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Abstract: Current research in specifications aims to put formal specifications to productive use
throughout the entire programming process, and especially in program design. In the incremental
development of a specification, one problem faced by a specifier is the lack of useful feedback
informing him whether the specification is any good. One way of providing such feedback is to supply
the specifier with ways to evaluate a specification, e.g., check that some desired property of the
specification holds. In the context of a two-tiered approach to specifying programs, this paper defines
and discusses four properties a specifier may wish to check of his specification, and how he can use
the feedback gained from having checked for them. These properties are related to the consistency
and completeness of a specification. All definitions are in terms of the theories associated with
specifications.
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Resume: Un but essentiel de la recherche en matiére de spécifications (de programmes) est
actuellement d'utiliser les spécifications de manicre productive d'un  bout 3} lautre de l'effort de
programation, et notamment dans le cadre de la conception. Au cours des étapes du développement
d'un ensemble de spécifications, un des problémes du spécifieur est le manque de *feedback® destine 3
le renseigner sur la qualité de ses specifications. Une possibilité pour pallier 3 cette carrence est de
fournir au spécifieur des critéres moyens d'évaluation pour spécifications (par exemple, verifier que les
spécifications ont une certaine propriét€). Dans le contexte de la méthode de spfcification dite *two-
tiered® ("i-deux-niveaux®), cet article definit et examine quatre propriétés qu'un spécifieur est
susceptible de vouloir vérifier pour ses spécifications, et comment il peut utiliser le *feedback® obtenu
par cette vérification. Ces propriétés sont intimement lies 3 la consistence et 3 la complétude des
specifications. Toutes les définitions sont données en termes des théories associ€es aux spécifications.

Mots cles: Spécifications formelles, conception des programmes, méthodes de sp€cification, langages de
spécifications, évaluation de spécifications, propriétés des spécifications, consistence, complétude,
approche 3-deux-niveaux. .
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1. Motivation

The broad goal of our research in specifications is to put formal specifications to productive use in
the overall programming process. Some of our premises and goals are stated in [Guttag 82]. One of the
problems specifiers face when developing a formal specification early in this process, i.e., the design
phase, is that no feedback is provided to indicate whether the specification is on the ®right track.® A
specifier may wish to know if his specification is in some sense “"correct,® i.e., that it captures his
intuition of what he is trying to specify, or that it is in some sense "good,” i.c., that is satisfies a set of
desired objective and possibly subjective properties. Providing such feedback to a specifier can increase
his confidence in his specification. It may also help him better understand both the specification and
the client’s problem statement, and consequently may cause him to modify or improve the specification
or force the client to clarify the problem statement. Depending on how informative the feedback is, it
' may even point to a place in the specification where an improvement can be made.

One way of providing such feedback is to provide the specifier with "checkers,” each of which
tests for a property of a specification. For example, a syntax-checker would check for the syntactic
legality of a specification. In this paper, we consider four properties of specifications related to the
consistency and completeness of specifications, and we discuss what a specifier might gain from
checking a specification for these properties. We do not give an extensive enumeration of properties,
but just a sample to suggest that checking for them would be useful in evaluating specifications. We
leave for further work the tasks of identifying and defining additional properties, analyzing the
tradeoffs among them, and finding other ways of evaluating specifications.

The ideas underlying the properties of specifications that we define are independent of any
particular specification method or language. We find it useful, however, to illustrate them in the
context of a two-tiered approach to specifying programs in order to be concrete in our examples and
definitions. Hence, in Section 2 we give an overview of the two-tiered approach, a specification
language that supports this approach, and what the theory of a two-tiered specification is. The results
of this paper are taken from [Wing 83|, which contains further discussion and details of the approach,
the language, and the theories of two-tiered specifications.

In Section 3 we present the definitions of four properties of specifications and discuss how a
specifier might use the knowledge gained from checking a specification for these properties. In Section
4 we briefly mention two directions of further work.

2. Overview of Two-Tiered Specifications

2.1. The Two-Tlered Approach :

The two-tiered approach to specifying programs separates the specification of underlying
abstractions from the specification of state transformations. We use a shared specification language to
describe underlying abstractions, and an interface specification language to describe state
transformations. The specification of a program module is written in an interface language and consists
of two parts: a shared language component and an interface language component. These two
components correspond to the two tiers in our approach.

The interface specification language is programming language dependent, while the shared
language is programming language independent. This allows us to keep separate the description of
programming language independent issues from the description of programming language dependent
ones, e.g., side effects, exceptional termination, and resource allocation. For example, if we were to
implement arithmetic, we would describe ideal arithmetic in the shared language, and we would
describe boundary conditions constrained by word and memory size in an interface language.
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2.2. A Two-Tlered Specification Language

We describe the specification language used in our examples by first discussing a shared language,
Larch [Guttag 83], in Section 2.2.1, and then an interface language for the programming language CLU
[Liskov 81] in Section 2.2.2. '

2.2.1. A Shared Language

The shared specification language we use is Larch, which evolved from the algebraic style of
specification languages [Burstall 81, Nakajima 80, ADJ 75, Guttag 77].  Since Larch’s unit of
encapsulation is called a trast, we will henceforth use "trait® for the term ®shared language
component.* We describe only the syntax and semantics of traits necessary to understand the
examples and definitions of this paper.

A trait introduces a set of sort identifiers, and a set of function identifiers and signatures. The
function identifiers are composed to build terms, which are used to write assertions appearing in the
body of an interface language component. The sort identifiers and function signatures are used to
scrt-check terms much in the same way as type identifiers are used to type-check programs. The
meaning of a trait is based on a first-order theory of equality for terms. Appendix I contains an
example of a trait, SetOfInt, useful for defining values of sets.

2.2.2. An Interface Language

The interface specification language we describe is for the programming language CLU. A CLU
program consists of a set of modules, each of which is either a procedure or cdluster? Hence, the
interface language components we will discuss are called procedure specifications and cluster
specifications. A procedure performs an action on a set of objects, and terminates returning a set of
objects. A cluster names a type and defines a set of prccedures that create and manipulate objects of
that typs. An object has not only a type, but also a value. An object whose value can change is said
to be mutable. A type is mutable if objects of that type are mutable. For example, arrays are
mutable, but integers are immutable in CLU.

The key connection between the shared language and CLU is that (sorted) terms denote values of
(typed) objects. Interface language components, i.e., procedure and cluster specifications, establish this
connection.

A procedure specification has three parts: a header, a link to a trait, and a body. Figure 1 gives
an example of a procedure specification. Its header indicates that the input argument is of type set,
and the output argument is of type int. Its link is the name of a trait, SetOfInt, which we call the used
trait of choose. Its body contains two first-order assertions that correspond to a pre-condition on the
state when the procedure is invoked, i.e., the initial state, and a post-condition on both the initial state
and the state when the procedure terminates, i.e., the final state. For example, choose’s pre-condition
is satisfied if the initial value of the input argument is not empty. We denote the initial value of an
object by an object identifier, e.g., s, followed by an up-arrow (1); the final value, an object identifier
followed by a down-arrow (}).

2\’Ve will ignore CLU’s third kind of program module called an sterator.
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choose = proc (s: set) returns (i: int)
uses SetOfint
pre ~isEmpty(st)
post has(st,il) A s} = remove(st,i}) A mutates s
end

Figure 1: A Choose Procedure Specification

Assertions in the pre- and post-conditions are constructed from function identifiers, e.g., isEmpty,
has, and remove, which are provided by the used trait, plus special assertions, e.g., mutates s. Special
assertions are introduced to highlight issues particular to the target programming language. The
mutates assertion in the example states that the choose procedure may mutate no object other than
the input set object. The meanings of all assertions are based on the theory of equality defined by the
used trait; this provides the link between the two tiers of a specification.

A cluster specification consists of a header, a link to a trasit, and a body. Figure 2 gives an
example of a mutable set cluster specification, which we call SetClusSpec for future reference. Its
header names the type, set, which we call the defined type, and contains a list of procedure identifiers;
its body consists of a set of procedure specifications. Singleton and union are specified to return new
nonempty set objects. Delete might mutate its input set argument, if doing so does not empty it;
otherwise, it terminates exceptionally, signaling emptiesSet. Size returns the cardinality of its set
argument. SetClusSpec's link is given by a uses clause, which names the used trait {SetOfint), and a
provides clause. SetOflnt supplies all function identifiers that appear in the assertions of set's
procedure specifications. The provides clause gives a mapping from a type identifier, e.g., set, to a
sort identifier, e.g., SI, which must appear in the used trait. This mapping determines the values over
which objects of the type defined by the cluster can range. All objects of the type set are restricted to
values denoted by terms of sort SI. The provides clause also indicates that set is 3 mutable type via
the keyword mutable.
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set = cluster 1s singleton, union, delete, size
uses SetOfInt
provides mutable set from SI

singleton = proe (i: int) returns (s: set)
pre true
post s| = add(empty,if) A new s
end

union = proc (s1, 82: set). returns (s3: set)
pre true
post Vj:E [bhas(s2],j) = has(s11,j) V has(s21,j)] A new s3
end

delete = proc (s: set, i: int) signals (emptiesSet)

pre card(sf) > 2 vV ~has(s1,it)
post s| = remove(st,it) A mutates s

pre card(sf) eq 1 A has(st,it)
post signals emptiesSet A new 0
end

size = proc (s: set) returns (i: int)
pre true
post i| = card(st) A new 0
end

end
Figure 2: A Set Cluster Specification (SetClusSpec)

The signals and new assertions found in the bodies of set’s procedure specifications are examples
of special assertions introduced to highlight CLU features. We allow the use of multiple pre/post pairs
in the body of a procedure specification, e.g., as in delete, to aid in readability. The appearance of ¢
pre-conditions translates to the single pre-condition that is the disjunction of all i pre-conditions; of ¢
post-conditions, to the single post-condition that is the conjunction of § "pre; = post.* implications.

2.3. Theory of a Specification

We view a specification as a formal system that specifies a theory, where a formal system,
consists of a language (a set of symbols and a set of well-formed formulae), a set of axioms, and a set of
rules of inference. A theory specified by a formal system, Spec, is the smallest set of formulae
reflexively and transitively closed over the set of axioms under the rules of Spec.

The theory of a trait derives from first-order predicate logic with equations as atomic formulae®
The theory of a procedure specification, Pr, extends the theory of its used trait by adding a set of
triples, P{Pr}Q, where P is a first-order assertion on the initial values of objects, and Q is a first-order
assertion on the initial and final values of objects”

3'Predit:ate' refers to quantification; *first-order® refers to quantification over variables in the atomic formulae.
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The theory of a cluster specification is the union of the theories of its procedure specifications,
plus the set of triples derivable from a type induction rule associated with a cluster specification. The
triples in this latter set are each of the form true{S}Q, where S is any program statement and Q is an
assertion on the final state. There is a hypothesis in the rule for each procedure specified to create or
mutate an object of that type. The type induction rule lets us associate type invariants with a cluster
specification. For example, the type induction rule associated with SetClusSpec has three hypotheses,
one each for singleton, union, and delete. One of the invariants we can derive from this rule is that all
sets are of size strictly greater than zero, i.c., no set objects can be empty. In subsequent examples, we
will refer to this (atypical) cardinality property as Sizelnv.

We denote the theory of a procedure specification, Pr, by Th(Pr). We call a procedure
specification found in the body of a cluster specification bound and one found outside all cluster
specifications free. For example, choose (of Figure 1) is free with respect to SetClusSpec, but singleton
(of Figure 2) is bound. If Pr is bound, then we write Th(Pr+) to denote the Th(Pr) plus the theory of
the defined type. Hence, if Pr is bound, triples derived from the type induction rule are included in
Th(Pr+), but not in Th(Pr). In our definitions, we write *Pr.pre® for the assertion found in Pr's pre-
condition; *Pr.post,® in Pr's post-condition.

We focus on expressing our definitions in terms of theories, and not of models, because a theory
can be viewed as a set of formulae, i.c., strings of symbols, subject to syntactic manipulation. Given
sufficient mechanized theorem-proving power, we can reason about specifications independently of their
models by manipulating their theories just as we do their text. Therefore, our definitions of properties
will be in terms of whether a formula is or is not in a theory, i.e., whether it is or is not deducible from
the specification.

3. Properties of a Specification

Following our specification approach, we put together pieces of existing specifications to create a
larger specification targeted for a particular problem or problem domain. As the specification grows
incrementally, we might invoke a ®*checker® to test for a property of the specification. In the process of
tuning a specification, we would probably invoke such a checker many times. If a.specification does not
have a property, we can choose either to modify the specification so that it does, or accept the fact
that it does not—a checker is used only to provide information, not to inhibit the progress of writing the
specification. Checking for a property might also necessitate a clarification in the client’s problem
statement. For example, discovering that a specification is inconsistent may point to a contradiction in
the problem statement--the specification merely reflected the mistake.

Two properties of a specification that might be of interest are consistency and completeness. The
ability to check for conmsistemcy is probably of more use than the ability to check for completeness.
Knowing a specification is inconsistent informs the specifier that no implementation could be written to
satisfy the specification. We define consistency in Section 3.1.

We do not define completeness because we expect most specifications to be incomplete in the
logical sense? as well as in the practical sense—in the development of a large specification, we may have
no intention of ever "finishing® it. We usually want to know when we have said *enough® as opposed
to "everything.® In Sections 3.2-34 we define three properties: full-coverage, determinism, and
protection. Each gets at a different notion of sufficiency as a different kind of approximation to
completeness. For each property we first motivate it, then define it, and then discuss specifications

‘Given a formal system, its theory is complete if for all formulae, F, we can determine whether F or ~F is in the
theory.
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with that property. ‘

3.1. Consistency

The usual notion of consistency of a formal system refers to the inability to derive an explicit
contradiction. For a given first-order predicate logic formal system, a set of formulae, ¢, is
inconsistent if and only if false is in 4. We use this definition to build the notion of an inconsistent
specification.

Def: A trait, Tr, is inconsistent if and only if the formula (true = false) or the formula false is in
Th(Tr). -

Def: A procedure specification, Pr, is inconsistent if and only if (1) there exists a satisfiable formula P
such that the formula P{Pr}false is in Th(Pr), or (2) Pr's used trait is inconsistent.

Def: A cluster specification, Cl, is inconsistent if and only if (1) true{S}false is in Th(Cl), or (2) for any
of Cl's procedure specifications, Pr, there exists a satisfiable formula P such that the formula
P{Pr}false is in Th(Cl), or (3) CI's used trait is inconsistent.

Def: A specification is consistent if and only if it is not inconsistent.

Notice we define inconsistency of a procedure specification in terms of Th(Pr) and ot Th(Pr+) so
as not to include the theory of the defined type when Pr is a bound procedure specification. Since the
theory of a cluster specification is defined in terms of the theories of its procedure specifications, we
avoid a circular definition.

Consistency is a desirable property of all specifications. Inconsistent specifications are more
common than one might imagine, as the following example illustrates.

intersect = proc (s1, s2: set) returns (s3: set)
uses SetOflnt
pre true
post Vi:E [has(s3},j) = has(s11,j) A has(s21,j)]
end

Intersect specifies that the set returned contains elements common to both input sets. Suppose
intersect is a free procedure specification. Th(intersect) is inconsistent with respect to SetClusSpec
(Figure 2) because there is no set object that can be returned as the intersection of disjoint input
arguments. The proof of inconsistency uses Sizelnv, derivable from the type induction rule for sets.

3.2. Full-Coverage .

In this subsection and the next two, we will define three properties that are related to the
scompleteness® property of a specification. These three represent examples of the kinds of
approximations to completeness a specifier might-want to check of a specification.

A common error in programming is forgetting to cover all the cases. As a result, a program may
behave in an erroneous or surprising manper on some inputs. We would like to be able to prevent the
occurrence of these errors before coding begins, i.e., in the design phase, by making sure our
specification covers all the cases that can arise. For example, the following specification,
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search = proc (a: array, e: elem) returns (index: int)
uses ArrayOfElem
pre isSorted(at)
post ef = fetch(af, index|)
end
is not fully-covering because the case for the unsorted array is not covered. A checker for full-coverage
invoked on search might prompt us to add another pre/post pair to handle the unsorted array.

Unlike consistency, however, full-coverage is not always desired. We may intentionally want to
leave some cases unspecified because we know they will never arise or because we want to let the
programmer decide how to handle them. In the example above, we may decide not to add another
pre/post pair if we expect search always to be invoked with a sorted array.

3.2.1. Definition

' We want the definition of full-coverage to capture the notion that the behavior of a procedure is
specified for all "reachable® input states. One way of capturing the notion of full-coverage of a
procedure specification in terms of theories is that if the pre-condition of the procedure specification is
equivalent to true, then the behavior is defined for all input states, and so the procedure specification is
fully-covering. That is,

Def: A procedure specification, Pr, is fully-covering if and only if true{Pr}Pr.post is in Th(Pr+).

Def: A cluster specification is fully-covering if and only if all its procedure specifications are fully-
covering.

3.2.2. Discussion

A specification may not appear to be fully-covering when it is. Consider SetClusSpec in which
each of its procedure specifications, in particular, delete, is fully-covering. Although the disjunction of
delete’s pre-conditions is not identically true, it is provably true from Th(set), which is contained in
Th(delete+). The proof would use SizeInv since we need not handle the case for sets of size less than
or equal to zero.

In practice, writing a procedure specification that is fully-covering is similar to generating
sufficient test cases for a program [Goodenough 75, McMullin 82]. A helpful guideline to follow is for
the specifier to use in a stylized manner, multiple pre/post pairs in conjunction with signals assertions
(for multiple termination conditions) to cover all the cases. If one pre-condition places a restriction on
the input state, then other pre-conditions should cover the cases for which the restriction does not hold.
For each separate case, there is typically a different termination condition. As a result, the behavior of
the procedure is *fully® specified. -

3.3. Determinism v

In specifying a program, it is not always easy to separate decisions that should be made at design
time from those that should be delayed to implementation time. A specification should impose as few
constraints as possible to avoid unnecessarily overspecifying the behavior of the program. An
intentional lack of constraint can be regarded as an intentional incompleteness.

Nondeterminism gets at the notion of introducing an intentional incompleteness in a
specification. It says that the values of input and output objects of a procedure specification are not
predictable in the final state. A nondeterministic specification allows the implementor the freedom to
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choose the most convenient (e.g., efficient to implement) values. Four example, in implementing a
choose procedure for sets, returning the last integer inserted may be more efficient than returning the
largest integer. ’

In contrast, determinism requires that the final values of the input and output objects be
predictable. Whereas the fully-covering property deals with the *completeness® of a specification with
respect to input states, determinism deals with it with respect to output states.

3.3.1. Deflnition

A specification is deterministic if for each state that satisfies the pre-condition, only one set of
final values for the input and output objects satisfies the post-condition. We define this property in
terms of theories, analogously to the usual definition for a function. A relation, f, on A X Bis a
(partial) function if for all a€A, b1,b2€B [(<a,bl1>€El A <a,b2>E€f) = (bl = b2)]. For determinism,
we require the relation between the values of input an output objects defined by a procedure
specification to be a partial function.

If A is the list of input formals and B is the list of output formals for the procedure specification,
Pr, we let Pr.pre(A1) denote the pre-condition on the initial values of input objects, and Pr.post(At, A,
Bl) denote the post-condition on the initial and final values of input and output objects. '

Def: A procedure specification, Pr, is deterministic if and only if Th(Pr+) contains the following
formula:

VA, Al, A2, Bl, B2
[Pr.pre(At) =
[Pr.post(At, All, B1}) A Pr.post(At, A2}, B2})] =
(A1] = A2}) A (B1] = B2})|

3.3.2. Discussion

A specifier may intend a specification to be deterministic or not. A procedure specification may
turn out to be nondeterministic because of an unintentional oversight on- the part of the specifier. The
following procedure specification,

choose = proc (s: stack) returns (i: int)
uses StackOflint

pre ~isNull(st)

post i} = top(s{) A mutates s

end o
is nondeterministic—the final value of s is indeterminate because of the presence of the mutates
assertion (the final value of s may or may not be the same as its initial value). To make choose
deterministic, the specifier could add the conjunct s| = pop(sf) to the post-condition, or remove the
mutates assertion. On the other hand, the specifier may have intended to let the implementer decide
whether or not to pop the stack, and therefore may have intended choose to be pondeterministic.

Checking for determinism requires showing that a formula is in a theory; checking for
nondeterminism requires showing that a formula is not. A specifier may sometimes be able to show the
latter by assuming the formula is in the theory and finding a contradiction to show otherwise. For
example, if the post-condition of the choose procedure specification were isIn(st,i}), then we could show
choose is nondeterministic by assuming the following formula is in Th(choose):
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Vs:stack, il,i2:int |~isNull(st) =
[isIn(st,i1}) A isIn(st,i2})] =
(i1} = i2})]

Let 51 be push(push(null,5),7), i1} be 5, and i2} be 7 to derive a contradiction.

3.4. Protection

By partitioning a specification into two tiers, we can avoid at the top tier an incompleteness at
the bottom tier. In particular, a procedure specification should be able to use a trait even if the trait is
not sufficiently-complete [Guttag 78]. It is the procedure specification’s responsibility to protect any of
its users from the incompleteness of the trait by ensuring that the meaning of the procedure
specification is independent of those incompletenesses.

Associated with a trait, Tr, is a set of ezempt terms, E(Tr), to inform the specifier of intentional
incompletenesses of Tr. We would like to ensure such incompletenesses do not show through to the
interface level. For example, if the term top(null) is in the set E(StackOflnt), the following procedure
specification is not protective.

read = proe (st: stack) returns (i: int)
uses StackOflInt
pre true
post i} = top(stt)
end

I the initial value of st were null, then the incompleteness of the stack trait woﬁld show through to the
interface level because the value of the integer returned would be denoted by the exempt term
top(null).

Factoring a specification into two tiers allows us to factor our checks as well. If upon checking a
trait for sufficient-completeness, we discover it is not sufficiently-complete, we may be inclined to
invoke our checker for protection. For example, invoking a checker on read might cause us to change
its pre-condition to be ~isNull(stf). - ’

3.4.1. Definition

We say that a procedure specification is protective if it is independent of the set of exempt terms
of its used trait. For a trait, Tr, the set of exempt terms, E(Tr), includes all terms that have a subterm
that is provably equal to an instantiation of an exempt term. For example, for the StackOflnt trait,
E(StackOfInt) = {top(null), pop(null), size(top(null)), top(pop(push(nulle))), ...}. We now give the
definition of *independent of a set of terms.® Intuitively, it captures the notion of never having to deal
with certain terms. We follow it with the definition of protection.

Def: Let S be a set of terms. An assertion, A, appearing in Pr is independent of S, if
1. No subterm of A isin S, or
2. 3B [A & B] € Th(Pr), and B is independent of S.

Def: Pr is protective if

1. Pr.pre is independent of E(Tr), and
2. Pr.pre = Pr.post is independent of E(Tr).
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3.4.2. Discussion

Protection is a desirable property of an interface specification. The specification should not be
dependent on properties of the values denoted by exempt terms, and in reasoning about it the specifier
does not want to be "stuck® with terms that are exempt. If upon checking to see if a specification is
protective, we find that it is not, we may be able to find the dependency in the specification and then
fix the specification to remove it.

Checking may require some cleverness on the specifier’s part. It may involve finding an assertion
equivalent to the one being shown independent of a set of exempt terms. Checking that the pre-
condition is protective is usually easy because pre-conditions are usually simple. Checking the post-
condition, however, is likely to be more difficult.

In practice, writing a protective procedure specification is straightforward provided that the trait
is actually strong enough to specify. the desired properties. Strong emough pre-conditions are written to
make sure that even if a post-condition alone is not independent of an exempt term, the assertion Pre
= Post is. Often enriching the set of functions of the used trait makes it easier to read and write
pre-conditions to bandle these cases. For example, we might include the function isNull in the
StackOflInt trait so we can write in the pre-condition of read the assertion ~isNull(stt) instead of the
equivalent assertion ~(st! = null). :

4. Further Work

Two directions in which further work can be done are in building software support and finding
other ways to evaluate specifications. First, from the definitions of properties of specifications, we
would like to find algorithms or heuristics from which we can build software tools that enable us to
check for properties of specifications. A specifier can then use these checkers to help evaluate a
specification as it develops. Existing software tools that can be used to manipulate specifications
include OBJ [Goguen 79], AFFIRM [Musser 80}, and Reve [Lescanne 83]; proposed tools include those
for Larch [Guttag 82] and for PAISLey [Zave 82].

Second, besides checking for properties, we need to find other useful means of evaluating
specifications, and besides those properties we have defined, we need to find other properties or qualities
for which to evaluate a specification. For example, comparing the relative strength between two
specifications [Wing 83, Wing 84] or analyzing structural dependencies between components of a
specification might prove to be two other valuable ways to evaluate specifications. We also need to
consider the task of evaluating a collection of specifications as well as individual specifications. As a
collection of specifications grows, evaluating it becomes just as important as, and probably harder than,
evaluating each of its components.

189



I. SetOfInt Trsit

SetOfint: tralt

includes Integer, Equivalence

Introduces
empty: — SI
add: SLE ~ 8]
remove: S|, E — Sl
has: S1, E — Bool
isSEmpty: SI — Bool
card: SI — Int

closes SI over [empty, add]

constrains [SI] so that for all [s:S], ¢, el: E]
remove(empty ¢) = empty
remove(add(s,e).e1) = If eq(e,e1) then remove(s,el) else ' add(remove(s,el)e)
has(empty.e) == false :
has(add(s,e),e1) = if eq(e,c1) then true else has(s,el)
isEmpty(empty) = true
isEmpty(add(s,e)) = false
card(empty) == 0
card(add(s,e)) = If has(s,c) then card(s) else 1 + card(s)
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