-Develop an approximate intuition of the problem to be solved. This requires 
close, often verbal, interaction with the client who is posing the problem. 

-Decide on the major abstractions. 
Interface language tier: Write the header information of the interface lan- 
guage components. 
Shared Language tier: Write the syntactic information of the Shared Lan- 
guage components of the specification (i.e., the sort identifiers and operator 
identifiers and signatures). 

-Fill in the blanks. 
Interface language tier: Fill in the information in the bodies of the interface 
language components of the specification (e.g., write the assertions in the 
body of a procedure specification). Simultaneously generate additional op- 
erator and sort identifiers needed from the Shared Language components. 
Link between the two tiers: Define the explicit link to the Shared Language 
components of the specification. 
Shared Language tier: Fill in the semantic information in the bodies of the 
Shared Language components of the specification, namely, the theory of 
equality for terms. 

-Check one’s understanding of the problem and its formalization; repeat pre- 
vious steps until they converge. 

During this process of writing a specification, the specifier should also evaluate 
it for certain properties, such as consistency and completeness. Checking for 
these properties as a specification develops can increase one’s confidence that a 
specification is on the right track. In the example of the next subsection, we 
describe a check for one such property, totality, to illustrate how feedback from 
evaluating a specification can influence the specifier. In Section 4 we discuss two 
other properties, protection and nondeterminism, which one might want to check 
of interface specifications.3 

There are two points worth observing in regard to following the strategy 
outlined above, especially for large pieces of software. First, as with any overall 
design method, many iterations over the steps may be necessary. Writing a 

3 A more detailed discussion of these and other properties of interface specifications can be found in 
[51] and (521. 
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specification sharpens a specifier’s intuition of the problem. Hidden design 
decisions surface. Addressing postponed decisions often requires modifications 
of decisions made earlier. Second, the specifier should be willing to discard large 
chunks of a specification in the process of refining the abstractions. This is 
especially true after the first iteration. Often, after a large investment in time 
and effort, the specifier (or designer or programmer) is reluctant to start anew 
or to try alternate tactics. With sufficient machine support the specifier should 
be able to save time and effort often spent in managing and maintaining the 
consistency of a large specification. 

3.2 Following the Two-Tiered Approach on an Example 

In this section we trace through one iteration of the strategy outlined in the 
previous section by presenting a series of snapshots to show the incremental 
development of a specification. We choose a simple example to avoid having too 
many details get in the way of the points we wish to make. 

Suppose we want to write a specification of a dictionary that contains the 
definitions of words and that can be used to check the spelling of words. For 
simplicity, let us assume that a word can appear only once in a dictionary, and 
each word has exactly one definition. Furthermore, if a word is not in the 
dictionary, then the word is either misspelled or unknown to the dictionary (e.g., 
a rarely used word might not be found in an abridged dictionary). Intuitively, a 
dictionary is like a table that stores key-value pairs, where words are the keys 
and definitions are the values. 

From this informal description of a dictionary and an intuitive understanding 
of its usage, we next have to decide on the major abstractions. We choose the 
data types of interest to be dictionary, word, and definition. Therefore, we need 
to write cluster specifications for each of the three types and appropriate traits 
for the values of objects of each type. Since we need a used trait for each cluster 
specification, let us name them DictVals, WordVals, and DefVals. Figure 4 
depicts the situation so far. We are presuming the use of a syntax-directed 
specification editor that displays the templates shown in the figure and prompts 
us to fill in each “. . .“. 

We begin by further developing the dictionary cluster specification and the 
corresponding DictVals trait, and postpone developing the other specification 
components until later. Given the informal description of the usage of a diction- 
ary, we have to decide what operations would most likely be performed on 
dictionaries. Some of the table-like operations we might want to perform are to 
create a dictionary, add a new word and its definition to a dictionary, get the 
definition of a word, and check to see if a word is in a dictionary. After filling in 
some syntactic information for dictionary, we have the situation as shown in 
Figure 5. Visible changes from one snapshot to the next are shown in italics. 

Next we start filling in the bodies of the procedure specifications, and simul- 
taneously generate sort and operator identifiers that must be supplied by 
DictVals. We start with create. We do not want any restrictions on the compu- 
tation state in creating a new dictionary, nor do we want any objects to be 
mutated; we want the value of the returned dictionary to be empty, and we want 
the dictionary itself to be some new object. So for create we have (notice the 
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dictionary = cluster is . . . DictVals: trait 
uses DictVals . . . introduces 
provides dictionary from. . . . . . 

. . constrains 
end dictionary . . . 

word = cluster is. . . WordVals: trait 
uses WordVals . . . introduces 
provides word from . . . . . . 

. . . constrains 
end word . . 

definition = cluster is. . . DefVals: trait 
uses DefVals . . . introduces 
provides definition from . . . . . . 

. . . constrains 
end definition . . 

(4 (b) 

Fig. 4. Dictionary specification: Snapshot 1. (a) Interface language 
components; (b) Shared Language components. 

dictionary = cluster is create, add-word, get-definition, check-word 
uses DictVals . . . 
provides dictionary from . . . 

create = proc () returns (d: dictionary) 
requtres . . . 
modifies at most.. . 
ensures. . . 

end 

add-word = proc (d: dictionmy, w: word, def: definition) 
requzres . . . 
modifies at most.. . 
ensures. . . 

end 

get-definition = proc (d: dictionary, w: word) returns (def: definition) 
requires . . . 
modifies at most . . . 
ensures. . . 

end 

check-word = proc (d: dictionary, w: word) returns (b: bool) 
requzres . . . 
modifies at most . . . 
ensures . . . 

end 

end dictionary 

DictVals: trait 
introduces 

. 

constrains 
. . . 

Fig. 5. Dictionary specification: Snapshot 2. 
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dictionary = cluster is create, add-word, get-definition, check-word 
uses DictVals with [dictionary for D] 
provides dictionary from D 

create = proc () returns (d: dictionary) 
ensures (dmt = empty) A nao [dl 

end 

adhword = proc (d: dictionary, w: word, deli definition) 
requires. . . 
modifies at most . . . 
ensures. . . 

end 

get-definition = proc (d: dictionary, w: word) returns (deE definition) 
requires. . . 
modifies at most . . . 
ensures.. . 

end 

check-word = proc (d: dictionary, w: word) returns (b: bool) 
requires. . . 
modifies at most . . . 
ensures. . . 

end 
end dictionary 

DictVals: trait 
introduces 

empty: + D 
. . . 

constrains 
. . . 

Fig. 6. Dictionary specification: Snapshot 3. 

deletion of the requires and modifies at most clauses): 

create = proc () returns (d: dictionary) 
ensures (dposf = empty) A new [d] 

end 

In order to denote the empty value of a dictionary, we use the operator 
identifier, empty, in create’s postcondition. The empty operator must be defined 
by DictVals by first giving empty a signature, which in turn causes us to introduce 
a sort identifier (e.g., D) to which the type identifier dictionary can map. 
Consequently, we can define the type-to-sort mapping in the uses and provides 
clauses of dictionary. We now have the situation shown in Figure 6. 

Next we turn to filling in the body of add-word. We want to add a word and 
its definition to a dictionary only if the word is not already in the dictionary. We 
state this constraint in the precondition of add-word. We have 

add-word = proc (d: dictionary, w: word, def: definition) 
requires +sIn(d,,, w,,J 
modifies at most [d] 
ensures dpOSt = insert(d,,-, w,,, def,,) 

end 
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dictionary = cluster is create, add-word, get-definition, check-word 
uses DictVals with [dictionary for D, word for W, definition for Dfn] 
provides mutable dictionary from D 

create = proc () returns (d: dictionary) 
ensures (&, = empty) A new [d] 

end 

add-word = proc (d: dictionary, w: word, def: definition) 
requires 1 kln (dPre, wPm.) 
modifies at most [d] 
ensures dml = insert(d,,, w,,, def,,) 

end 

get-definition = proc (d: dictionary, w: word) returns (deE definition) 
requires. . . 
modifies at most . . . 
ensures . . . 

end 

check-word = proc (d: dictionary, w: word) returns (h: bool) 
requires. . . 
modifies at most.. 
ensures.. . 

end 

end dictionary 

DictVals: trait 
introduces 

empty: + D 
insert: D, W, Dfn + D 
isln: D, W + Boo1 

. . 

constrains empty, insert, isln so that 
for all [d: D, w, wl: W, dfn: Dfn] 

isIn(empty, w) = fake 
isZn(insert(d, w, dfn), wl) = (w = ~1) V (i.sZn(d, ~1)) 

. . . 

Fig. 7. Dictionary specification: Snapshot 4. 

Notice a design decision we have made: by allowing the dictionary input to 
add-word to be possibly mutated, we have decided to make dictionary a mutable 
type. We document this decision in the provides clause of the dictionary with 
the keyword mutable. 

The definitions of the operators isIn and insert are still pending in DictVals. 
To give a signature for insert, we introduce sort identifiers W and Dfn, corre- 
sponding to the types word and definition, respectively. Thus we can refine the 
specifications of the types word and definition in Figure 4 by completing their 
provides clauses. We can also write equations in DictVals to define the operators 
already introduced. Figure 7 shows the situation so far. We show only the 
dictionary cluster specification, so we cannot show the changes to the provides 
clauses of the word and definition cluster specifications. 

Continuing this process by filling in the bodies of get-definition and 
check-word causes us to introduce only one more operator identifier, lookup. 
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dictionary = cluster is create, add-word, get-definition, check-word 
uses DictVals with [dictionary for D, word for W, definition for Dfn] 
provides mutable dictionary from D 

create = proc () returns (d: dictionary) 
ensures (hat = empty) A new [d] 

end 

add-word = proc (d: dictionary, w: word, deE definition) 
requires 1 isIn(d,,, wPm) 
modifies at most [d] 
ensures dpost = insert(hR, w,,, def,,) 

end 

get-definition = proc (d: dictionary, w: word) returns (def: definition) 
requires isIn(d,,, w,,*) 
ensures defmr = .!ookup(d,,, zu,,) 

end 

check-word = proc (d: dictionary, w: word) returns (b: bool) 
ensures bPosl = isIn(dP,, w,,) 

end 

end dictionary 

DictVals: trait 
introduces 

empty: + D 
insert: D, W, Dfn + D 
isIn: D, W --, Boo1 
lookup: D, W-, Dfn 

constrains empty, insert, isIn, lookup so that 
for all [d: D, w, wl: W, dfn: Dfn] 

isIn(empty, w) = false 
isIn(insert(d, w, dfn), wl) = (w = wl) V (isIn(d, wl)) 

Zookup(insert(d, w, dfn), wl) = if w = wl then dfn else ,!ookup(d, wl) 

Fig. 8. Dictionary specification: Snapshot 5. 

After adding an equation to define lookup in DictVals, we end up with a dictionary 
specification and a DictVals trait as shown in Figure 8. 

3.2.1 Evaluating the Dictionary Cluster Specification So Far. At this point, 
before proceeding to the word and definition cluster specifications, it is worth 
reflecting on the dictionary specification we have just written. As mentioned in 
our design strategy, during the incremental development of a specification, it is 
useful to evaluate a specification to see if it can be improved and to assure us 
that we are on the right track. In this section we discuss the evaluation of 
interface specifications for the property totality. 

Notice that the precondition of the add-word specification is not (identically) 
true, which means that the behavior of an add-word procedure is left unspecified 
for some possible states in which it can be invoked. We say the add-word 
specification is not total [51]. Upon checking add-word for totality, we may be 
inclined to make it total and handle the case for which the word we attempt to 
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 1, January 1987. 



Writing Larch interface Language Specifications 17 

add to the dictionary is already in the dictionary. We might modify add-word to 
terminate exceptionally in this case: 

add-word = proc (d: dictionary, w: word, def: definition) 
signals (alreadyIn) 

modifies at most [d] 
ensures 

normally d,,, = insert(d,,, w,,, def,,) except 
signals alreadyIn when isIn(d,,, w,J ensuring modifies nothing 

end 

Similarly, if we were to check get-definition for totality, we would find that it 
also is not total. We choose to make it total, and handle the case in which we 
attempt to get the definition of a word that is not in the dictionary: 

get-definition = proc (d: dictionary, w: word) returns (def: definition) 
signals ( wordNotIn) 

ensures 
normally def,,, = lookup(d,,, w,,J except 
signals wordNotIn when %.sIn(d,,, w,,) 

end 

If we were to decide to leave a procedure specification not total, then the 
implementer would be free to choose what the behavior of the procedure would 
be in any unspecified cases. Unfortunately, implementers may often forget to 
handle unspecified cases, which may lead to surprising or erroneous behavior. 
On the other hand, it may not be necessary to handle unspecified cases if one is 
sure that they will never arise. For example, the choose procedure specification 
of Figure 2 is not total. If it were defined to operate on sets as defined by the 
set2 cluster specification described in Section 2.4, there would be no need to 
handle the “isEmpty” case, since it would never arise (assuming a correct 
implementation of set2). 

3.2.2 Completing the Remaining Interface Specifications. We now turn to filling 
in the blanks for the word and definition cluster specifications and the WordVals 
and DefVals traits. Recall that the informal description of the usage of a 
dictionary requires that we must be able to check the spelling of a given word 
against the spellings of the words in the dictionary. This requirement implies 
that the word cluster must have a procedure that tests for equality between two 
words. No other requirements or constraints were made on words, such as if 
words are sequences of only alphabetic characters (perhaps numerals and punc- 
tuation symbols are allowed) or if there exists a “null” word. Therefore, until 
further constraints are made by the client, it suffices to include in the word 
cluster specification simply a specification of an equal procedure. 

Finally, we turn to definition and DefVals. We have even less information 
about definitions of words in a dictionary than we have about words. For instance, 
we do not know whether definitions are sentences, phrases, or combinations of 
both, or whether they must conform to a fixed format. The only information we 
can include in the definition cluster specification is the type-to-sort mapping in 
the provides clause. Recall that we generated this information when we intro- 
duced the insert operator for the dictionary cluster specification. 
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We have essentially gone through one iteration of the strategy as outlined in 
Section 3.1. At this point, we need to return to the client and ask for more 
information. After further elaboration of the problem description, appropriate 
additions and modifications can then be made to the specification. 

4. IMPLICATIONS OF THE TWO-TIERED APPROACH 

In this section we explore the consequences of the two-tiered approach. First, in 
Section 4.1, we discuss the interaction between the Shared Language and inter- 
face language components of a Larch specification; then, in Section 4.2, we 
discuss how Larch interface languages support the two-tiered approach in general. 

4.1 Interaction between the Two Tiers 

The Larch style of specification presumes a style of program design in which 
abstract data types play a prominent role. One of the difficulties people may face 
in writing a two-tiered specification of an abstract data type (e.g., a Larch/CLU 
cluster specification) is figuring out where to put what. If the interesting abstrac- 
tions are defined in the Shared Language components, interface language com- 
ponents of specifications of abstract data types can appear to be trivial. This 
triviality of interface language components is in the spirit of the Larch style, 
since we would rather place the complexity of a two-tiered specification in the 
Shared Language component (the programming language-independent part) and 
keep the interface language component simple. So, for example, a more typical 
cluster specification for sets, which uses the SetOfE trait, than either presented 
in Section 2.4 would define operations on sets to be create, insert, delete, member, 
and size. In this case the postconditions for create, insert, and delete would refer 
to the trait operators empty, add, and remove, respectively, in an obvious way. 
As a guideline to specifiers, therefore, in order to keep interface language 
components simple, if the pre- and postconditions appear complicated, then very 
likely the used trait is not providing the appropriate abstractions and needs 
redefinition. 

Another distinction between interface and Shared Language components is 
that interface specifications describe what is to be implemented; traits do not. In 
particular, operations of abstract data types defined through procedure specifi- 
cations are intended to be implemented by procedures (of a program), but 
operators of traits are not. Trait operators are considered as auxiliary, or hidden, 
functions of the specification. Thus, for example, the pair operation of the set 
type as specified in Figure 3 is to be implemented by some CLU procedure, but 
the add operator of the SetOfE trait is not. More specifically, if the CLU 
implementation of the set abstraction uses arrays to represent sets, then the 
implementation of the pair operation would very likely make two calls to the 
array[int]$addh procedure; it would be nonsensical for the implementation to 
make two calls to a set$add procedure since none would exist.4 

Two properties of interface specifications illustrate two other ways the 
two tiers interact. The first property, protection, is related to the sufficient 

‘In CLU syntax, type-nume$op-name denotes the operation op-name of the type type-name. For 
CLU arrays, array[int]$addh(a, i) adds the integer i to the high end of the array a. 
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completeness of an algebraic specification [17]. The Larch Shared Language 
does not require traits to be sufficiently complete and provides a construct 
exempts for indicating that the meaning of certain terms has been intentionally 
unconstrained; hence, an exempt term indicates an intentional incompleteness 
in a trait. By partitioning a specification into two tiers, we can avoid in interface 
language components such incompletenesses in Shared Language components. 
When writing an interface specification whose used trait is not sufficiently 
complete, nontrivial preconditions can be used to ensure that the interface is 
protected from the incompletenesses of its used trait (i.e., that its meaning does 
not depend on the meaning of any exempt terms). For example, the DictVals 
trait is not sufficiently complete because the meaning of lookup(empty, w) is left 
unconstrained. If the get-definition procedure specification of the dictionary 
cluster specification were as follows, 

get-definition = proc (d: dictionary, w: word) returns (def: definition) 
requires isIn(d,,, wPPe) 
ensures def,,, = lookup(d,,, wPre) 

end 

then, because of its precondition, the meaning of get-definition is independent 
of the meaning of lookup(empty, w). In this case we say dictionary is protective 
of its used trait. If the precondition were “true” and the postcondition remained 
as above, then dictionary would not be protective of DictVals. 

Factoring a specification into two tiers allows us to factor our checks as well. 
If upon checking a trait for sufficient completeness we discover it is not, we may 
be inclined to check the interface language component for protection. Notice a 
typical chain of events that may occur through the feedback gained from checking: 
a check for incompleteness in a trait may lead to a check for protection of the 
interface component, which may lead to introducing a nontrivial precondition; 
then a check for totality (Section 3.2.1) may lead to introducing the handling of 
normal and exceptional cases, which may lead to the use of the special normally 
assertion. 

A second property, nondeterminism, of interface specifications deals with a 
different kind of incompleteness-that of underconstraining, typically intention- 
ally, final values of objects as specified in postconditions. Nondeterminism can 
manifest itself in interface specifications in at least two ways: the presence of a 
modifies at most clause allows for a possible, but not required, change of the 
values of input arguments; and the postconditio’ti may allow for the final value 
of an object to range over a set of final values. For example, the specification of 
choose of Figure 2 is nondeterministic because the value of the integer returned 
may be different in one invocation of choose from another. If the second conjunct 
in choose’s postcondition were removed, then choose would be nondeterministic 
for an additional reason: whether or not the final value of s is changed (the 
modifies at most clause allows for s’s value to change) is a choice left up to the 
implementer. 

Nondeterminism cannot be introduced by traits. The mathematical basis of 
algebra and of the Larch Shared Language depends on the ability to freely 
substitute “equals for equals.” This property would be destroyed if trait operators 
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were allowed to be nondeterministic functions. Furthermore, nondeterminism in 
an interface should not be confused with incompleteness in a trait. Although 
trait operators may be introduced without giving enough axioms to define them 
fully (e.g., as in DictVals), it is always the case that for every term t, t = t (e.g., 
lookup(empty, w) = lookup(empty, w)). 

4.2 Language Support for Approach 

The Larch family of specification languages supports the two-tiered approach in 
many ways. We summarize four below. 

Of primary importance, the separation of concerns is evident in the assertion 
language used in the bodies of procedure specifications. Two points to observe 
about the assertion language are that (1) Shared Language components contain 
only state-independent assertions; interface language components contain state- 
dependent assertions. All special assertions (e.g., new, modifies, and signals) 
are state-dependent, and are found in interface language components only. These 
special assertions obtain their meaning from the semantics of the target program- 
ming language and are introduced to highlight certain important classes of state 
transformations of the programming language. (2) By explicitly including a 
Shared Language component in an interface specification, we gain the advantage 
that every symbol in an assertion is precisely defined within a specification. In 
some other specification methods [27,44], there is a reliance on an interpretation 
for symbols in an assertion, where the interpretation comes from outside the 
specification. For example, the meanings of symbols like E and _C might come 
from textbooks on set theory. In contrast, some other methods (e.g., Jones’s and 
SPECIAL’s, as mentioned in Section 1.4) provide an assertion language defined 
within the specification, but restrict the symbols to come from a fixed set of 
primitives. We gain the advantage that the user is able to provide just the symbols 
necessary to write the assertions in the body of an interface specification. 

Second, the separation allows the interface language component to serve as a 
buffer between the programming language and the Shared Language. For exam- 
ple, the CLU concepts of an object and its type are kept separate from the Shared 
Language concepts of a term, which denotes a value, and its sort. Since objects 
of two different types can range over the same set of values, and hence have 
values denotable by the same sort, more than one type can map to the same sort. 
The provides clause that appears in a cluster specification specifies to what sort 
a type maps. 

Third, although the Larch Shared Language is a proper subset of a Larch 
interface language, the Shared Language component of a two-tiered specification 
is syntactically separate from the interface language component. They are con- 
nected by naming the Shared Language component via the uses clause (and 
provides clause for cluster specifications). This separation allows us to keep 
individual components of a specification relatively small. We encapsulate a few 
key concepts into a single small specification module rather than many concepts 
into a single large specification. Understanding each small component should be 
easier than understanding one large specification. Furthermore, reuse of Shared 
Language components is encouraged. For example, the DictVals trait of the 
dictionary cluster specification could be used for defining a symbol table cluster 
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specification (or vice versa, if a TableVals trait had existed, it could have been 
used for the dictionary cluster specification). 

Finally, since different interface languages all derive part of their meaning 
from the Larch Shared Language, defining a new interface language requires 
only that that subset of the language built on top of the Larch Shared Language 
be defined. Additionally, we can use the same Shared Language components for 
interface language components written in different interface languages. 

5. FURTHER WORK 

We expect this work to be explored further in the following three directions: 
developing other Larch interface languages, building machine support, and 
applying the two-tiered approach to examples. 

One test of the two-tiered approach is to develop Larch interface languages for 
other programming languages, both sequential and concurrent. Development of 
interface languages for other sequential programming languages has been 
done informally for Cedar Mesa [29] and Pascal [22], and is,being explored for 
Modula-2. From this experience, we offer the following suggestions for designing 
a new interface language. 

-Start with the basic skeleton of Larch/CLU. 
-Define the target programming language’s model of state. Much of this can be 

done through traits. 
-Identify which components of state may change. Introduce special assertions 

to highlight those state changes that are anticipated to occur frequently. 
-Consider other semantic issues of the programming language, and decide how 

and where to handle them, that is, at which level (traits or interfaces). Issues 
to consider are the storage model (heap versus stack), termination and error 
handling (are errors handled and propagated, or do they abort the program?), 
and parameter-passing mechanisms (CLU uses call-by-sharing, whereas Pascal 
has both call-by-value and call-by-reference). 

One consequence of separating a specification into two tiers is that there is 
more to manage: more pieces and more possible interaction between pieces. The 
development of sophisticated machine aids addresses the need to help the human 
keep track of a growing specification. Without machine support, we have no hope 
of expecting either specifiers to write or programmers to use specifications, except 
as an academic exercise. Minimally, machine support should provide ways to 
manage the text of specifications; ideally, it should provide ways to reason about 
their meaning as well. The Larch Project has been designing and implementing 
software tools as part of a specification environment. Included in this develop- 
ment effort are implementations of a syntax and static-semantics checker for the 
Larch Shared Language [35] and a semantic checker that can manipulate 
equations [13, 361, and the design of a syntax-directed editor [54] and a specifi- 
cation library [3,25]. Throughout this paper, we have presumed the existence of 
some of these tools. For example, for the set and set2 specifications, we presumed 
the existence of a trait library from which we borrowed the SetOfE trait; 
in the dictionary specification, we presumed that no appropriate trait was 

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 1, January 1987. 



22 - Jeannette M. Wing 

available, and imagined the use of a highly interactive editor to help us write the 
DictVals trait. 

Finally, the two-tiered approach needs to be tested on realistic examples of 
substantial size. By trying it out, we can evaluate whether the two-level parti- 
tioning is good, whether it makes it easier to read and write specifications, and 
whether it leads to better specifications. We can also see whether the separation 
of concerns leads to a better understanding of what it is we are trying to specify. 
With more experimentation, we hope to show the utility of using formal specifi- 
cations; in particular, to demonstrate that forcing precision in the design process 
has a beneficial effect on the overall programming process. 
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